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Abstract: Description of the transitional process from a static to a dynamic frictional 

regime is a fundamental problem of modern physics. Previously, we developed a model 

based on the well-known Frenkel-Kontorova model to describe dry macroscopic friction. 

Here, this model has been modified to include the effect of dissipation in derived relations 

between the kinematic and dynamic parameters of a transition process. The main 

(somewhat counterintuitive) result is a demonstration that the rupture (i.e., detachment 

front) velocity of the slip pulse which arises during the transition does not depend on 

friction. The only parameter (besides the elastic and plastic properties of the medium) 

controlling the rupture velocity is the shear to normal stress ratio. In contrast to the rupture 

velocity, the slip velocity does depend on friction. The model we have developed describes 

these processes over a wide range of rupture and slip velocities (up to 7 orders of 

magnitude) allowing, in particular, the consideration of seismic events ranging from 

regular earthquakes, with rupture velocities on the order of a few km/s, to slow slip events, 

with rupture velocities of a few km/day. 
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1. Introduction 

The relative movement of two solids in contact is accompanied by friction, an essentially nonlinear 

dissipative process. It is generally accepted that friction appears due to interactions between surface 

asperities. The actual contact area between rough frictional surfaces of stiff materials is less (usually 

much less) than the nominal surface area, and it is proportional to the averaged normal stress, and 

depends on the elasticity and plasticity of the materials in contact [1,2]. The normal stress at the tip of 

an asperity (i.e., at the physical contact area) is equal to the penetration hardness of the material [2]. 

Under static or uniform sliding conditions, friction is usually described by the frictional coefficient, i.e., 

the proportionality coefficient between tangential and normal stress (classical Amontons-Coulomb law). 

However, as shown in modern laboratory experiments, friction depends on slip, sliding rate, contact 

time and normal stress history (see extensive reviews by Marone [3], Baumberger and Caroli [4] and 

Dieterich [5]). Recent laboratory experiments [6–9] also confirm that the standard description is not 

sufficient when parameters describing the physical state of the system (sliding rate, stress, etc.) are not 

uniform in time and/or space. 

Over the past 50 years, various approaches for the modeling of non-uniform frictional processes 

have been developed. Two types of models are the most common, i.e., mass-spring models [10–17], 

and rate-and-state (Dietrich-Ruina) models [18–28]. The mass-spring models of the Burridge-Knopoff 

type describe collective behavior and statistical features of earthquakes and reproduce major empirical 

laws of observed seismicity, i.e., large earthquake recurrence, the Gutenberg-Richter law, foreshock 

and aftershock activities, and preseismic quiescence [10,11,13]. In general, however, these models are 

not adequate to describe the dynamics of an individual event. More detailed dynamics, such as the 

necessary and sufficient conditions for nucleation of individual earthquake events, have instead been 

formulated in the framework of rate-and-state models [19–21]. Rate-and-state models have been used 

successfully to describe regular earthquakes [18–23], slow slip events [24,25], and fault dynamics  

(e.g., [22,23,26]). They are capable of incorporating such phenomena as frictional dilatancy [29–31], 

compaction of brittle materials [29,32] and microscopic elasticity [33]. Although these models are 

based on laboratory experiments and include some measurable laboratory parameters, such as the 

characteristic slip distance, they also include unknown parameters which can be adjusted to fit field or 

laboratory observations. The same is true for the mass-spring models. Ultimately, a physical model 

with no adjustable parameters is most desirable. 

The Frenkel-Kontorova (FK) model [34] provides a promising point of departure for a more 

predictive model. It has been widely used to describe micro- and nano-scopic friction (e.g., [35,36] and 

references therein). Recently, we have developed a FK-type model which describes macroscopic 

friction. The advantages of this model are: (1) it is an intrinsically dynamical model, rooted in the 

Newtonian equations of motions; (2) parameters used in the model have explicit and unambiguous 

physical correlates; (3) it describes frictional processes over a wide range of conditions, from very fast 

processes such as regular earthquakes down to very slow processes such as creep, silent, and slow  

earthquakes [37–39]. The observed nonlinear dynamics of frictional processes is incorporated in the 

standard linear mass-spring models by introducing ad hoc nonlinear relations between various model 

parameters (e.g., the introduction of a nonlinear spring constant or a nonlinear relation between friction 

and slip velocity). By contrast, the FK model is inherently nonlinear. 
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The motivation for using this model to describe dry macroscopic friction derives from the similarity 

between plasticity and dry friction, both on laboratory and geophysical scales. Sporadic local motions of 

the Earth’s crust along faults, occurring due to earthquakes and various creeping events, are similar to the 

processes of plastic deformation in crystals resulting from movement of edge dislocations by the localized 

shift of crystalline planes. Of particular relevance is the fact that the external stress initiating plasticity is 

only a small fraction of the stress necessary for the uniform relative displacement of planes of crystal atoms. 

