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Abstract: Based on a theoretical model and an experimental methodology for defining  

the friction torque for lubricated conditions in a modified thrust ball bearing having only 

three balls, the authors experimentally investigated the influence of the lubricant parameter 

Λ on friction torque for mixed IVR (isoviscous rigid) and EHL (elastohydrodynamic) 

lubrication conditions. The experiments were conducted using ball diameters of 3 mm, 

3.97 mm and 6.35 mm loaded at 0.125 N, 0.400 N and 0.633 N. Two oils of viscosity  

0.08 Pa·s and 0.05 Pa·s were used and rotational speed was varied in the range 60–210 rpm 

to obtain a lubricant parameter Λ varying between 0.3 and 3.2. The experiments confirmed 

that the measured friction torque can be explained using hydrodynamic rolling force 

relationships respecting the transition from an IVR to an EHL lubrication regime. 
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1. Introduction 

The rolling resistant moment of a ball on a raceway in a bearing is due to miscellaneous factors, 

including elastic hysteresis losses, curvature effects, pivoting effects, hydrodynamic lubricant resistance 

and roughness as described by Houpert in [1,2], but also form deviation effects. For low loaded  

ball-race contacts, Olaru et al. [3] demonstrated that the theoretical elastic hysteresis and curvature 

effect resistances do not exceed 12 percent of the experimentally rolling resistance moment. 

The presence of lubricant in the rolling contact is responsible for a rolling moment increase due to 

the hydrodynamic rolling force FR calculated by integrating the Reynolds equation and accounting for 

the Poiseuille flow. Miscellaneous relationships for calculating FR have been suggested by Houpert [4] 

and, recently, by Biboulet and Houpert [5] who suggested relationships corresponding to fully flooded 

conditions, the meniscus distance xe being located at −d/2 when conducting isoviscous rigid 
calculations or being a large multiple of b ( bxe  10 , for example) when conducting 

elastohydrodynamic lubrication (EHL) calculations, where d is the ball diameter and b is the half 

contact width of the Hertzian contact. 

The hydrodynamic rolling force relationships published by Houpert [4] correspond to moderately 
starved conditions; for example, 2/3.0 dxe   in the IVR regime and bxe  3  in the EHL regime. 

The relationships proposed by Biboulet and Houpert [5] are as follows. 

In the IVR lubrication regime:  

3/23/13316.02*9766.2 UWkREFR xIVR   (1)

In the EHL lubrication regime:  

4/33/14055.02*5826.7 UWkREFR xEHL   (2)

The transition from the IVR to the EHL lubrication regime is described by Biboulet and Houpert [5] 

using a single parameter M:  

EHL
EHLIVR

Trans FR
M
FRFR

FR 





6.6
1

 
(3)

The initial derivation of M was quite complex but has been simplified here by using some  

curve-fitted relationships described in [5]:  

75.06029.05549.0   UWkM  (4)

Equation (3) can be expressed as a sum of two components FRIVR and FREHL with different 

partitions from IVR and EHL conditions, respectively:  

    EHLIVRTrans FRMMFRMFR  )6.6/1/()6.6/()6.6/1/(1  (5)

where the IVR and EHL partitions are described by the factors  )6.6/1/(1 M  and  

 )6.6/1/()6.6/( MM  , respectively. 

The parameters included in Equations (1)–(4) can be defined as follows. 

U is the dimensionless speed parameter:  
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W is the dimensionless load parameter:  

2*
xRE

Q
W


  (7)

in which η0 is the oil dynamic viscosity in Pa·s at the operating temperature of the contact; 
  2/21 vvv   is the average entrainment speed; m/s; E* is the equivalent Young modulus of the  

two elements in contact (for steel ball-race contact, 11103.2* E  Pa); and k is the radii ratio Ry/Rx with 

Ry defined as the equivalent radius of curvature in the y direction (perpendicular to the rolling 

direction) and Rx the equivalent radius in the rolling direction. 

