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Abstract: On the basis of the V. K. Stokes micro-continuum theory, the effects of couple 

stresses on the nonlinear dynamic response of the unbalanced Jeffcott’s flexible rotor 

supported by layered hydrodynamic journal bearings is presented in this paper. A nonlinear 

transient modified Reynolds’ equation is derived and discretized by the finite element 

method to obtain the fluid-film pressure field as well as the film thickness by means of the 

implicit Euler method. The nonlinear orbits of the rotor center are determined by solving the 

nonlinear differential equations of motion with the explicit Euler’s scheme taking into 

account the flexibility of rotor. According to the obtained results, the combined effects of 

couple stresses due to the presence of polymer additives in lubricant and the pressure 

dependent viscosity on the nonlinear dynamic response of the rotor-bearing system are 

significant and cannot be ignored or overlooked. As expected, these effects are more 

noticeable for polymers characterized by higher length molecular chains. 
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1. Introduction 

Rotating machines such as turbo-machines are the most important class of machinery that are 

extensively used in diverse engineering applications such as power stations, aircraft propulsion  

systems, etc. These machines include at least one rotor generally supported by oil-lubricated journal 

bearings which must not be considered to be passive elements, but elements which sensitively affect the 

dynamic behavior and stability of the rotor. 

The design trend of such mechanical systems in modern engineering is towards lower weight and 

operating at super critical speeds. 

The role of rotor is to transmit or to transform the mechanical power. It is often of very much complex 

realization and includes bladed disks or impellers, gears, for example. 

The correct prediction of dynamic behavior is extremely essential when the rotor rotating at high 

speeds is made very flexible. Further, the dynamic behavior of a rotor-bearing system largely depends 

on the nonlinear dynamic characteristics of oil-lubricated bearings which may be a source of  

self-induced vibrations popularly known as oil whirl and oil whip phenomena which occur especially 

when the rotor-bearing system is lightly loaded or operates at low values of eccentricity ratio. This 

vibratory motion can cause considerable mechanical problems, like rubbing between shaft and bearing, 

blades and stator in turbo-machines, or more generally vibrations of the whole rotating machinery. In 

1924, Newkirk and Taylor [1] first demonstrated that the oil whirl is caused by the dynamic oil film 

forces in the bearings. Since then, a number of researchers have focused their theoretical and 

experimental studies on the stability, bifurcation, and chaos of rotor-bearing systems, and a significant 

progress in rotor-dynamics field has been made [2–21]. 

Of the many published works, the most extensive portion of the literature on rotor dynamics is 

concerned with determining critical speeds, natural whirl frequencies, instability thresholds, and 

imbalance response. In these works generally based on the linearized theory, the authors used in their 

analysis several assumptions among them the rotor and bearings are assumed to be rigid. Moreover, the 

linear stability analysis predicts the stability limits only under small disturbances, it does not give any 

information about the transient phenomena of a rotor-bearing system under large disturbances. Those 

phenomena should be studied by means of a nonlinear stability theory. 

On the other hand, the rheological behavior of mineral oils used as lubricants in industrial machinery 

is influenced by the presence of additives such as Viscosity Index (VI) improver polymers which are 

characterized by long-chains. Thus, Oils containing VI additives such as multi-grade engine oils must 

be considered as non-Newtonian fluids and can be modeled as polar fluids. Experimentally, it was found 

that the presence of dissolved polymer in the lubricant increases the load carrying capacity of the 

lubricating film and decreases the friction coefficient [22,23]. 

In order to better describe the rheological behavior of this kind of non-Newtonian lubricant  

so-called couple stress fluid, different micro-continuum theories have been developed [24,25]. The 

Stokes micro-continuum theory [26] is the simplest theory of fluids proposed in the technical literature, 

which allows the polar effects such as the presence of couple-stresses mi and body couples noted ℓi in 

addition to the body forces and surface forces Figure 1. 
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Figure 1. Balance of forces and couples acting on elementary volume according to V. K. 

Stokes theory. 

The iso-volume couple-stress fluids are characterized by two constants, namely   and   whereas 

only one parameter appears for a Newtonian iso-volume fluid which is the dynamic viscosity  . The 

new material constant   is responsible for couple-stress property. In the literature, the effects of  

couple-stresses on the behavior of journal bearings are studied by defining the dimensionless  

couple-stress parameter 
C


 

 where 



  which has the dimension of length and can be thought 

of as a fluid property depending on the size of the high polymer molecule. 

Owing to its relative mathematical simplicity, the couple-stress fluid model has been widely applied 

to analyze various hydrodynamic lubrication problems: hydrostatic thrust bearings, slider bearings, 

rolling bearings, squeeze film bearings, layered journal bearings, and dynamically loaded engine journal 

bearings [27–33]. The theoretical results obtained showed that the presence of the couple-stress provides 

an enhancement in the load carrying capacity, improve the dynamic performance characteristics and the 

stability of journal bearings, and lengthens the response time of the squeeze film action of the system as 

compared to the Newtonian lubricant case. It was also shown that the effects of couple stress are more 

pronounced for high values of the couple-stress parameter ℓ. 

According to the Stokes micro-continuum theory of couple stress fluids [26] together with the 

variation of viscosity with pressure, the combined effects of piezo-viscous dependency and non-Newtonian 

couple stresses on wide parallel rectangular-plate squeeze-film characteristics have recently been studied 

by Lin et al. [34]. The viscosity-pressure relationship used by the authors is that of Barus [35] which is 

largely used in elastohydrodynamic lubrication analysis. They have found that the combined effects of 

piezo-viscosity and couple stresses cause an increase in the load carrying capacity and the squeeze  

film time. 

As far as we know, very few research works have been devoted to analyze the nonlinear dynamic 

behavior of flexible rotors mounted in layered journal bearings lubricated with complex  

non-Newtonian fluids taking into account the combined effects of fluid couple-stresses,  

pressure-viscosity dependency, and compliance of the bearing structure. 

The main objective of the present research is to theoretically investigate the nonlinear dynamic 

response of a flexible rotor supported by layered bearings using piezo-viscous couple-stress fluids as 
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lubricants. The elastic deformation of the liner due to the fluid film pressure is calculated using a 

simplified elasticity model known as the “thin liner model”. So, we assume that the radial deformation 

at the fluid-liner interface is proportional to the hydrodynamic pressure. On the other hand, the Barus 

law is used in order to take into account the viscosity-pressure dependency at constant temperature: 

𝜇(𝑝) = 𝜇0𝑒𝛼𝑝 (1) 

where 𝜇0 is the atmospheric dynamic viscosity, and α is the pressure-viscosity coefficient which can be 

obtained by plotting the natural logarithm of dynamic viscosity 𝜇 versus pressure p. The slope of the 

graph corresponds to the value of α. The pressure-viscosity coefficient is a function of the molecular 

structure of the lubricant and its physical characteristics. If α = 0, the viscosity is then constant and the 

fluid is considered as iso-viscous. 