Similarly, laboratory friction experiments have shown that the critical shear force needed to initiate a 

macroscopic slip pulse between frictional surfaces is usually much less than that predicted by theory [7]. 

Motivated by these similarities, we have proposed a novel model [37,38] in which sliding occurs in 

much the same way as in plasticity, i.e., due to movement of a defect we define as a “macroscopic 

dislocation”, which requires much less shear stress than uniform displacement of frictional surfaces. A 

dislocation in this context is a static configuration of accumulated stress between two surfaces due to the 

elastic shift of asperities on one surface relative to the other. The dislocation is confined to a specific region 

of the surface but can be displaced along the surface. As we will see, the sliding motion of the two surfaces 

occurs due to the movement or propagation of dislocations, somewhat analogous to caterpillar motion. A 

macroscopic slip is, in fact, the result of a multitude of dislocations propagating along the surface. 

In the continuum limit, our model is described by the sine-Gordon (SG) equation, one of the fully 

integrable nonlinear equations of mathematical physics. This equation has been thoroughly 

investigated due to its exceptional importance and universality [40–43]. The mathematical apparatus 

which has been developed is fully applicable to the problems considered here. In the framework of our 

model, all variables, whether or not directly measurable, are connected by transcendental analytical 

relations, allowing a clear analysis of dependencies, e.g., rupture velocity as a function of accumulated 

shear stress [37,38]. Algebraic relations have been obtained between kinematic parameters (such as 

slip velocity and rupture velocities) and dynamic parameters (such as shear stress, normal stress, and 

stress drop). However these formulae (analytical solutions) have been derived neglecting friction. Here, 

we introduce a dissipative term into the SG equation, which requires a numerical solution of the 

problem. We show that some of our previous results, such as the relation between rupture and shear 

stress, remain valid under the influence of dissipative processes, but some of them, such as the relation 

between slip velocity and shear stress, need to be modified. 

In the next section we describe the basics of the model, followed by the Results, Discussion,  

and Conclusion. 

2. Model 

An overview of the model is provided to establish the context for the results which follow. A more 

detailed description may be found in our previous articles [37,38]. 

2.1. Model Derivation 

Asperities on each frictional surface are idealized as uniform sinusoidal surfaces, illustrated in Figure 1. 

We will consider asperities on one of the frictional surfaces as forming a linear chain of balls of mass M, 

each ball interacting with its nearest neighbors via springs of stiffness Kb. These provide the forces of 

elastic deformation for the shift of an asperity from its equilibrium position. The asperities on the 
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opposite frictional surface are regarded as forming a rigid substrate which interacts with the masses M 

via a sinusoidal restoring force. The physical correlate of this force is the horizontal component of  

the normal force exerted by the lower surface on upper plate asperities displaced as in Figure 1a. 

Application of this model to describe the slip dynamics yields the FK model, where we have also 

included an explicit frictional force fi on the ith asperity: 

 
2

1 12

2
( 2 ) sin ( ), , , 

 
     

 
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u u
M K u u u F u F f x t

t b
x t

t


 (1)

where ui is the shift of ball (asperity) i relative to its equilibrium position, b is a typical distance 

between asperities, t is time, Fd is the amplitude of the periodic restoring force and F is the external (or 

driving) force. In this model, only the interaction between nearest-neighbor asperities is considered. 

Weaker interactions from more distant asperities represent higher order corrections to the model. 

 

Figure 1. Schematic of asperity contact (a) and chain of masses interacting via elastic 

springs and placed in a periodic potential (substrate) (b). The balls represent asperities. The 

sine-shaped surface is the opposite plate. 

Following the same procedure used to describe plasticity [42,44,45], we express the coefficients of 

Equation (1) through the parameters of the material and the frictional surfaces. For a volume density ρ 

we find: 3,M b  
2

,
(1 )b

b
K







2

,
2d

b
F




  where μ is the shear modulus and ν the Poisson ratio. Then 

Equation (1) can be written in the continuous form: 
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where 222 )1/()21())1(/(2   lcc  and cl is the longitudinal acoustic velocity (or P wave 

velocity). The dimensionless parameter A is equal to 2/1)]2/)1[(  . Note that in deriving the FK 

model to describe plasticity in crystals, A2 is essentially the ratio of the amplitude of two forces: one is 

the force amplitude between an atom and the substrate layer and the other is the force amplitude 

between neighboring atoms at the top layer. To describe the respective coefficients for the situation 

where slip occurs between two external surfaces in contact, we will use Equation (2) with one 

significant change: we shall treat the parameter A phenomenologically, using the result for a crystal as 

a guide. So we assume that A likewise depends on the ratio of two relevant forces. The force amplitude 

experienced by an asperity due to neighboring asperities along the slip direction is exactly the same as 

it was for the case of plasticity. But the force amplitude between asperity and substrate is different and 
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depends on the normal stress ΣN. Indeed, when ΣN = 0 the force is zero, since there is no interaction 
between asperities and a substrate. On the other hand, when ΣN reaches the penetration hardness p , 

the interface between the two blocks disappears and the corresponding force amplitude is essentially 
the same as in the case of plasticity. So we regard A as a function of the ratio of ΣN to :p