In order to demonstrate the influence of the lubricant on rolling friction in low load conditions, 

Bălan et al. [6] developed a comprehensive analytical model defining the total friction torque in a 

modified thrust ball bearing as a function of hysteresis losses, curvature effects, inertia effects,  

air churning effects on disc, and lubricant hydrodynamic rolling resistance described by Houpert [4] 

and Biboulet [5]. The experiments were conducted using three balls, 7.938 mm in diameter, in contact 

with two races having a race curvature radius of 4.16 mm. These experiments demonstrated that the 

hydrodynamic resistance is the main contributor to the final bearing torque in the tested operating 

conditions. Miscellaneous combinations of published (by Houpert and Biboulet) IVR and EHL 

hydrodynamic rolling forces have been tested. A very good correlation to the experimental results has 

been obtained when using Houpert’s IVR and EHL forces [4] with Biboulet’s transition proposal [5]. 

By reducing the ball diameter while keeping the same raceway and normal load as used in [6], 

Bălan et al. [7] observed that a good correlation to the experimental results is obtained when using 

Biboulet’s IVR and EHL forces with Biboulet’s transition proposal [5] as expected when increasing 

the oil meniscus distance. 

Based on a theoretical model and an experimental methodology for defining the friction torque in a 

modified thrust ball bearing having only three balls and presented in [6], here the authors have 

experimentally investigated the influence of the hydrodynamic rolling force FR on the total friction 

torque at low normal loaded rolling contacts operating in mixed IVR and EHD lubrication conditions. 

2. Theoretical Model for Friction Torque 

Figure 1 shows the modified thrust ball bearing used by the authors to determine rolling friction 

torque. Three balls are mounted between the races of a thrust ball bearing at an equidistant angular 

position of 120 degrees. The lower race 1 is fastened to the rotating table, which can rotate at the 

angular speed ω1. A disc of known weight Gd is attached to the upper race 2, which is of weight Gr,  

in order to obtain an axial loading acting on the three balls. Because the balls are symmetrically 

located, each ball will take a load Q = G/3, where G = Gr + Gd. The spin-down method was used to 

determine the rolling friction torque between the balls and the two races. This method consists of 

imposing a constant angular speed on race 1 until race 2 and the attached upper disc reach a synchronous 

angular speed equal to that of race 1, as a result of the friction between the balls and the races.  
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Then, the rotational table and race 1 are suddenly stopped, while race 2 starts decelerating as a 

function of the friction torque of the six ball-race contacts. 

The forces and moments acting on a ball during rolling contact between a ball and the two races are 

presented in Figure 2. 

 

Figure 1. Modified thrust ball bearing. 

 

Figure 2. Forces and moments acting on a ball as a result of rolling contact with two races. 

FR1 and FR2 are the hydrodynamic braking rolling forces defined in miscellaneous lubrication 

regimes (IVR, EHL or transition between IVR and EHL) and are computed by using Equations (1)–(3). 

FP1 and FP2 are the pressure forces due to the horizontal component of the lubricant pressure in the 

rolling direction. It can be reminded that FR is obtained by integrating dp/dx·h/2 while FP is obtained 

by integrating p·dh/dx. Integrating the latter by parts, one obtains:  

FRh
dx

dp
hp

dx

dh
pFP

meniscusoutlet

meniscusinlet
  2

_

_
 because the pressure p is nil at the inlet and  

outlet meniscus. 

So FP = 2·FR when pointing the FP arrow in the opposite direction relative to the FR arrow. 
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These two pressure forces do not contribute to the rolling moment around the ball center because 

they are applied at the center of the ball, but these two forces will be considered when using the force 

equilibrium in the x direction. 

Fib is the inertial force of the ball, acting at the ball center. If pure rolling between the balls and the 

two raceways is considered, this force is given by equation:  

2ω

2
b

ib

m r d
F

dt


    (8)

where mb is the ball mass, r is the race radius (see Figure 1) and ω2 is the angular speed of the  

upper race. 