The pressure-viscosity coefficient of the Barus equation has a value between 1.5–2.4 × 10−8 (m2/N) 

for paraffinic oils, and a value between 2.5–3.5 × 10−8 (m2/N) for aromatic oils according to  

Klamann [36]. 

There are various formulae available to calculate the pressure-viscosity coefficient. One of the early 

ones was derived by Wooster [37]: 

𝛼 = (0.6 + 0.965𝑙𝑜𝑔10(𝜇0)) × 10−8 (2) 

where α is the pressure-viscosity coefficient in (Pa−1), and 𝜇0  is the atmospheric dynamic viscosity  

in (cP) or (mPa·s). There are also other equations for the calculation of the pressure-viscosity coefficient 

available in the literature. Some of these equations are accurate for certain fluids and inaccurate for 

others. One of the problems associated with available formulae is that they only allow the accurate 

calculation of pressure-viscosity coefficients at low shear rates. An accurate value of this coefficient can 

be determined experimentally. 

The piezo-viscosity effect varies between oils; and it is more considerable for naphthenic oils  

than paraffinic oils. Water; by contrast shows only a small rise; almost negligible; in viscosity  

with pressure. 

Note that the value of the pressure-viscosity coefficient is in general reduced at higher temperatures, 

with naphthenic oils being the most severely affected. In some cases even at moderate temperatures, 

there is a substantial reduction in the pressure-viscosity coefficient. 

There are many other formulae for viscosity-pressure relationships. A short review of some of the 

empirical formulae for the viscosity-pressure relationships is given in [38]. These formulae allow for  

the calculations of viscosity changes with pressure under various conditions and to various degrees  

of accuracy. 

As a first approximation, we consider the simplest flexible rotor model popularly known as the 

Jeffcott model (1919). In spite of its age of over 90 years, the Jeffcott rotor is still widely used. 

Figure 2 shows a typical Jeffcott rotor. It consists of a simply supported flexible massless shaft with 

a rigid disc mounted at the mid-span. The disc center of rotation, C, and its center of gravity, G, is offset 

by a distance, e which is called the unbalance eccentricity. The shaft spin speed is ω and the shaft whirls 

about the bearing axis with a whirl frequency ν. For present study, synchronous condition has been 

assumed, i.e., ν = ω. According to the beam theory, the stiffness of the shaft kr can be expressed as 
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𝑘𝑟 =
load

deflection
=

48𝐸𝑟𝐼𝐺𝑦

𝐿𝑟
3  

(3) 

where Er is the Young’s modulus of rotor, 𝐼𝐺𝑦 = ∫ 𝑥2𝑑𝑠 =
𝜋𝐷4

64𝑆
 is the second moment of area of the 

rotor (shaft) cross-section, and Lr denotes the span of the rotor (shaft). 

 

Figure 2. A typical Jeffcott rotor. 

The finite element method is used to approach the nonlinear transient pressure equation called in the 

present study the modified Reynolds’ equation derived from momentum and mass conserving principles 

for an incompressible and piezo-viscous couple stress fluid using the V. K. Stokes micro-continuum 

theory [26]. The first order differential equations system resulting from the discretization of the pressure 

equation is solved by the implicit Euler’s scheme and the relaxed substitution iterative method in order 

to determine the instantaneous hydrodynamic forces acting on the rotor (shaft), i.e., at each time step. 

The nonlinear trajectories of the shaft center are obtained by solving the rotor-dynamics equations with 

a direct integration procedure, namely the explicit Euler’s scheme. 

In the parametric study, there are three key parameters dominating the combined effects of the 

pressure-viscosity dependency, the presence of couple-stresses, and the compliance of the bearing-liner 

which are the dimensionless viscosity-pressure coefficient 𝛼̃, the dimensionless couple stress parameter 

ℓ̃, and the normalized elasticity parameter ∁, respectively. 

2. Governing Equations 

2.1. Momentum Equations of the Polar or Couple Stress Fluid 

On the basis of the V. K. Stokes micro-continuum theory (26), when the body forces ib  and body 

couples i  are neglected Figure 1, the motion of the iso-volume polar fluids can be governed by the 

following equations: 
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The constitutive equations for the polar or couple-stresses fluids are given as 
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If we now consider the case where   and   are constants, the conservation of momentum is given 

by [26]: 
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where   is the fluid density, iu  is the velocity component, t is the time, p is the pressure,   is the 

classical shear viscosity and   is a new material parameter responsible for the couple-stress property. 

Note that the dimension of the material constant   is that of viscosity (ML−1T−1) whereas the 

dimensions of   is that of momentum (MLT−1). The ratio   has dimension of length square and, in 

the following, we denote this material constant by  , where 
2

1










 . Some experiments for 

determining the material constants   and   for incompressible fluids are given in Equation (1). 

Physically, the quantity   can be regarded as a characteristic length of the additives which are added to 

the base oil and which can be polymers or co-polymers. 

In thin film theory, the dimension across the film thickness is small compared to the others. From this 

assumption, we can determine the order of magnitude for the different terms of Equation (9). 

The field equations governing the motion of the lubricating oil in the Cartesian coordinates  

system are: 
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where V

 is the flow velocity field. 

According to the Barus law, the second term appearing on the left hand side of Equation (10) can be 

expressed as follows: 
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The boundary conditions at the bearing surfaces (y = 0) and the journal surface (y = h) are: 
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Conditions Equations (12) and (14) are the no-slip velocity conditions and conditions Equations (13), 

(15) result from the fact that the couple-stresses (
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Using the above boundary conditions, the fluid velocity components u and w for an  

iso-volume piezo-viscous couple stress fluid are: 
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h being the fluid film thickness depending on x, z and t variables. 

2.2. Modified Transient Nonlinear Piezo-Viscous Reynolds’ Equation and Boundary Conditions 

Substituting the expressions of the velocity components u and w from Equation (16) in the continuity 

Equation (11) and integrating across the film thickness, i.e., with respect to y variable, using the boundary 

conditions for v given below: 



Lubricants 2015, 3 288 

 

 

 

 
 

z

h
W

x

h
U

t

h

dt

tzxdh
Vzhxv

zxv

jjj

















,,
,,

0,0,

 (17) 

yields to the following transient nonlinear modified Reynolds’ equation: 
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According to Equations (17) and (19), Equation (18) becomes 
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where Uj = ɷR is the linear velocity of the journal surface. 

Equation (20a) is known as the modified Reynolds’ equation which is a nonlinear partial  

differential equation. 

For an iso-viscous and nonpolar (Newtonian) fluid for which 0 , Equation (20a) reduces to 

the standard linear Reynolds’ equation since   3,,, hphG  , i.e., 
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Using the non-dimensional quantities (indicated with a superscript asterisk (*)) 

 
    tt

C
LR

C

h
h

p
p

L

z
z C

R

C
R

R
x 


    and,,,,,,,

2

0

2

2

0


  in Equation 

(20), the normalized transient modified Reynolds equation for a journal bearing system Figure 3 is 

obtained in the form 
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where 
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In Equation (20), (𝑋∗, 𝑌∗) = (𝑋, 𝑌)/𝐶  are the Cartesian instantaneous co-ordinates of the journal 

centre and the parameter ∁  represents the compliance factor of the elastic bearing-liner which is defined as 

∁= 𝜎0𝑡ℎ
∗𝐶𝑑

∗ (24) 
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where 𝜎0 =
(1+𝜎)(1−2𝜎)

1−𝜎
, R

t
h

ht *  is the relative thickness of the bearing-liner, and 
 
E

C
C

R

d

3

0* 
  is the 

deformation coefficient, E and   are the Young’s modulus and Poisson’s ratio of bearing-liner  

material, respectively. 