( / ).N pA f    The simplest choice is 
1/2((1 ) / 2) N N

p p

A

 

  
  . Thus, the coefficient A reflects 

how deeply the asperities from two opposing surfaces interpenetrate and it is the ratio between actual 

and nominal contact areas [1,2]. 

Equation (2) in dimensionless form is 

2 2

2 2
sin( )

 
   

 
u u

u F f
t x

 (3)

where u, x and t are now in units of b/(2π), b/A and b/(cA), respectively, F and f are the external force 
and frictional force per unit area in units of / (2 )A  , and the derivatives xu  /  and tuw  /

are interpreted as the dimensionless strain and the dimensionless slip in units of )2/( A  and /cA  , 

respectively. Since the driving force is the tangential stress, we set it equal to the xz component of  
the 3D stress tensor, 2s  . Thus the dimensionless stress is measured in units  /A . 

2.2. Uniform Sliding Motion 

Equation (3) in the absence of external and frictional forces is the well-known SG equation. Let us 

consider the existence of a classical wave solution traveling to the right with wave velocity U (in units of c) 

and wave number k (in units of A/b), in which ݑ	is a function of ݔ െ ߦ Define .ݐ ܷ ൌ ݔ െ ߠ	 and ݐ ܷ ൌ
 The basic solutions are phonons, breathers, and kinks (a particular class of solitons) [41,42]. Only .ߦ ݇

the soliton solutions represent the wave propagation necessary to model frictional dynamics. These 

solutions are characterized by |U| < 1. Integrating Equation (3) for the case ܨ െ ݂ ൌ 0  with these 

constraints gives a solution for u and its derivatives in terms of the elliptic Jacobi functions, cn and dn [41]: 

ݑ ൌ arcsinሾേܿ݊ሺߦߚሻሿ 

௦ߪ ൌ  ሻߦߚሺ݊݀ߚ2

ݓ ൌ ௦ߪܷ

(4)

݇ ൌ ܰߨ2 ൌ
ߚߨ
ሺ݉ሻܭ

 

where ܭሺ݉ሻ is the complete elliptic integral of the first kind of modulus m (0 ≤ m ≤ 1), 
2 1/2[ (1 )] ,m U    and N is the density of kinks in units of A/b. Solution (4) describes an infinite 

sequence of interacting kinks (solitons) of one sign, which are periodic in space and time. In the 

context of our model, a soliton is a dislocation. 

It is also useful to introduce three dimensionless variables averaged over an oscillation period. 

, ,
2 2 2 2

       s
S

dwd UN d
W k E

   
   

 (5)



Lubricants 2015, 3 316 

 

 

These variables correspond to the measurable parameters of slip velocity, stress and strain.  
The parameters of a dislocation (amplitude of stress 0

s  and strain 0  associated with the presence of 

the dislocation) are:  /0 As  , )2/(0  A . 

Let us describe a scenario of frictional processes in terms of Solutions (4) and (5). The macroscopic 

dislocations are nucleated on the surface by an applied shear stress in the presence of asperities.  

As in crystals, the mobility of a macroscopic dislocation over the frictional surface is much larger than 

the mobility of the whole surface, since the displacement of a dislocation (a pre-stressed area) requires 

less external stress. So the relative sliding of two bodies occurs due to movement of dislocations.  

The passage of a dislocation through a particular point on the sliding surface shifts the contacted 

bodies locally by a typical distance b. Such a dislocation may propagate with any velocity U ranging 

from 0 to c, and the average velocity of sliding, i.e., the observable slip rate W, is proportional to the 

dislocation velocity U and dislocation density N. The parameters of a dislocation (stress amplitude and 

pulse width) are entirely defined by the material parameters and the normal stress and do not depend 

on process parameters such as dislocation density and slip rate. The characteristic width of a 

dislocation is AbD /2 . Usually, the dislocation width is much larger than the typical distance 

between asperities ranging from 102 to 104 times the asperity size. Figure 2 schematically illustrates 

the frictional processes via movement of macroscopic dislocations. 