MER1 and MER2 are the rolling resistant moments due to elastic hysteresis losses in compression 

during the rolling process, operating in the Oy direction and can be determined by using [1]:  

 8063.0333.1
33.0

7 )1(10519.31..
2

1048.7 





  kQ

d
MER  (9)

where d is ball diameter and Q is normal load. 

Figure 2 also shows the ball pivoting friction moments MP1 and MP2 around the z-axis, normal to 

the center of the contact ellipse, defined in [1] for a large k ratio:  

3
μ

8 s cMP Q a     (10)

where ac is the major semi-axis of the contact ellipse and μs is the average sliding friction coefficient. 

MP is, however, a function of k and can be approximated using:  

0.945 0.016 ln( )3 3.π 3
. μ

8 16 8
k

s cMP k Q a             
 (11)

The factor 3/8 is valid for large k values, but is replaced by 
3.π

16
 when k is equal to 1. 

The traction forces FS1 and FS2 are determined as a result of the equilibrium of the forces and 

moments acting on a ball. Details are presented in Appendix B. 

Since both ball-upper race and ball-lower race contacts have identical geometry, speed and load 

conditions (MER1 = MER2, MP1 = MP2, FR1 = FR2), the total tangential force developed between a 

ball and the upper race Ft2 obtained as a sum between forces FS2 and FR2 reads:  

2
2

2
2

Fib
FR

d

MER
Ft 


  (12)

For this modified thrust ball bearing with only three balls, the total friction torque acting on the 

upper race as a result of all three tangential forces and moments generated in the ball-race contacts can 

be written:  

IFRMPMER TzTzTzTzTz   (13)

The components of the rolling friction torque generated by hysteresis, pivoting effects, 

hydrodynamic effect and inertial effect are, respectively:  

dMERrTzMER /6  , MPMPTz  3 , FRrTzFR  6 , 2/3 ibI FrTz   (14)
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3. Experimental Procedure 

3.1. Experimental Equipment 

The experiments were carried out on tribometer CETR UMT 2 in the Tribology Laboratory of the 

Mechanical Engineering faculty of Iasi. Race 1 of the thrust ball bearing 51205 was fixed to the 

rotational table of the tribometer, so that it rotates with the table. On the raceway of lower race 1,  

the three balls were placed at equidistant angles (120 degrees). Upper race 2 was used to define the 

minimum axial load. To increase the normal load, two discs were attached to the upper race. No cage 

was used in the experiments. White marks were traced on race 1 and the upper race or on the disc in 

order to visualize the angular position for the two rotating elements. A video camera with 90 frames/second 

was mounted above the disc. The images captured by the camera were recorded on the computer in 

real time and subsequently processed with the program VIRTUAL DUB. A view of the testing 

equipment is presented in Figure 3. 

 
(a) 

(b) (c) 

Figure 3. Experimental equipment: (a) main view of the tribometer; (b) the modified 

thrust ball bearing with attached disc mounted on the rotation table of the tribometer;  

(c) image of the rotating disc captured by camera. 
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The experiments were conducted using balls with diameters of 6.35 mm, 3.97 mm and 3 mm.  

The curvature radius of both raceways was 4.16 mm. In order to vary the normal load Q on the balls, 

two discs were attached to the upper race. By combining the upper race with the two discs,  

the following normal loads Q on every ball were obtained: 0.125 N (upper race only), 0.4 N and  

0.633 N. The maximum contact Hertzian pressure between balls and raceways varied between  

0.202 GPa and 0.76 GPa. 

Two mineral oils with viscosities of 0.08 Pa·s and 0.05 Pa·s at the tested temperature (26–27 °C) 

were used for all the experiments. The oil quantity corresponds to two drops only to avoid drag losses. 

The surface roughness parameter is Rqr = 0.06 μm for the two rolling races and Rqb = 0.03 μm for 

the balls. The rotational speed of the upper race varied between 60 and 210 rpm. 

For every ball diameter and loaded disc, two series of experiments were conducted: in dry conditions 

and in lubricated conditions. 