 

W

Rigid

journal

Thin elastic liner

Rigid  housing

Oil film 


R

Y

h
Ob

Oj

X

L/2

(E, th)

Free edge

 

Figure 3. Photograph and schematic representation of a coated journal bearing. 

The normalized pressure field must satisfy the modified Reynolds’ Equation (21) in 𝐷∗ = (0,2𝜋) ×

(− 1
2⁄ , 1

2⁄ ) and the following boundary conditions on 𝜕𝐷∗: 

  0,
2

1, ***  tzp  ,    ****** ,,2,,0 tzptzp    (25) 

In addition, the Gümbel’s condition also known as the half-Sommerfeld condition [39], suggested in 

the early 1920s, is used to take into account the film rupture occurring in the divergent region of the 

bearing. This condition neglects the sub-ambient pressure completely when calculating bearing 

performance and it is frequently used in the numerical simulations of hydrodynamic lubrication problems 

owing to its simplicity. 

Although this condition does not respect the mass flow continuity between the over-ambient pressure 

(leading edge) region and the sub-ambient pressure (trailing edge) region, it does give a theoretical 

pressure curve comparable to that obtained experimentally or by using the mass conserving algorithms 

especially for highly loaded short journal bearings (L/D < 1) with low supply pressures. 

Dowson and Taylor [40] presented a good review of cavitation phenomenon in hydrodynamic journal 

bearings, where different cavitation models were largely discussed. 

For an aligned bearing, the pressure field is symmetric about the bearing mid-plane section. For 

computational efficiency, we calculate only half of the pressure field.  

2.3. Rotor-Dynamic Equations 

When the external load acting on the rotor or the journal varies both in direction and magnitude, the 

journal center describes a trajectory within the bearing. The determination of this trajectory requires the 
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solution of the rotor-dynamic equations coupled with those governing the hydrodynamic behavior of 

lubricating oil films. 

Generally, the external loads acting on the rotor are: 

- the weight of the rotor 2W0 = 2 mg; 

- the dynamic load components )(tWX  and )(tWY  due an unbalance mass characterized by its 

eccentricity e; 

- the hydrodynamic forces FX and FY due to the presence of the lubricating oil film. 

The rotor-bearings system is modeled as a flexible Jeffcott rotor symmetrically supported by two 

identical layered hydrodynamics bearings ignoring the gyroscopic effects as depicted in Figure 2. We 

assume that the rotor mass is lumped at the midpoint with massless shaft, central load of 2m, rotor 

damping of 2br, and rotor stiffness of 2kr. 

For each bearing are attributed a mass m of the rotor, a static applied load W0 = mg, and a synchronous 

dynamic excitation due to an unbalance mass 
2)( metW 


. 

The application of the dynamic fundamental principle gives 











),,,(sin

),,,(cos

2

2

0

YXYXFtmeYkYbYm

YXYXFtmeWXkXbXm

Yrr

Xrr








 (26) 

where 

 

 
  

 














 2

2

2

0
sin

cos
,,

L

L

dzRdtzp
tF

tF

Y

X






  (27) 

FX and FY are the hydrodynamic forces in X and Y directions that are nonlinear functions of the 

displacement components (X,Y) and the velocities (𝑋̇, 𝑌̇) of the journal center Oj. They are calculated 

by integrating the hydrodynamic pressure over the bearing surface. This latter is obtained by solving the 

transient modified Reynolds’ equation by finite element method. 

In dimensionless variables, Equation (25) is written as 

[
1 0
0 1

] {𝑈′′} + [
𝐵𝑟 0
0 𝐵𝑟

] {𝑈′} + [
𝐾𝑟 0
0 𝐾𝑟

] {𝑈} = {
𝑊0

∗ + 𝜀 cos(𝑡∗) + 𝐹̂𝑋(𝑋∗, 𝑌∗, 𝑋∗′, 𝑌∗′)

𝜀 sin(𝑡∗) + 𝐹̂𝑌(𝑋∗, 𝑌∗, 𝑋∗′, 𝑌∗′) 
} (28) 

where 

𝐵𝑟 =
𝑏𝑟

𝑚
 , 𝐾𝑟 =

𝑘𝑟

𝑚2
 , 𝑊0

∗ =
𝑊0

𝑚𝐶2 =
𝑔

𝐶2 , 𝜀 =
𝑒

𝐶
 , (𝐹̂𝑋, 𝐹̂𝑌) =

𝜇0𝑅𝐿(𝑅
𝐶⁄ )

2

𝑚𝐶2  (𝐹𝑋
∗, 𝐹𝑌

∗) 

{𝑈} = {
𝑋∗

𝑌∗} , {𝑈′} = {
𝑋∗′

𝑌∗′} , {𝑈′′} = {
𝑋∗′′

𝑌∗′′} , 𝑎𝑛𝑑 (°)′ =
𝑑

𝑑𝑡∗
(°) =

𝑑(°)

𝑑𝑡

𝑑𝑡

𝑑𝑡∗
=

1

𝜔

𝑑

𝑑𝑡
(°) 

3. Computation Procedure of the Journal Bearing Nonlinear Dynamic Response 

Solving the normalized equations of motion (27) ahead of time numerically using the direct 

integration methods of second order differential equations such as the explicit Euler’s method, the 

transient motion of the journal center Oj for balanced and unbalanced shafts is determined Figure 4 (See 

Appendix A for more details). 
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Figure 4. Flow chart of the computational procedure. 