 

Figure 2. Schematics of frictional sliding of two bodies via movement of a macroscopic 

dislocation. The slip velocity field, W, of the upper sample relative to the lower sample, 

illustrated by the arrows, is spatially uniform at large scales (panel (a)). W is the slip velocity w 

averaged over an oscillation period in time. By contrast, the w velocity field is spatially  

non-uninform at smaller scales, i.e., on a scale comparable with a dislocation width (panel 

(b)). The spatial and temporal averages of w in (b) give the uniform field in (a). The 

dislocation size is usually much larger than the typical size of an asperity. The relative 

movement on the frictional surfaces at even smaller scales (asperity size) could be larger 

than average if it is at the center or peak amplitude of the dislocation (panel (c)) or smaller 

than average if it is in between two dislocations (panel (d)). The values in the panels reflect 

experiments described in [6–9]. 

The steady-state solutions of Equations (4) and (5) provide a straightforward explanation for  

the results obtained in fundamental experiments investigating the dependence of friction on changes in 
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sliding velocity at constant normal traction (a comprehensive description of the laboratory experiments 

can be found in [3–5]). These experiments motivated the creation of rate-and-state models. 

First, consider the observed result that (in most cases) increasing the sliding velocity decreases  

the steady-state frictional force. Recall that the sliding of two bodies results from the propagation of 
macroscopic dislocations. The average velocity of sliding, / (2 )W UN  , increases (decreases) if  

the dislocation density N  and/or dislocation velocity U  increases (decreases). The accumulated stress 

is proportional to the dislocation density, i.e., Σௌ ൌ ݇ ൌ  from Equations (4) and (5). An increase ܰߨ2

(decrease) in the dislocation density increases (decreases) the effective distance between frictional 

surfaces, which accounts for the well-known dilatancy effect. Figure 3 illustrates the dilatancy effect 

due to presence of a dislocation. Dilatancy changes the actual contact area, and this effect has been 

observed and measured during transition processes [6–9]. The frictional force is known to be 

proportional to the contact area, i.e., a decrease (increase) in contact area leads to a decrease (increase) 

in the frictional force. Frictional energy dissipation in the model also results from the interaction 

between moving dislocations and asperities. According to the theory of dislocation, it is therefore 

proportional to the dislocation velocity. The steady-state (constant sliding velocity) level of the frictional 

force is determined by the interplay of these two factors (dislocation density and dislocation velocity). 

Thus, for the typical case in which increased (decreased) sliding velocity decreases (increases) the 

steady-state frictional force, the effect of dilatancy prevails. 

In addition, the transitory behavior from one steady-state velocity to another, also observed in  

the above experiments, can be understood in this framework. In order to increase (decrease) the sliding 

velocity compared to a given steady-state value, the external force (which determines Σௌ ) must 

temporarily increase (decrease) until the new steady-state velocity is reached. This leads to an apparent 

increase (decrease) in the frictional force (Σௌ/Σேሻ . As before, the contact area then decreases 

(increases). After a short transition period for the system to reach the new velocity (typically, in the 

experiments, a factor of 10 greater/less than the previous velocity) the external force decreases 

(increases) to a value that balances the dissipation from the new steady-state frictional force. The typical 

distance of the transitional process (Dc) is related to the typical distance b between asperities. These 

simple considerations qualitatively explain the basic properties of the laboratory frictional experiments 

which change sliding velocity at constant normal traction through the dilatancy effect. 

 

Figure 3. Schematic illustration of the dilatancy effect due to the presence of a 

macroscopic dislocation: (a) frictional surfaces in contact in the case of an ideal substrate 

(seven sinusoids at the top and bottom surfaces); (b) the same substrate with single 

dislocation (seven sinusoids at the bottom surface and six at the top surface). 
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2.3. Non-Uniform Sliding Motion 

Solutions (4) and (5) can be used to describe the frictional process in the macroscopically uniform 

case. However, in the non-uniform case, the macroscopic parameters such as slip velocity and stress 

are functions of time and space. In typical cases, the frictional surface includes many dislocations.  

A numerical solution for the exact positions of a multitude of microscopic dislocations is too 

computationally demanding to be practicable. Moreover, they cannot be measured and are therefore of 

little value except as they contribute on the average to the measured macroscopic dislocation.  

We therefore apply a technique which simplifies Equation (3) at the expense of losing non-essential 

details of the process such as the exact position of each dislocation. Witham [46] developed a 

procedure for constructing a system of equations describing the dynamics of averaged variables (i.e., 

the variables in Equation (5)) that derive from the original dynamical equations (i.e., Equation (3)). For 

strict applicability, the average values should vary slowly in time and space, i.e., the spatial scale 

should be larger than the size of one dislocation D and the time scale should be larger than D/c. For 

example, for the case depicted in Figure 2, the spatial scale should be larger than 1 mm and the time 

scale should be larger than 10−6 s. The technique has also been found to be more generally valid in 

some specific cases that fail to satisfy the slowly varying constraint. For the present application, the 

variables of interest can all be expressed in terms of the two independent variables U and m.  