3.2. Experimental Methodology to Determine Friction Torque 

The experimental methodology to determine the friction torque developed between the three balls 

and the upper race is based, both for dry and lubricated conditions, on the spin-down method. 

3.2.1. Friction Torque in Dry Conditions 

During the deceleration process of upper race 2 and the attached disc, the angular speed ω2 

decreases from an initial value ω2,0 to zero during a time tmax. Using a dynamic balance of the moments 

acting on upper race 2 and the attached disc and disregarding the friction between disc and air,  

one obtains:  

2ω 0
d

J Tz
dt

    (15)

where J is the moment of inertia of the system defined by upper race 2 and the attached disc, and Tz is 

the total friction torque generated by the three balls in contact with the upper race. For dry conditions, 

the total friction torque Tz includes only the following three components: friction torque generated by 

hysteresis (TzMER), by pivoting effect (TzMP) and by inertia (TzI). As demonstrated in [6], the friction 

torque generated by inertia (TzI) can be disregarded for rotational speeds between 60 and 210 rpm.  

In these circumstances, the total friction torque Tz is a sum of the two components TzMER + TzMP.  

In dry conditions, by imposing a constant value for the friction coefficient μs it can be observed that 

both components TzMER and TzMP are not dependent on the rotational speed. Equation (14) can be 

easily integrated, resulting in the following relationships for variation of the angular speed ω2(t) and 

angular position φ2(t):  

2 2,0ω ( ) ω zT
t t

J
    (16)

2
0,22 2

)( t
J

T
tt z    (17)
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The time tmax and the total angular position φ2,max cumulated by the upper race and disc are defined 

experimentally. From Equation (17), by imposing the experimental values for tmax and φ2,max one can 

define the experimental values of Tz for every rotational speed in dry conditions:  

2,0 max 2,max

2
max

2 ( )
Z

J t
T

t

     
  (18)

3.2.2. Friction Torque in Lubricated Conditions 

In lubricated conditions, Balan et al. [6] demonstrated that the friction torque generated by 

hysteresis (TzMER) and inertia (TzI) can be disregarded relative to the friction torque generated by 

hydrodynamic effect (TzFR). It can also be demonstrated that the friction torque due to pivoting effect 

(TzMP) is negligible in our tests. (See Appendix A.) 

 In these test conditions, the total friction torque Tz can then be expressed only as a function of 
hydrodynamic force FR: FRrTzTz FR  6 . For a given geometry, lubricant and normal load,  

the hydrodynamic force FR is a function only of the rotational speed. The authors have suggested in [6]  

a nonlinear dependence between hydrodynamic force FR and angular speed ω2. 

With these considerations, the differential Equation (15) becomes:  

2
2

ω
. * nd

J K
dt

    (19)

where K* is a constant parameter and the exponent is n < 1. 
Equation (19) can be solved analytically to calculate the variation of the angular speed 2ω ( )t  and 

angular position )(2 t :  

1
* 1

1
2 2,0

(1 )
ω ( ) ω

n
n K n

t t
J


  

   
 

 (20)

n

n
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J
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nK

J
t





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
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














1

2
*

1
0,2

2
0,2*2

)1(

)2(
)(   (21)

The values for K* and n were determined by solving the nonlinear Equations (20) and (21) with the 

following conditions obtained experimentally: (i) at the initial time t = 0, ω2(0) = ω2,0; and (ii) at a 

time tmax defined experimentally as when the disc stops and the measured cumulative position angle 

φ2,max corresponds to the value given by the equation: φ2(tmax) = φ2,max. 

For every experiment, both in dry and lubricated conditions, the values of tmax and φ2,max were 

obtained by analyzing the camera recorded results. 

4. Experimental Results 

Many experimental results, including the total friction torque Tz, the values for K*, and the 

exponent n for lubricated conditions and lubrication parameter Λ, have been obtained following the 

methodologies presented previously for dry and lubricated conditions. 
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4.1. Total Friction Torque in Dry Conditions 

Figures 4–6 present the experimental total friction torque obtained in dry conditions for 6.35 mm, 

3.97 mm and 3 mm diameter balls, respectively. 