4. Finite Element Treatment of the Steady-State Modified Reynolds’ Equation 

4.1. Weak Integral Formulation and Finite Element Discretization 

In steady-state conditions, the normalized modified Reynolds’ equation becomes 

𝜕

𝜕𝜃
(𝐺∗(ℎ0

∗ , ℓ∗, 𝛼∗, 𝑝0
∗)

𝜕𝑝0
∗

𝜕𝜃
) + 𝜆

𝜕

𝜕𝑧∗
(𝐺∗(ℎ0

∗ , ℓ∗, 𝛼∗, 𝑝0
∗)

𝜕𝑝0
∗

𝜕𝑧∗
) = 6

𝜕ℎ0
∗

𝜕𝜃
 (29) 

where 
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ℎ0
∗(𝜃, 𝑧∗) = 1 + 𝑋0

∗𝑐𝑜𝑠𝜃 + 𝑌0
∗𝑠𝑖𝑛𝜃 + ∁ 𝑝̃0(𝜃, 𝑧∗) (28b) 

The Galerkin’s weighted residual method is employed to build up the integral formulation associated 

to Equation (28a), i.e., 

      06,,,
~

,,, *
*

0

*

*

0*

0

***

0*
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0
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
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
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

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




























  dD

h

z

p
phG

z

p
phGppW

D








   (29) 

where 
*

0p  is the first variation of 
*

0p ,     2
2

1* ,02,0 R D  the half computational domain, and 

** dzddD  . 

By virtue of Green’s theorem (integration by parts), the weak form of Equation (29) is obtained 

further. As a result, the weak form contains lower order partial derivatives of 
*

0p  and includes two types 

of integration. Namely, domain integration over computational domain and contour integration  

along the boundary of *D , i.e., *D , the latter can be neglected because 
*

0p  is zero at both ends of the 

housing, yielding 

    06,,, *
*

0*

0*

*

0

*

*

0

*

0

*

0*

0
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0
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0
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

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








































  dD

p
h

z

p

z

ppp
phGpW

D








  (30) 

Isoparametric four-noded rectangular elements with sides parallel to the global axes are used in the 

discretization of the fluid film domain *D  such that 
 


1

**




e

e
DD . 

After writing Equation (30) over a subdomain 𝐷∗(𝑒)
 and discretisation by the finite element method, 

we obtain a system of nonlinear algebraic equations 

                e

e

ee

en

ee pfppkppW *

0

*

0

*

0

*

0

*    (31) 

where  ek  and  ef  are the elementary matrices defined as 

 

 

*

**

*

*

dzd
z

N

z

NNN
Gk

jiji

D

e

e
e

ij


 


























   and 

 

 
 




e

i

D

ie

e dzd
N

hf
*

**

06 


 (32) 

Over the parent element, the bilinear shape functions Ni (Lagrangian polynomials) are expressed as 

     iiiN  11
4

1
, ; 4,3,2,1i  (33) 

where   and   are the local coordinates of an element such that 1,1   . 

Accordingly, static pressure and static film thickness over a parent element are then approached by 

     *
4

1

*

0 ,, i

i

i

e pNp 


   and 
     *

4

1

*

0 ,, i

i

i

e hNh 


  , respectively. 

The coefficients 
iij ee fk   and  are numerically evaluated over the parent element using the Gauss-Legendre 

quadrature with ( 22 ) integration points as depicted in Figure 5. 
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Figure 5. Representation of integration points over the iso-parametric parent element. 

After assembling of different elementary matrices, finite element approximation leads to the 

following nonlinear system: 

      000 PFPPK   (34) 

where    e
e

kAK
1

  is the global matrix of fluidity,  0P  the nodal static pressures vector on the  

domain (D), and    e
e

fAF
1

  the global vector containing the term appearing on the RHS of the 

stationary modified Reynolds’ equation. 
1e

A  being the assembling operator. 

The static pressure field is integrated over the half bearing domain to generate the dimensionless lift 

force components, i.e., 

 
 

 
 

*

1

*

0*

*

*
0

0

sin

cos
2 dzdp

F

F
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e

e

Y

X

e
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 
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



















 (35) 

with 
 

i

i

i

e N  



4

1

 since the element is isoparametric, i.e., the element geometrical nodes are also the 

interpolation nodes. The lift force components Equation (35) are also calculated by means of the  

Gauss-Legendre quadrature with ( 22 ) integration points. 

4.2. Method of Solution of Steady-State Nonlinear Modified REYNOLDS’ Equation 

The steady-state solution of the modified Reynolds’ Equation (28a) which is a highly nonlinear 

elliptic partial differential equation is obtained by the relaxed substitution iterative method. This method 

consists of building up a series of solutions 
  0

0P , 
  1

0P , ....., 
  1

0

kP , 
  kP0  where 

  kP0  being 

calculated from 
  1

0

kP  by solving the linear system: 

          1

00

1

0

  kkk PFPPK ; k = 1, 2, ...., kmax (36) 

We can write this in incremental form by introducing the residual vector 
  kR : 
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        kkk PPP 00

1

00  
 

(37) 

where Ω0 is an under-relaxation factor which ensures and accelerates the convergence of the  

iterative process. 

To obtain the steady-state fluid pressure, the required steps of the computational procedure are 

presented in detail in Appendix A. 

4.3. Iterative Research of the Steady-State Equilibrium Position 

The steady-state equilibrium position of shaft center (X0,Y0) due to the application of static load 

 00 , YX WW0W  is determined when the integration of the resulting steady-state hydrodynamic 

pressure obtained from Equation (28a) balances with the applied load components  00 , YX WW , i.e., 
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cos dzdpWX 
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 


  (38a) 
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0
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0
sin dzdpWY 



 


  (39) 

In this case, the bearing load is known as a constant and the position of the shaft center is to be 

calculated from numerical iterations. Therefore, an inverse solution of the steady-state modified 

Reynolds’ equation is required (See Appendix A for details). 

5. Finite Element Treatment of the Transient Modified Reynolds’ Equation 

5.1. Weak Integral Formulation and Finite Element Discretization 

Applying the Galerkin weighted residual method and the Green’s theorem, the weak integral form 

associated to the transient modified Reynolds’ Equation (21) is 

∫ ∫ [𝐺∗(ℎ∗, ℓ∗, 𝛼∗, 𝑝∗) (
𝜕𝛿𝑝∗

𝜕𝜃

𝜕𝑝∗

𝜕𝜃
+ 𝜆

𝜕𝛿𝑝∗

𝜕𝑧∗

𝜕𝑝∗

𝜕𝑧∗
) − 6ℎ∗

𝜕𝛿𝑝∗

𝜕𝜃
+ 12𝛿𝑝∗  

𝜕ℎ∗

𝜕t∗
] 𝑑𝐷∗ = 0

2𝜋

0

1
2

−
1
2

 (39) 

where 
𝜕ℎ∗

𝜕𝑡̃
= ℎ∗′ = 𝑋∗′𝑐𝑜𝑠𝜃 + 𝑌∗′𝑠𝑖𝑛𝜃 + ∁ 𝑝∗′  

𝑝∗′ =
𝜕𝑝∗

𝜕𝑡̃
 , 𝑋∗′ =

𝑑𝑋∗

𝑑𝑡∗
 𝑎𝑛𝑑 𝑌∗′ =

𝑑𝑌∗

𝑑𝑡∗
 

(40) 

According to Equation (40), Equation (39) becomes: 
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∫ ∫ 𝐺∗(ℎ∗, ℓ∗, 𝛼∗, 𝑝∗) (
𝜕𝛿𝑝∗