Applying this procedure to the homogeneous (ܨ െ ݂ ൌ 0ሻ SG equation yields the system of coupled  

equations [45]: 

2 2

2 2
1 1

1
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1 2 1 2
1
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1 2 1 2

   
 
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where ,
K

E
  mm 11 , and  is the complete elliptic integral of the second kind. The system (6) 

is fully integrable, i.e., the solutions may be expressed in terms of analytical functions. General 

solutions are obtained in the references [43,45]. However, system (6) does not include friction. 

Whitham [46] also described a formal procedure for including a dissipative term. Applying this 

procedure we obtain the Whitham equations for Equation (3):  
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where 
1

( , ) [ (u, u )]
2 tD m U F f d


  . This system of equations does not have analytical solutions  

(in contrast to system (6)) and must be solved numerically. 

3. Results 

We first describe the results derived from the analytical solutions of Equation (6). We then compute 

solutions of Equation (7), which includes a dissipative term, and compare the results in order to 

E m( )
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characterize the effects of friction. Finally, we consider how the initial stress distribution affects the 

solution. Mathematica was used to obtain numerical solutions of (7). The initial value ܷሺݐ ൌ 0, ሻݔ ൌ 0 

throughout all the calculations. Initial values for m are obtained through the definition of Σ௦  from 

Equations (4) and (5). 

3.1. Analytical Solution (No Dissipation) 

To model the transition from the static to the dynamic regime of the frictional process, we consider 

the following idealized problem. Suppose the point x = 0 divides the areas of stressed (x < 0) and 

unstressed (x > 0) material, modeled as a step-function ( 0, 0) ,s t x       0)0,0(  xts , 

( 0, ) 0U t x   (solid line in Figure 4). With these initial conditions, we have Σേ ൌ గ

ඥ௠േ௄ሺ௠േሻ
. This 

setting models a stress accumulation in front of an obstacle placed at position x = 0 (e.g., a large 

asperity). The effect of alternative initial shear stress profiles is a topic for further investigation. 

Assume that at time t = 0 the external shear stress reaches the value necessary to overcome this 

obstacle. Then the dynamics of the transition (solution of system (6)) is described by the following 

formulae [38,45]: 

( )
( ), , ,s

x
V m U k W kU

t K m

    
  

 

 

 
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
 (8)

1
, ,

1

   
 

   

  
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G G

V V V
G G

  
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where )/()( 11 mKEmKEG   , mm /)1( 2
1 , ( )G G m   and ( )m   , and  

m− is defined by the transcendental relation 
( )K m m



 
  . The variable V is the nonlinear group 

velocity of the wave solution in units of c. Along a line x/t = V = constant in the x-t plane, all variables 

are constant. The solution is represented by a region expanding in time and bounded between the lines 

x/t = V(m = 0) = V− = −1 and x/t = V(m = 1) = V+. Note that inside the expanding region all variables 

are functions of time and position. The indices + and − designate the leading and trailing edges of the 

slip pulse, respectively. Thus the solutions (8 and 9) describe the dynamics of a slip pulse with two 

rupture fronts (or detachment fronts, in terms of Equation (3)) propagating in opposite directions with 

different velocities V− and V+. Figure 5 shows the ratio of V− to V+ as a function of V−. One can see that 

for small rupture velocities the ratio is large, i.e., the pulse propagates practically in one direction. 

Figure 6 shows the result of the calculation of rupture velocity V− as a function of dimensionless 

initial shear stress  . Note a strong dependence of velocity on stress. Indeed, changes of shear stress 

by an order of magnitude lead to velocity changes by seven orders.  
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Figure 4. Schematics illustrating the spatial distribution of initial stress utilized in 

obtaining the analytical solution of Equations (6) (solid line) and the numerical solution of 

Equations (7) (dotted line). 

 

Figure 5. Ratio of fast rupture velocity V− to slow rupture velocity V+ as a function of V−. 

Both fast and slow velocities decrease with decreasing shear stress, but the latter velocity 

decreases more quickly. Thus, for processes such as slow slip events the slip pulse 

increases in extent essentially from one side. 
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Figure 6. The dependence of rupture velocity on the ratio of shear to normal stress. 

Changes of shear stress by an order of magnitude lead to changes in V− by more than six 

orders of magnitude. The rupture velocity for the Parkfield earthquake (calculated based on 

observed data) and corresponding predicted shear stress are indicated by the dashed red 

lines on the top panel. The rupture velocity for an ETS event (calculated based on observed 

data) and predicted shear stress are indicated by the dashed green lines on the bottom panel.  