 

Figure 4. Total friction torque in dry conditions for balls 6.35 mm in diameter. 

 

Figure 5. Total friction torque in dry conditions for balls 3.97 mm in diameter. 
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Figure 6. Total friction torque in dry conditions for balls 3 mm in diameter. 

The measured total friction torque shows no important variation between 60 rpm and 210 rpm,  

in line with the assumption of constant friction in dry conditions. Some increases of the total friction 

torque with rotational speed were observed in the 3 mm diameter balls. 

4.2. Variation of the Lubricant Parameter Λ 

The lubrication parameter Λ is defined as a function of the minimum film thickness and roughness 

parameters Rq by using the equations presented in [6]. The values of the lubricant parameter Λ  

for all experiments are presented in Figures 7 and 8 for oil viscosity η0, equal to 0.05 Pa·s and  

0.08 Pa·s, respectively. 

 

Figure 7. Lubricant parameter Λ calculated with η0 = 0.05 Pa·s. 
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Figure 8.  Lubricant parameter Λ calculated with η0 = 0.08 Pa·s. 

In most experiments (except the experiments conducted with balls of 6.35 mm diameter, loaded at 

0.125 N and operating at 210 rpm), the lubricant parameter Λ is smaller than 3—meaning that mixed 

lubrication conditions are simulated. 

4.3. Total Friction Torque in Lubricated Conditions 

Figures 9 and 10 present the total friction torque experimentally determined in both dry and lubricated 

conditions for 6.35 mm and 3.97 mm diameter balls. Three normal loads were tested with the oil 

viscosity of 0.05 Pa·s. 

The following remarks can be made:  

(i) By including a very small quantity of oil (two drops), the total friction torque increases 

substantially as result of the hydrodynamic force FR. It can be observed that total friction 

torque in dry conditions represents about 2% to 12% of the total friction torque measured in 

lubricated conditions. 

(ii) The total friction torque increases when the rotational speed is increased, and the exponent n 

used in Equations (19)–(21) has a value varying between 0.11 and 0.65 depending on the 

lubricant parameter Λ. Table 1 shows the values for K* and n corresponding to small values of 

the parameter Λ (Λ = 0.3 to 0.8) obtained with 3 mm diameter balls and loaded at Q = 0.633 N. 

It can be observed that the exponent n varies between 0.11 and 0.36. By increasing the lubricant 

parameter Λ, the value of the exponent n increases. Table 2 shows the values for K* and n 

corresponding to large values of the parameter Λ (Λ = 0.6 to 3.2) obtained with 6.35 mm 

diameter balls and loaded at Q = 0.125 N. 
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Figure 9. Total friction torque in dry and lubricated conditions: d = 6.35 mm, η0 = 0.05 Pa·s. 

 

Figure 10. Total friction torque in dry and lubricated conditions: d = 3.97 mm, η0 = 0.05 Pa·s. 

Table 1. Experimental values for K* and n with 3 mm diameter balls. Q = 0.633 N,  

d = 3 mm, η0 = 0.05 Pa·s. 

Initial Rotational Speed, rpm 
*

exp 2ω
nTz K   

60 
5 0.116

exp 24.001 10 ωTz     

90 
5 0.277

exp 23.287 10 ωTz     

120 
5 0.318

exp 22.864 10 ωTz     

150 
5 0.366

exp 22.796 10 ωTz     

180 
5 0.344

exp 23.21 10 ωTz     

210 
5 0.339

exp 23.213 10 ωTz     
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Table 2. Experimental values for K* and n with 6.35 mm diameter balls. Q = 0.125 N,  

d = 6.35 mm, η0 = 0.05 Pa·s. 