𝜕𝜃

𝜕𝑝∗

𝜕𝜃
+ 𝜆

𝜕𝛿𝑝∗

𝜕𝑧∗

𝜕𝑝∗

𝜕𝑧∗
) 𝑑𝜃 𝑑𝑧∗ + ∫ ∫ 12𝛿𝑝∗∁

2𝜋

0

1
2

−
1
2

𝑝∗′𝑑𝜃𝑑𝑧∗
2𝜋

0

1
2

−
1
2

= 6 ∫ ∫  
2𝜋

0

1
2

−
1
2

ℎ∗
𝜕𝛿𝑝∗

𝜕𝜃
𝑑𝜃𝑑𝑧∗ − 12 ∫ ∫ 𝛿𝑝∗

2𝜋

0

1
2

−
1
2

(𝑋∗′𝑐𝑜𝑠𝜃 + 𝑌∗′𝑠𝑖𝑛𝜃)𝑑𝜃𝑑𝑧∗ 

(41) 

After writing Equation (41) over a subdomain 𝐷∗(𝑒)
 and discretisation by the finite element method, 

we obtain a set of first order differential equations 

[𝑐𝑒]{𝑝′𝑛} + [𝑘𝑒]{𝑝𝑛} =  {𝑓𝑒} (42) 

where 

[𝑐𝑒] =  12 ∫ ∫ ∁
𝐷∗(𝑒) {𝑁} < 𝑁 > 𝑑𝐷∗(𝑒)

 or 𝑐𝑒𝑖𝑗
=  12 ∫ ∫ ∁

𝐷∗(𝑒) 𝑁𝑖𝑁𝑗𝑑𝐷∗(𝑒)
 

[𝑘𝑒] =  ∫ ∫ 𝐺∗(𝑒)  ({
𝜕𝑁

𝜕𝜃
} <

𝜕𝑁

𝜕𝜃
> +𝜆 {

𝜕𝑁

𝜕𝑧∗
} <

𝜕𝑁

𝜕𝑧∗
>)

𝐷∗(𝑒)
𝑑𝐷∗(𝑒)

 

or 

𝑘𝑒𝑖𝑗
= ∫ ∫ 𝐺∗(𝑒)  (

𝜕𝑁𝑖

𝜕𝜃

𝜕𝑁𝑗

𝜕𝜃
+ 𝜆

𝜕𝑁𝑖

𝜕𝑧∗

𝜕𝑁𝑗

𝜕𝑧∗
)

𝐷∗(𝑒)
𝑑𝐷∗(𝑒)

 

{𝑓𝑒} =  12 ∫ ∫ (
ℎ∗(𝑒)

2
{
𝜕𝑁

𝜕𝜃
} − (𝑋∗′𝑐𝑜𝑠𝜃 + 𝑌∗′𝑠𝑖𝑛𝜃){𝑁}) 𝑑𝐷∗(𝑒)

 
𝐷∗(𝑒)

 

or 

𝑓𝑒𝑖
= 12 ∫ ∫ (

ℎ∗(𝑒)

2

𝜕𝑁𝑖

𝜕𝜃
− (𝑋∗′𝑐𝑜𝑠𝜃 + 𝑌∗′𝑠𝑖𝑛𝜃)𝑁𝑖) 𝑑𝐷∗(𝑒)

 
𝐷∗(𝑒)

 

After assembling of elementary matrices, we get 

[𝐶(𝑃𝑡∗)]{𝑃𝑡∗
′ } + [𝐾(𝑃𝑡∗)]{𝑃𝑡∗} =  {𝐹(𝑃𝑡∗)} (43) 

5.2. Method of Solution of Transient Nonlinear Modified Reynolds’ Equation 

We found in the preceding section that solving the modified Reynolds’ equation under dynamic 

conditions by the finite element reduces ultimately to the solution of simultaneous nonlinear first order 

ordinary differential equations of the form Equation (43). 

After formation of matrix Equation (43) the matrices must be restructured or modified to account for 

any essential boundary conditions Equation (24). In addition to the boundary conditions, we must also 

know the initial conditions, i.e., {𝑃(0)}. There are many general methods and several special techniques 

for solving first-order matrix differential equations. We consider the direct numerical integration in time 

to solve the original set of coupled equations. The procedure relies on deriving recursion formulas that 

relate the values of {𝑃}  at one instant of dimensionless time 𝑡̃  to the values  

of {𝑃} at a later time 𝑡̃ + ∆𝑡̃, where ∆𝑡̃ is the dimensionless time step. The recursion formulas make it 
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possible for the solution to be marched out in time, starting from the initial conditions at time 𝑡̃ = 0 and 

continuing step by step until reaching the desired duration. 

Consider the semi-implicit Euler method for solving Equations (43). We write these equations at time 

t𝛽
∗ = 𝑡∗ + 𝛽∆𝑡∗, where  0 ≤ 𝛽 ≤ 1 as 

[∁ (𝑃)]t𝛽
∗ {𝑃′}t𝛽

∗ + [𝐾(𝑃)]t𝛽
∗ {𝑃}t𝛽

∗ =  {𝐹(𝑃)}t𝛽
∗  (44) 

and introduce the following approximations 

{𝑃′}t𝛽
∗ =

{𝑃}𝑡∗+∆𝑡∗ − {𝑃}𝑡∗

∆𝑡∗
 (45a) 

{𝑃}t𝛽
∗ = (1 − 𝛽){𝑃}𝑡∗ + 𝛽{𝑃}𝑡∗+∆𝑡∗ (46) 

{𝐹(𝑃)}t𝛽
∗ = (1 − 𝛽){𝐹(𝑃)}𝑡∗ + 𝛽{𝐹(𝑃)}𝑡∗+∆𝑡∗ (47) 

Substituting Equation (45a) to (45c) into Equation (44) gives 

[𝐾̅(𝑃)]{𝑃}𝑡∗+∆𝑡∗ =  {𝐹̅(𝑃)}𝑡∗+∆𝑡∗ (48) 

where [𝐾̅] =  
1

∆𝑡∗
[𝐶(𝑃)] +  𝛽[𝐾(𝑃)] 

and 

{𝐹̅𝑡∗+∆𝑡∗} = (
1

∆𝑡∗
[𝐶(𝑃)] − (1 − 𝛽) [𝐾(𝑃)]) {𝑃}𝑡∗ + (1 − 𝛽){𝐹(𝑃)}𝑡∗ + 𝛽{𝐹(𝑃)}𝑡∗+∆𝑡∗ 

where the {𝑃}𝑡∗+∆𝑡∗ on the left-hand side of the equation are unknowns, and all of the terms on the  

right-hand side are known. Equation (46) represents a general family of recurrence relations. If β = 0, 

we get the explicit Euler algorithm, i.e., 

1

∆𝑡∗
[𝐶(𝑃)]{𝑃}𝑡∗+∆𝑡∗ = (

1

∆𝑡∗
[𝐶(𝑃)] − [𝐾(𝑃)]) {𝑃}𝑡∗ + {𝐹(𝑃)}𝑡∗ (49) 

and if β = 1 we obtain the implicit Euler method 

(
1

∆𝑡∗
[𝐶(𝑃)] +  [𝐾(𝑃)]) {𝑃}𝑡∗+∆𝑡∗ =

1

∆𝑡∗
[𝐶(𝑃)]{𝑃}𝑡∗ + {𝐹(𝑃)}𝑡∗+∆𝑡∗ (48) 

If [𝐶] = 0 𝑎𝑛𝑑 𝑋′ = 𝑌′ = 0 , we get the nonlinear algorithm for the steady-state modified  

Reynolds’ Equation. 