The predicted shear stress is used in Figure 7 to obtain the predicted slip velocity W. 

The velocity of dislocation movement U(x,t) (Formulae (8)) ranges from zero at the pulse trailing 

edge to the value V+ at the pulse leading edge. The movement of dislocations is accompanied by slip 

with velocity W(x,t) (Formulae (8)). The slip velocity equals zero at the trailing and leading edges of a 

pulse and has a maximum value at x = 0. Since V(x = 0) = 0 we can find the maximum slip velocity, 

0

0 0

( )
( 0) ,

2
W x

K m

  

 






   (10)

where )( 00 m   and 0m  is a solution of the equation  )( 0mG . Figure 7 depicts the dependence 

of W on shear stress  . Note that in the case     there is no transition process. For the chosen 

initial conditions ( 0, ) 0U t x  , there is no slip, ( 0, ) 0W t x  , and no rupture, 0V V   . If, 

however ( 0, )U t x  is a constant larger then 0, the solution is uniform sliding. 
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Figure 7. The dependence of maximum slip velocity W on the ratio of shear to effective 

normal stress. Changes of shear stress by an order of magnitude (with constant normal 

stress) lead to changes in W by more than seven orders of magnitude. The predicted slip 

velocity for the Parkfield earthquake and shear stress (predicted based on observed rupture 

velocity (Figure 6, top panel)) are indicated by the dashed red lines on the top panel. The 

predicted slip velocity for an ETS event and shear stress (predicted based on observed 

rupture velocity (Figure 6, bottom panel)) are indicated by the dashed green lines on the 

bottom panel. Note that the value of shear stress for the Parkfied earthquake ( 1.03)   

associated with the respective slip velocity corresponds to the value of shear stress 

calculated based on the rupture velocity (Figure 6, top panel); however the value of shear 

stress for the ETS event ( 0.213)   is larger than the value predicted by the rupture 

velocity (Figure 6, bottom panel). The reason for this discrepancy arises because 

dissipation was not taken into account (see next subsection). 

3.2. Solution with Dissipation 

Let us consider the same problem as above, i.e., the transition from the static to the dynamic regime, 

described now by Equations (7). Note the small difference in initial conditions (dotted line in Figure 4) 

compared to the case in Section 3.1 (solid line in Figure 4): (1)      but 0   and (2) the 

stress distribution is a smooth function of x (rather than a step-function) with approximate width π. 

These changes were necessary in order to obtain a numerically stable solution. For a simple velocity-
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dependent frictional term, tf Cu  and supposing that 0,F   we find ( , ) (m, U),D m U CW  where C 

is the dissipation coefficient and W the slip velocity as defined by the Formulae (8). Figure 8 depicts 

the spatial and temporal distribution of a slip pulse velocity for several values of the coefficient C. One 

can see that the amplitude of the slip velocity decreases with an increase in C. 

 

Figure 8. Spatial and temporal distribution of slip pulse velocity for various values of 

coefficient C. The initial stresses, chosen arbitrarily to illustrate the effect of the dissipative 

term, are 0.855   and 0.179  . The length scale over which the initial stress 

changes from   to  influences only the initial stage of slip pulse development.  

This influence becomes negligible when the two rupture fronts reach the position where 

s
    (for the trailing edge) and s

    (for the leading edge). 

Figure 9 shows the slip velocities at time 2π for various values of C. To examine how friction  

(the dissipative term) affects the rupture velocity, we normalize W to make the maximum slip velocity 

the same for all cases. Then we see that both velocities V− and V+ (left and right sides of slip pulse) are 

practically unchanged with increasing coefficient C for all cases considered, although the slip velocity 

amplitude changes by a factor greater than five. Note that this is true for any value of the initial stress 
  provided     . The spatial distribution of shear stress at time 2π is depicted in Figure 10.  

One can see that the larger the dissipation, the smother is the transition from the stressed to the less 

stressed region. The result of calculating the dependence of slip velocity on the dissipative term for 

various initial shear stress values is shown in Figure 11. One can see that dissipation (dynamic friction) 

can essentially reduce the slip velocity. This velocity reduction depends weakly on the value of the 

initial shear stress  . 

3.3. Influence of Initial Stress Σ+ 

We have shown in Section 3.1 how the rupture velocities and slip velocity depend on initial stress  . 