Initial Rotational Speed, rpm 
*

exp 2ω
nTz K   

60 
5 0.652

exp 24.208 10 ωTz     

90 
5 0.647

exp 23.839 10 ωTz     

120 
5 0.620

exp 23.943 10 ωTz     

150 
5 0.654

exp 23.779 10 ωTz     

180 
5 0.622

exp 23.457 10 ωTz     

210 
5 0.649

exp 23.354 10 ωTz     

4.4. Validation of the Analytical Friction Torque in Lubricated Conditions 

The experimental values of the total friction torque were compared to the theoretical model 

developed in Section 2. The theoretical total friction torque Tz was calculated according to  

Equations (13) and (14) by considering only the hydrodynamic effect, hence disregarding the rolling 

friction torque generated by hysteresis, pivoting and inertial effect:  

FRrTz  6  (22)

The hydrodynamic rolling force FR is calculated using Equations (1)–(3). The calculated and 

experimental torques are compared in the next figures. The experimental final friction torque given in 

the following figures is defined as the difference between the total friction torque, defined in lubricated 

conditions, and the total friction torque defined in dry conditions. 
Also, the EHL partition determined according to the relationship  )6.6/1/()6.6/( MM   is indicated 

in the figures. The following figures show the theoretical and experimental total friction torques Tz as 

well as the EHL partition expressed as a percent (on the second y axis). 

Figures 11–14 show the variations of the total experimental and analytical friction torque Tz defined 

using 6.35 mm diameter balls and a normal load varying between 0.633 N and 0.125 N. For normal 

loads of 0.633 N and 0.400 N, the EHL partition exceeded 50% (using a viscosity of 0.08 Pa·s or  

0.05 Pa·s) and the experimental results are in good agreement with the calculated ones using  

Equation (5), named in the figures as “Biboulet’s transition equation”. By decreasing the normal load 

to 0.125 N, IVR becomes the dominant partition (the EHL partition is between 40% and 20%) and the 

best theoretical/experimental match is obtained by using Equation (1), named in the figures as 

“Biboulet’s IVR equation”. (See Figure 14 showing both Biboulet’s IVR and Biboulet’s transition results.) 

Figures 15–18 show the variations of the total experimental and analytical friction torque Tz defined 

using 3.97 mm diameter balls with a normal load varying between 0.633 N and 0.125 N. For normal 

loads of 0.633 N and 0.400 N and viscosities of 0.08 Pa·s and 0.05 Pa·s, the EHL partition exceeds 

70% and the experimental results are close to those obtained using Biboulet’s transition equation.  

By decreasing the normal load to 0.125 N, the EHL partition decreases and the IVR partition varies 

between 30% and 60% with a good theoretical correlation to the experimental results obtained  

when using Biboulet’s IVR equation. (See Figure 18 showing both Biboulet’s IVR and Biboulet’s 

transition results.) 
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Figure 11. Total friction torque for: d = 6.35 mm, Q = 0.633, η0 = 0.08 Pa·s. 

 

Figure 12. Total friction torque for: d = 6.35 mm, Q = 0.633 N, η0 = 0.05 Pa·s. 

 

Figure 13. Total friction torque for: d = 6.35 mm, Q = 0.400 N, η0 = 0.05 Pa·s. 
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Figure 14. Total friction torque for: d = 6.35 mm, Q = 0.125 N, η0 = 0.05 Pa·s. 

 

Figure 15. Total friction torque for: d = 3.97 mm, Q = 0.633 N, η0 = 0.08 Pa·s. 

  

Figure 16. Total friction torque for: d = 3.97 mm, Q = 0.633 N, η0 = 0.05 Pa·s. 
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Figure 17. Total friction torque for: d = 3.97 mm, Q = 0.400 N, η0 = 0.08 Pa·s. 

 

Figure 18. Total friction torque for: d = 3.97 mm, Q = 0.125 N, η0 = 0.05 Pa·s. 

Figures 19–22 present the variations of the total experimental and analytical friction torque Tz 

defined using 3 mm diameter balls and a normal load varying between 0.633 N and 0.125 N.  