6. Results and Discussions 

6.1. Transient Solution vs. Steady-State Solution 

The nonlinear dynamic analysis, described in the Section 5, has been incorporated into a  

computer program. 

In order to check the correctness of the results obtained from the nonlinear transient analysis of 

hydrodynamic journal bearings, a separate 2-D finite difference computer program was developed to 

calculate the steady-state position by solving the inverse hydrodynamic lubrication by means of the 

relaxed iterative Newton-Raphson method as stated in Section 4. For (2-D) finite difference analysis, 

which in this paper will be referred to as the exact solution, a grid size of (61 × 16) nodes is used in  

θ and z directions, respectively. The number of nodes is chosen in order to ensure accurate results with 
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minimum CPU time. The rotor and bearing parameter values used in the calculations as well as the finite 

element meshing characteristics and data of calculations are reported in Tables 1 and 2. In this section, 

the calculations were made for two different cases:  

Case 1: A balanced rigid journal bearing lubricated with Newtonian and iso-viscous lubricant:  

W0 = 340 kN (S = 0.18, 𝑊0
∗ = 1.8), α* = 0, ℓ* = 0, Cd = 0, ε = 0. 

Case 2: A balanced layered journal bearing lubricated with piezo-viscous couple stress lubricant:  

W0 = 2720 kN (S = 0.0225, 𝑊0
∗ = 14), α = 17 × 10−9 Pa−1, ε = 0, ℓ* = 0.3, th = 10 × 10−3 m, E = 0.9 GPa, 

σ = 0.35. 

For both cases, the geometrical characteristics such as the bearing length, the bearing radius and the 

radial clearance as well as the rotational velocity are the same and are given in Table 1. 

Table 1. Rotor and bearing parameter values used in the calculations. 

Parameter Symbol Unit Value 

Bearing length L m 0.320 

Journal diameter D = 2R m 0.500 

Radial clearance C m 3.5 × 10−4 

Bearing-liner thickness 
ht  m 10−2 

Young’s modulus of the bearing-liner 

(polyethylene high density at 20 °C) [41] 
E Pa 0.9 × 109 

Poisson’s ratio of the bearing-liner at 20 °C [41] σ - 0.35 

Dynamic viscosity of lubricant 

at atmospheric pressure 0  Pa·s 15 × 10−3 

Density of lubricant ρ kg·m−3 870 

Pressure-viscosity coefficients α Pa−1 

0 

17 × 10−9 

42.5 × 10−9 

212.5 × 10−9 

Rotor speed N  rpm 3 × 103 

Rotor mass (disc) 2m kg 68 × 103 

Rotor length Lr m 10 

Young’s modulus of the rotor (steel) at 20 °C Er Pa 210 × 109 

Rotor stiffness kr N/m 5 × 106 

Rotor damping br N·s/m 0 

Mass unbalance eccentricities e m 

0 

70 × 10−6 

280 × 10−6 

Unbalance dynamic loads meω2 kN 

0 

235 

940 

Static load applied per bearing W0 = mg kN 340 
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Figure 6 shows the shaft center trajectory obtained using the transient analysis in the case 1, i.e., when 

the bearing is rigid and the lubricant is Newtonian. We can notice in this case that this trajectory tends 

to reach the shaft equilibrium position obtained from the steady state analysis which locates at  

(𝑋0
∗ = 0.431287,  𝑌0

∗ = 0.499599). These values are almost close to those predicted by the transient 

analysis which are (X* = 0.439241, Y* = 0.501445). 

 

Figure 6. Journal center trajectory and final position for the case 1 (W0 = 340 kN  

(𝑊0
∗ = 1.8), S = 0.18, α* = 0, ℓ* = 0, Cd = 0, ε = 0). 

In Figure 7, we represent a comparison of film thickness and pressure profile obtained by the transient 

and steady state methods in the case 1. A very good agreement is observed. 

 

Figure 7. Comparison of steady-state oil-film pressure and film thickness curves calculated 

from steady-state and transient analysis. (W0 = 340 kN ( 𝑊0
∗  = 1.8), S = 0.18,  

α* = 0, ℓ* = 0 Cd = 0, ε = 0). 
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Figure 8 depicts the shaft center trajectory calculated with the transient analysis in the case 2, i.e., 

when considering the compliance of the bearing-liner and the lubricant as a non-Newtonian couple stress 

fluid. Similar trends for case 2 are obtained as in case 1, i.e., the path of shaft center gradually approaches 

the static equilibrium position whose the co-ordinates are (𝑋0
∗  = 0.3143, 𝑌0

∗  = 0.3268). The values 

predicted by the transient analysis are (X* = 0.3272, Y* = 0.3136). As in the case 1, the discrepancy 

between the two results is very small. 

 

Figure 8. Journal center trajectory and final position for the case 2. (W0 = 2720 kN  

(𝑊0
∗ = 14.14), S = 0.0225, α = 17 × 10−9 Pa−1, ε = 0, ℓ* = 0.3, th = 10 × 10−3 m, E = 0.9 GPa,  

σ = 0.35). 

Figures 9 and 10 illustrate the differences between the results for a rigid bearing lubricated with an 

iso-viscous Newtonian fluid and for a compliant bearing using a piezo-viscous polar fluid as lubricant. 

  

(a) Compliant bearing liner. 

Figure 9. Cont.  
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(b) Rigid bearing liner. 

Figure 9. Comparison of nonlinear unbalanced shaft center trajectories for flexible rotor and 

large unbalance mass (ε = 0.80). 

  

(a) Compliant bearing liner. 

Figure 10. Cont. 
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(b) Rigid bearing liner. 

Figure 10. Comparison of nonlinear unbalanced shaft center trajectories for flexible rotor 

and small unbalance mass (ε = 0.20). 

6.2. Parametric Study 

6.2.1. Flexible Rotor with Large Unbalance Mass 

Figure 9 represents the trajectories of the shaft center in given running conditions:  

W0 = 340 kN, th = 10−2 m, E = 0.9 GPa, σ = 0.35, br = 0, kr = 5 MN/m, N = 3000 rpm or  

ω = 100 × π rad/s, and ε = 0.80. Note that for the rigid bearing-liner, the Young’s modulus of liner E 

tends to infinity and the deformation coefficient 𝐶𝑑  is then equal to zero because it is inversely 

proportional to the elasticity modulus. 

The relative unbalance eccentricity ε = 0.80 corresponding to e = 280 microns generates a dynamic 

load W = meω2 = 940 kN at synchronous frequency (ν/ω = 1). For this operating condition, the value of 

W is greater than the static load W0 (W/W0 ≈ 3) and is representative of some emergency conditions in 

turbomachinery when a blade is lost for example. 

It is noted that only the final form of shaft center orbits will be presented in the following, i.e., the 

results corresponding to the transient numerical effect due to initial conditions will be omitted. 