How do the values of   and ΔΣ = Σ− − Σ+ affect the shape and parameters of a slip pulse? Figure 12 

depicts the spatial and temporal distribution of a slip pulse for various values of  . One can see that 

the shape of the pulse and its velocity do not change significantly unless the value of Σା ൎ Σି. 
Analysis shows that  does not affect the fast rupture velocity ;V  however, the slow rupture velocity 

V   increases with increasing   or decreasing ΔΣ. When / 1   , V   is practically equal to 

,V   i.e., the pulse is almost symmetric. 
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Figure 9. Spatial distribution of slip pulse velocity, W, at t = 2π for various values of  

the dissipation coefficient C defining a velocity-dependent friction ݂ ൌ  ௧: C = 0.1 (solidݑܥ

line), C = 0.5 (dashed line) and C = 2.0 (dotted line). The initial stresses are 0.855   

and 0.179  . The amplitude of W has been multiplied by 1.8 for the dashed line and 5.2 

for the dotted line to normalize to the same maximum slip velocity in all cases. The leading 

and trailing edges of the slip pulse (where W ൎ 0) determine V− and V+ (blue arrows), 

which are shown to vary little as a function of C, i.e., they are independent of friction. The 

bottom panel is obtained by plotting the top panel on a logarithmic scale. 

 

Figure 10. Spatial distribution of shear stress at t = 2π for various values of the dissipation 

coefficient C defining a velocity-dependent friction ݂ ൌ  ௧: C=0.1 (solid line), C = 0.5ݑܥ

(dashed line) and C = 2.0 (dotted line). The initial stresses are 0.855   and 0.179  . 
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Figure 11. The ratio of slip velocity (C 0)W   to slip velocity with no dissipation 

(C 0)W   as function of dissipative coefficient C for various values of shear stress, 

0.855   (solid curve), 0.606   (dashed curve) and 0.419   (dotted curve). 

Increasing friction significantly decreases the slip velocity, with a weak dependence on the 

initial shear stress Σି. 

 

Figure 12. Spatial and temporal distribution of slip pulse velocity for various values of  

the coefficient   (dissipation coefficient 0.1). 

Figure 13 depicts the result of computing the slip velocity as a function of /   for two initial 

shear stress values Σ−. Over a wide range of /   values, i.e., from 35% to 100%, the slip velocity 

is independent of Σ+. However, as / 0   , the slip velocity also approaches zero. 

 

Figure 13. Slip velocity at position x = 0 as a function of /    for two values of initial 

shear stress  . 
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4. Discussion 

Formulae (8–10) and Figures 5–7 connect the kinetic and dynamic parameters of the transition from 

static to dynamic friction. Using these formulae and figures one can find unknown parameters based 

on known parameters. We illustrate the applicability of our model by several examples. 

Regular and slow earthquakes in the Earth’s crust are typical transitional processes. Shear stress 

concentrated along a fault is relaxed due to various types of earthquakes and creep. Observations of far- 

and near-source ground motion allow reconstruction of kinematic parameters of regular earthquakes,  

i.e., rupture and slip velocities [47–51]. Dynamic parameters could be found by the modelling of 

processes using additional information and/or assumptions [51]. According to our model, the rupture 

velocity V− is explicitly defined by the initial stress Σ− and the elastic parameters of the medium,  

and doesn’t depend on the dissipation term and the initial stress Σ+ or stress difference ΔΣ. Let us 

consider, as an example, the 2004 M = 6 Parkfield earthquake. According to [51], the rupture velocity 
was about dim 3.0V    km/s and the slip velocity at the hypocenter area was about dim 0.5W   m/s. Taking 

the P-wave velocity in the Parkfield area to be cl = 6 km/s and ν = 0.3, the value of the parameter c is 
5.4 km/s, thus dim / 0.55V V c   . From Figure 6 (upper panel, red dashed lines) we find the 

dimensionless stress to be 1.03  . Now we can find the dimensionless slip velocity (Figure 7, upper 

panel, red dashed lines) to be W = 0.1. Recall that the velocity in Figure 7 is calculated for C = 0. To 

find the velocity for other values of C we need to use Figure 11. Thus, for the case considered, the 

dimensionless velocity is W = 0.083, 0.05, and 0.02 for C = 0.1, 0.5 and 2.0, respectively. Now we can 

calculate dim / (cW) 0.0029A W  , 0.0035, 0.0058 and 0.0145 for the cases C = 0.0, 0.1, 0.5 and 2.0, 
respectively. Supposing that µ = 30 GPa we can calculate the initial stress to be dim / 29A      , 

34, 58 and 145 MPa for these respective values of C. The result of a sophisticated dynamic modelling 

of the Parkfield earthquake [51] yields a stress value of about 31 MPa, which practically coincides 

with our estimate for the case of negligible dissipation. This leads us to the unexpected conclusion that  

(at least for some regular earthquakes) the dissipation due to friction may have practically no effect on 

the slip velocity, W, in addition to having no effect on the rupture velocities V− and V+. This 

conclusion is consistent with the observations that frictional resistance to slip decreases dramatically at 

large slip rate (~1 m/s) for typical large earthquakes [52–54]. 