For normal loads of 0.633 N and 0.4 N (viscosities of 0.08 Pa·s and 0.05 Pa·s), the EHL partition 

exceeds 70%–80%, and the experimental results are in good agreement with the ones obtained using 

Biboulet’s transition equation. By decreasing the normal load to 0.125 N, the EHL partition decreases 

and the IVR partition varies from 20% to 40%. The experimental value for Tz then varies between  

the theoretical ones calculated using Biboulet’s transition equation and Biboulet’s IVR equation  

(see Figure 22). 
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Figure 19. Total friction torque for: d = 3 mm, Q = 0.633 N, η0 = 0.08 Pa·s. 

 

Figure 20. Total friction torque for: d = 3 mm, Q = 0.633 N, η0 = 0.05 Pa·s. 

 

Figure 21. Total friction torque for: d = 3 mm, Q = 0.400 N, η0 = 0.08 Pa·s. 
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Figure 22. Total friction torque for: d = 3 mm, Q = 0.125 N, η0 = 0.05 Pa·s. 

4.5. Comments 

The experimental investigations presented in [6] were achieved by using balls 7.938 mm in 

diameter and similar raceways with a curvature radius of 4.16 mm corresponding to a conformity 

(Rc/d) of 0.524 or k ratio of 21.78. By using a very small quantity of oil (two or three drops), the inlet 

meniscus of the oil from the ball-race contact was reduced and the experimental total friction torque 

was in good agreement with Houpert’s transition equation calculated in moderately starved conditions: 
)2/(3.0 dxe   in the IVR regime and bxe  3  in the EHL regime. 

In the present study, by reducing the ball diameter to 6.35 mm, 3.97 mm or 3 mm and by using the 

same upper and lower raceway radii, important increases in the free spaces between the balls and 

raceways can be obtained. In these circumstances, when using the same oil quantity, the inlet meniscus 

of the oil from the ball-race contacts increases and the Biboulet’s transition equation for FR (calculated 
using fully flooded conditions bxe  10  in EHL, for example, and xe = −d/2 in IVR) appears more 

appropriate for obtaining a good match between the experimental and theoretical total friction torque Tz, 

especially when the EHL lubrication conditions are dominant (i.e., when the EHL partition exceeds 50%). 

For a very low normal load (Q = 0.125 N), IVR is the dominant regime for all ball diameters. In this 

case, Biboulet’s IVR equation is recommended for matching the experimental total friction torque Tz. 

5. Conclusions 

By using a theoretical model and an experimental methodology for defining the friction torque in a 

modified thrust ball bearing having only three balls, the authors investigated the total friction torque in 

dry and mixed EHL and IVR lubrication conditions. Small balls with 6.35 mm, 3.97 mm and 3 mm 

diameters were used, loaded with normal loads of 0.633 N, 0.400 N and 0.125 N. Two lubricants of 

viscosity 0.08 Pa·s and 0.05 Pa·s were used in the experiments. The rotational speed varied between  

60 rpm and 210 rpm to obtain a lubrication parameter Λ varying between 0.3 and 3.2, thereby simulating 

mixed lubrication conditions. 
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To demonstrate the effect of the hydrodynamic rolling force FR on the total friction torque,  

the authors compared the experimental results obtained in lubricated conditions and dry conditions. 

For dry conditions, the authors developed a simplified methodology to evaluate the total friction torque. 

It was shown that the total friction torque measured in mixed lubricated conditions exceeds the total 

dry friction torque by more than an order of magnitude. 

The experimental total friction torque was compared to the theoretical torque calculated using 

Biboulet’s transition equations, and a good correlation was obtained when the dominant lubrication 

regime was EHL. 

When the dominant regime was IVR, the experimental total friction torque was in good correlation 

with Biboulet’s IVR equation. 

Author Contributions 
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experimental results. The experiments were carried out by the authors from Iasi. 

Appendix A 

When simulating lubricated conditions, the integration of the differential Equation (15) is conducted 

by considering only the effect of the hydrodynamic force FR; all the other effects being disregarded 

because they are very small, as shown next. 