The trajectories of the shaft center within the compliant bearing (𝐶𝑑
∗ = 1.908, 𝜎 = 0.35 𝑎𝑛𝑑 𝑡ℎ

∗ = 0.04) 

are given in Figure 9a for two values of couple stress parameter l* = 0.0 (Newtonian case) and  

l* = 0.0 (non-Newtonian couple stress fluid), and different values of the piezo-viscosity coefficient 

ranging from 0.0 (iso-viscous case) to 0.50. In these operating conditions, the rotor has a very large 

amplitude of circular or pseudo-circular motion and the nonlinear dynamic behavior appears clearly. 

This is due to the fact that the dynamic loading due to a large unbalance mass is very important compared 

to the static one as afore-mentioned above. 
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On the other hand, we observe in the Newtonian case l* = 0 that increasing the pressure coefficient  

α* shorten the shaft trajectories. This is due to the pressure rise leading to a higher load carrying capacity 

which reacts and reduces the trajectories size. We can notice that the operating eccentricity of the journal 

bearing can be greater than the radial clearance in this case where the unbalance mass is large. 

Furthermore, the orbits described by the shaft center are widely modified by the bearing compliance 

especially for the non-Newtonian case as clearly illustrated in Figure 9a. They exactly follow the shape 

of the deformed bearing. 

Figure 9b represents the case of rigid bearing-liner. It is seen that the influence of pressure viscosity 

α* on the orbits is weak in both Newtonian and non-Newtonian cases. That means in this case the 

distortion plays a major role in the bearing response. Moreover, the non-Newtonian orbits are smaller 

than those obtained in the Newtonian case, i.e., when the couple stress parameter l* of the lubricating 

fluid increases. 

6.2.2. Flexible Rotor with Small Unbalance Mass 

The relative unbalance eccentricity ε = 0.20 corresponding to e = 70 microns generates a dynamic 

load W = meω2 = 235 kN at synchronous frequency (ν/ω= 1) which corresponds to 0.70 times the static 

load. This defect may be attributed to a large residual unbalance which could exist in the shaft. 

The trajectories of the shaft center within the rigid and compliant bearings are given in Figure 10 for 

the same values of the couple stress parameter l* and the piezo-viscosity coefficient. As expected, the 

shaft center moves around the equilibrium position in both cases since the dynamic load is smaller than 

the static one. Moreover, the co-ordinates of the equilibrium position change when increasing the  

piezo-viscosity coefficient especially for higher values of this coefficient in both Newtonian and  

non-Newtonian cases. So, it results a shift of orbits towards the bearing center as depicted in the figure. 

For small unbalance value as the pressure magnitude is lower the impact of bush distortion is less 

pronounced than for a large unbalanced case. 

For the rigid case, we observe in Figure 10b the same tendencies with smaller size trajectories. 

Table 2. Finite element meshing characteristics and data of calculations. 

Parameter Symbol Value 

Number of elements in the circumferential direction of bearing Nθ 30 

Number of elements in the axial direction of half-bearing Nz 10 

Number of Gauss integration points in ξ-direction 
- 

2 

Number of Gauss integration points in η-direction 2 

Under-relaxation factor for the substitution iterative method Ω0 0.10 

Convergence criterion of the substitution iterative method εp 10−5 

Dimensionless time increment Δ𝑡∗ = 𝜔∆𝑡 2𝜋 50⁄  

Time limit 𝑡∗
𝑚𝑎𝑥  40π † 

† This value corresponds to 20 revolutions of the shaft. 

7. Conclusions 

In this paper, a transient nonlinear analysis was developed and presented with details to investigate 

the nonlinear dynamic response of an unbalanced Jeffcott flexible rotor mounted in layered journal 
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bearings lubricated with a piezo-viscous polar fluid. The analysis is based on the V. K. Stokes  

micro-continuum theory for describing the flow of piezo-viscous polar lubricants blended with additives. 

Using the classical assumptions of hydrodynamic lubrication, a transient and nonlinear modified 

Reynolds equation was derived in order to take into consideration the combined effects of pressure 

dependent viscosity and couple stresses resulting from the presence of polymer additives in the base oil. 

The trajectories of the shaft center were obtained numerically by solving the rotordynamics equations 

with the explicit Euler’s scheme. 

The two dominant parameters in the present analysis are the viscosity-pressure coefficient and the 

couple stress parameter. Such parameters must be considered as key parameters to design adequately 

bearings of rotating machineries. 

The obtained results have been compared with the iso-viscous and Newtonian case. 

According to the theoretical results presented, the combined effects of couple stresses due to the 

presence of polymer additives in lubricant and the pressure dependent viscosity provide lift load 

enhancement and produce higher oil-film thickness and more contracted trajectories of the shaft center 

even at severe running conditions (e.g., higher loading, large unbalance mass, etc.). In these 

circumstances, the destructive metal-to-metal contact between the shaft and bearing surfaces may also 

be avoided because of the elasticity of the bearing. Qualitatively, these results agree very well with those 

obtained by the same authors [33] in the case of internal combustion engine connecting-rod bearings 

lubricated with an iso-viscous polar fluid. 
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Nomenclature 

C  bearing radial clearance, m 

E  Young’s modulus of the bearing-liner, Pa 

e unbalance eccentricity, m 

YX FF ,  lift force components, N 

h  fluid-film thickness, m 

*h  dimensionless fluid-film thickness
C

h
 ,  

0h  static fluid-film thickness, m 
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*

0h  dimensionless static fluid-film thickness
C

h0 ,  

rk  rotor stiffness, m
N  

rb  rotor damping, m
sN .  

L  length of bearing, m 

  couple-stress parameter=
0

 , m 

*  dimensionless couple-stress parameter= C
 , 

∁ scalar compliance operator, N
m3

 

m  mass of rotor per bearing, kg 

N rotation velocity of the rotor, rpm 

p  fluid-film pressure, Pa 

*p  normalized film pressure
 20 C

R

p


 ,  

0p  steady-state pressure, Pa 

R  journal radius, m 

S Sommerfeld number,
 

0

2

0

W

RL C
R




  

t  time, s 
*t  dimensionless time t ,  

ht  thickness of bearing-liner, m 

mgW 0  static load applied on the journal bearing 

X,Y displacement components of the journal centre, m 

**,YX  dimensionless displacements
 

C

YX ,
 ,  

z  axial co-ordinate measured from middle section plane of the bearing, m 

*z  non-dimensional axial co-ordinate
L

z
 ,  

  pressure-viscosity coefficient, Pa−1 

*  non-dimensionless pressure-viscosity coefficient   
2

0 C
R ,  

  unbalance eccentricity ratio, 
C

e
  

  material constant responsible for couple-stresses, kg·m·s−1 

  absolute viscosity  of  lubricant, Pa·s 

0  absolute viscosity at atmospheric pressure, Pa·s  

  Poisson’s ratio of the bearing-liner 

  bearing angle, rad 

  angular velocity of the rotor (shaft)= 60
2 N , rad/s 

   square matrix 

  line vector, = T
  

   column vector 

 *  dimensionless quantity 
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


 divergence operator 

Appendix A 

Computation Procedure of the Journal Bearing Nonlinear Dynamic Response 

As shown in Figure 4, the steps of the computation procedure may be summarized as follows: 