Now consider an example of slow earthquakes, e.g., so-called episodic tremor and slip  

phenomena [55–57]. It is known that during these events, a slip pulse slowly propagates along a 
subduction fault with an effective rupture velocity dim 10V    km/day 5

dim( / 2.14 10 )V V c      and 

with slip velocity dim 4W   mm/2 weeks [58,59]. From Figure 6 (lower panel, green dashed lines) we 

find a stress value 0.212  . Then from Figure 7 (lower panel, green dashed lines) we find the 

dimensionless slip velocity to be 72.6 10W   . To estimate the actual value of W we need to know 

the value of A, which has been estimated by us in a previous work to be 5A 4 10   [39]. Using this 
value we find the dimensionless velocity to be 7

dim / (cA) 0.5 10W W    . This value is one-fifth the 

value predicted by the model without dissipation. So for the slow event considered, friction has a 

pronounced influence on slip velocity. The corresponding dissipative coefficient (see Figure 11) is 

about C = 2.0. 
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5. Conclusions 

Our model for describing the transition from static to dynamic friction has been extended here to 

include dissipation. The significant and novel elements of the model are: 

(1) The FK model has been modified and adapted to the case of non-lubricant macroscopic  

friction by introducing a parameter A which is the ratio between the real and nominal area of the 

frictional surfaces; 

(2) In the model proposed, sliding occurs due to movement of a certain type of defect, a 

“macroscopic dislocation” (or area of localized stress), which requires much less shear stress than 

uniform displacement of frictional surfaces. 

(3) To describe measureable macroscopic parameters, we use the Whitham modulation equations 

applied to the SG equation rather than the SG equation itself which applies to details at the scale of 

individual dislocations. 

The source of the transition from static to dynamic friction is the gradient of the shear stress (Figure 4). 

We show that in transition processes, the rupture velocity of the trailing edge V−, i.e., the velocity of  

a detachment front propagating through the stressed material, is defined only by the ratio of initial 

shear to normal stress   and does not depend on friction in the case of a simple linear  

velocity-dependent dissipative term considered here. This counterintuitive conclusion had already been 

predicted in our previous article [38], which neglects friction in the calculation, by comparing the 

accumulated elastic energy and dissipative energy released during the transition. Here we verified this 

prediction by explicitly including friction in the calculation (see Figures 9 and 12). Note that the initial 

stress (expressed in dimensional units) is dim / / ( ),N pA           yielding an initial stress

dim( / )( / )p N      , which is proportional to the ratio between shear and normal stress. Thus, 

the rupture velocity of the trailing edge V− is defined by the ratio between shear and normal stress.  

This conclusion is consistent with the experimental result that the velocity of the detachment front is 

defined by this ratio [9]. The rupture velocity of the leading edge V+, i.e., the velocity of the 

detachment front propagating from stressed to less stressed or unstressed material, is defined by the 

initial stresses   and  and likewise does not depend on friction. The velocity V− is always larger 

than V+ (Figure 5), i.e., the rupture front always propagates more easily through stressed rather than 

unstressed or less stressed material. However, in the case ( ) / 1      , these two velocities are 

almost equal, and hence the slip pulse is almost symmetric (see the right panel on Figure 12). Note that 

although the model formally does not include a rupture threshold, the value of   may be considered 

as a threshold that is implicit in the model. As the threshold increases, the accumulated stress must 

increase in order to overcome this threshold. That is why regular earthquakes “require” larger stress   

than slow slip events. 

Dynamic friction (dissipation) may reduce the slip velocity (Figures 8, 9 and 11). This effect is 

slightly larger in cases with larger initial shear stress   (Figure 11). In some practical cases such as 

regular earthquakes, the influence of friction on slip velocity and pulse shape may be negligible. The 

effect of frictional processes (reduction of slip velocity) seems to be greater in slow slip events. In 

addition to initial shear stress and dissipation, slip velocity depends on       (Figure 13). For 
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small ratio / 0   , the velocity W 0 . However, the dependence of slip velocity on the shear 

stress gradient is negligible in the range / 0.4   . 

The model developed here connects the kinetic and dynamic parameters of the transition process 

from static to dynamic friction. It characterizes the dynamics of the process for a very wide range of 

rupture and slip velocities, from velocities in regular earthquakes ( / 1V c  , 1W   m/s) down to the 
velocities in slow slip events 7( / 10V c  , 710W   m/s). Both velocities depend critically on the 

accumulated stress, e.g., a change of stress by one order of magnitude can cause a velocity change by 

seven orders of magnitude (Figures 6 and 7). 

We note that our model complements rate-and-state models and warrants further development to 

include elements of the latter, such as dilatancy [29–33] and dynamic and thermal weakening [52–54]. 
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