Figures A1 and A2 present the components of the total friction torque Tz for balls of 3 mm and  

6.35 mm, respectively, operating at a normal load Q = 0.633 N. 

 

Figure A1. The friction torque components for: d = 3 mm, Q = 0.633 N, η0 = 0.05 Pa·s. 
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Figure A2. The friction torque components for: d = 6.35 mm, Q = 0.633 N, η0 = 0.05 Pa·s. 

The hydrodynamic component TzFR was determined according to the methodology presented in 

Paragraph 3.2.2. 
The inertial component TzI  was calculated according to the relationship 2/3 ibI FrTz  , where the 

inertial force Fib was calculated using Equation (8). The angular deceleration 2ωd

dt
 was determined 

from Equation (20) using the maximum deceleration value (at the start of the deceleration process of 

the upper disc). Values between 0.5 and 3.3 rad/s2 have been obtained for all the experiments. 
The friction torque generated by pivoting motion was determined using MPMPTz  3 , where 

Equation (11) was used for the pivoting moment. For defining the friction coefficient μs in mixed 

lubrication conditions, we used the following Equation (1):  

μ 1 a a
S EHL a

Q Q

Q Q

 
      

 
 (A1)

where μEHL  is the friction coefficient due to the shearing of the lubricant film thickness, μa  is the 

friction coefficient due to the asperities contacts, Qa is the load carried by the asperities and Q is the 

total normal load. 

The ratio Qa/Q is determined as a function of the lubrication parameter Λ [6]:  

26.1

64.0

37.01

21.1
1






Q

Qa  (A2)

If the rolling contacts operated in full film conditions, μS EHL   was fixed to a value of 0.03  

while μa  was fixed to 0.11 [6]. 

The friction torque generated by hysteresis effect TzMER is calculated by the relationship 
dMERrTzMER /6   where the rolling resistance moment MER is given by Equation (9) and is not 

dependent on rotational speed. 
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For the 3 mm balls, the sum of the torques generated by hysteresis (TzMER), pivoting motion (TzMP) 

and inertia (TzI) is about 5.6% to 2.6% of the hydrodynamic friction torque (TzFR) when the rotation 

speed varies between 60 and 210 rpm. 

For the 6.35 mm balls, the sum of the torques generated by hysteresis (TzMER), pivoting motion 

(TzMP) and inertia (TzI) is about 2.6% to 0.4% of the hydrodynamic friction torque (TzFR) when the 

rotation speed varies between 60 and 210 rpm. 

These are the maximum values because when the normal loads are 0.400 N and 0.125 N,  

hysteresis and pivoting torques decrease. 

As a consequence, the three components of the total friction torque Tz (TzMER, TzMP and TzI) have 

been disregarded in our analysis. 

Appendix B 

FS1 and FS2 are the traction forces (driving the balls against all the previously described braking 

forces and moments) developed at the ball-race contacts. 

Using the ball force and the moment equilibrium, the following analytical relationships have been 

derived in [1,6] for calculating the traction forces FS1 and FS2:  

2
21

1 2
FR

Fib

d

MERMER
FS 


  (B1)

1
21

2
2 FR

Fib

d

MERMER
FS 


  (B2)

At the contact between the ball and the upper race 2, the hydrodynamic forces FR2 are applied on 

both surfaces (ball and race 2) in the same direction while the traction forces FS2 applied on race 2 and 

ball are pointing in the opposite direction (in virtue of the action reaction principle), see [6]. As a 

consequence, a final tangential force Ft2 (used for calculating the final torque) applied on race 2 can be 

calculated by summing the two components FS2 and FR2:  

2
2121

2
Fib

FRFR
d

MERMER
Ft 


  (B3)

For the modified thrust ball bearing having only three balls, the total friction torque acting on the 

upper race as a result of the all tangential forces and moments generated in the ball-race contacts is 

finally given by using 3 times Ft2. 
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