Step 1: At time 𝑡∗ = 0 , for an initial position of the shaft center {𝑈0} = {
𝑋0

∗

𝑌0
∗} and initial velocities 

{𝑈′0} = {
𝑋0

∗′

𝑌0
∗′} = {

0
0

}, we solve the set of nonlinear algebraic equations resulting from discretization of 

the normalized steady-state modified Reynolds Equation (21) (i.e., without the transient term) by the 

finite element method using the relaxed substitution iterative method in order to obtain the hydrodynamic 

pressure field 𝑝0
∗ and the film thickness distribution ℎ0

∗ , and by integration of this latter over the bearing 

surface, we get the oil film force components: 

  
 



















 2

1

2
1

0

0

2

0

**

0*

*

sin

cos
,







 dzdzp

F

F

Y

X
 (A1) 

Step 2: The acceleration components of the shaft center {𝑈′′0} = {
𝑋0

∗′′

𝑌0
∗′′}  are then determined from 

dynamic Equation (27). 

Step 3: The new position together with the velocity components of the journal center are predicted at 

dimensionless time (𝑡̃ + ∆𝑡̃) from the explicit Euler’s scheme, that is: 

{𝑈′(𝑡∗ + ∆𝑡∗)} = {
𝑋∗′(𝑡∗ + ∆𝑡∗)

𝑌∗′(𝑡∗ + ∆𝑡∗)
} = {

𝑋∗′(𝑡∗)

𝑌∗′(𝑡∗)
} + {

𝑋∗′′(𝑡∗)

𝑌∗′′(𝑡∗)
} ∆𝑡∗ (A2) 

{𝑈(𝑡∗ + ∆𝑡∗)} = {
𝑋∗(𝑡∗ + ∆𝑡∗)

𝑌∗(𝑡∗ + ∆𝑡∗)
} = {

𝑋∗(𝑡∗)

𝑌∗(𝑡∗)
} + {

𝑋∗′(𝑡∗ + ∆𝑡∗)

𝑌∗′(𝑡∗ + ∆𝑡∗)
} ∆𝑡∗ +

1

2
{
𝑋∗′′(𝑡∗)

𝑌∗′′(𝑡∗)
} ∆𝑡∗2

 (A3) 

Step 4: The new position and velocities allow us to calculate new pressure and film thickness 

distributions 𝑝𝑡∗+∆𝑡∗
∗  and ℎ𝑡∗+∆𝑡∗

∗  by solving the first order differential equations system resulting from 

the discretization of the transient modified Reynolds’ equation by means of the implicit Euler’s scheme 

(β = 1) and the substitution iterative method. Thus, new components of the hydrodynamic (lift) 

force {
𝐹𝑋

∗(𝑡∗ + ∆𝑡∗)

𝐹𝑌
∗(𝑡∗ + ∆𝑡∗)

} can be calculated through integration of 𝑝𝑡∗+∆𝑡∗
∗ . 

Step 5: The acceleration components at time (𝑡∗ + ∆𝑡∗) are then calculated from dynamic Equations (27) 

considering the new values of the lift force components 𝐹𝑋
∗(𝑡∗ + ∆𝑡∗) and 𝐹𝑌

∗(𝑡∗ + ∆𝑡∗). 

Step 6: The next time interval is then considered while 𝑡∗ < 𝑡𝑚𝑎𝑥
∗ , the values obtained earlier play the 

role of {
𝑋0

∗

𝑌0
∗} and {

𝑋0
∗′

𝑌0
∗′} in Step 3. 

The choice of non-dimensional time increment, ∆𝑡∗ , is important in this kind of computation 

procedure, i.e., a small time step would imply longer computation times whereas a larger value may 

involve calculation instabilities. The time increment value depends on the nature of the problem under 

consideration. For an unbalanced rotor response, it is generally ranged in the interval (
2𝜋

100
 ,

2𝜋

50
), and it 

is difficult to guess it. 
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Appendix B 

Method of Solution for Steady-State Nonlinear Modified Reynolds’ Equation 

Step 1: Select the input parameters of the problem
***

0

*

0 ,,,,  *

dh C ,t, Y  ,X , under-relaxation factor 0

whose the value ranges from 0 to 1, convergence criterion 
p  and maximum number of iterations, maxk  

for the steady-state pressure solution. 

Step 2: Initialize the iteration number k to 0, the norm n to 1, and the global vector containing nodal 

dimensionless steady-state pressures    00 kP . 

Step 3:  

While 
   max and kkn p  

, do 

3.1. Set 1 kk  

3.2. Calculate the dimensionless static film thickness profile using Equation (31b) for each node of 

the finite element grid. 

3.3. Initialize global matrices [K] and {F} to 0. 

3.4. For each element: 

3.4.1. Extract the elementary vector   1

0

kp  from the global vector   1

0

kP  as well as the elementary 

global co-ordinates arrays of each node by means of the connectivity array 

3.4.2. Compute the elementary matrices    1

0

k

e pk  and    1

0

k

e pf  using the  

Gauss-Legendre quadrature 

3.4.3. Assemble  ek  in  K , and  ef  in  F  

3.5. Form the restructured matrices  rK  and  rF  by introducing the essential boundary conditions 

3.6. Solve the restructured linear system       r
k

r FPK 0
 for the global pressure vector   kP0

 using 

the Gauss direct method 

3.7. Calculate         1

000

 kkk PPP  and the relative least square norm of   kP0 , i.e., 

    
    kk

kk

PP

PP
n

00

00 
  

3.8. Update the global pressure vector:         kkk PPP 00

1

00    

End do while 

Step 4: Apply the Gümbel’s rupture film conditions by vanishing all the negative terms of  

calculated pressure. 

Step 5: Calculate the steady-state lift force components using Equation (35). 

Appendix C 

Iterative Research of the Steady-State Equilibrium Position 

The relaxed iterative Newton-Raphson method is used to solve Equations (38a) and (38b). Therefore, 

these equations can be rewritten in residual form. 
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(C1) 

In the Newton-Raphson method, the (k + 1)th trial solution is 
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where Ω is the relaxation factor ranged in the interval (0, 1). 
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When the left-hand side of above equation equals zero and the higher terms are truncated, the shaft 

center 
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The analytical inversion of the Jacobean matrix gives: 
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The steps of the Newton-Raphson procedure may be summarized as follows: 
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Step 1. Select the input parameters of the procedure which are: 
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Step 4. Calculate the residual components: 
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YX W  and  W  Equation (C1). 

Step 5. Evaluate Jacobean matrix coefficients by numerical differentiation: 
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where  * = 10−6. 

Step 6. Calculate the corrections  **, kk YX   by using Equation (C5). 

Step 7. Calculate the new approximations of the nonlinear system:
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Step 8. If 
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load W0.  

Else set 1kk   and return to Step 2 for another iteration. 
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