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Abstract

Lubrication failure has become a predominant failure mode in aviation roller bearings.
Timely identification of lubrication degradation is critical for preventing premature bearing
failure. This paper presents a fuzzy identification method of lubrication degradation stages
by fusing multiple indicators. Firstly, four monitoring indicators, including the oil film
thickness (OFT), wear surface roughness (WSR), contact resonance frequency (CRF), and
amplitude of CRF (CRFA), are extracted through numerical simulations to characterize the
lubrication degradation process. Then, a fuzzy evaluation method is proposed to identify
the lubrication degradation stages by integrating these indicators. The results indicate
that these four indicators can identify three typical stages of the lubrication degradation
process—good lubrication, normal wear, and severe wear, with an accuracy rate exceeding
92%. Finally, lubrication degradation experiments are carried out on a sliding-rolling test
rig to verify the method’s effectiveness. This work provides superior interpretability of the
multifactorial coupled lubrication degradation process analysis.

Keywords: lubrication degradation; fuzzy identification; oil film thickness; wear surface
roughness; contact vibration

1. Introduction

In aircraft engines, cylindrical roller bearings inevitably operate under high tempera-
tures, high speeds, heavy loads, and other extreme conditions, and lubrication failure often
emerges as the predominant failure mode [1-3]. This phenomenon arises from the tribo-
logical coupling behaviors at the line contact interfaces, including hydrodynamic effects,
frictional contact, and wear evolution, which significantly accelerate the degradation of
lubrication performance [4,5]. Timely identification of lubrication degradation and imple-
mentation of maintenance strategies are critical for preventing premature bearing failures.

The Stribeck curve, as a classical framework in elastohydrodynamic lubrication theory,
provides macroscopic judgment criteria for identifying the lubrication degradation—from
full-film to mixed and boundary lubrication—by delineating nonlinear evolution patterns of
the friction coefficient concerning operational parameters such as velocity, load, and viscos-
ity [6]. In fundamental experimental studies, the identification of lubrication degradation
has traditionally relied on the Stribeck curve [7,8]. However, in engineering applications,
this approach faces challenges in the online measurement of the friction coefficient and
operational parameters due to sensor integration. Furthermore, while the Stribeck curve
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reveals macroscopic trends in lubrication regime transitions, it fails to establish quantitative
criteria for identifying the lubrication degradation. To address these limitations, the film
thickness ratio A (defined as the ratio of the nominal minimum lubricant film thickness
and the composite root mean square surface roughness height) has been proposed as a
quantitative indicator, with empirical thresholds conventionally set as A < 1 for boundary
lubrication, 1 < A < 3 for mixed lubrication, and A > 3 for full-film lubrication [9]. Nev-
ertheless, this empirical relationship was derived from early stochastic analyses. Due to
inadequate consideration of surface topography evolution and heterogeneous asperity
contact distribution, it exhibits insufficient identification accuracy.

With advancements in sensing and information science technology, researchers have
investigated the correlation between the lubrication degradation process and various
condition monitoring signals to identify different lubrication states. For instance, given
the analogous trends displayed for acoustic emission (AE) signals and oil film thickness
concerning lubricant viscosity, Hou et al. [10] proposed a methodology for estimating
bearing lubrication states based on AE features. Xing et al. [11] extracted the friction-
induced vibration signals with two different amplitude—frequency characteristics and
explored their relationships with various friction states. Results show that the friction-
induced vibration can be used to identify boundary, mixed, and fluid friction states. Duan
et al. [12] conducted experimental studies on the identification of lubrication states of
line contact friction pairs, and results showed that the oil film thickness measured via the
ultrasonic method can distinguish elastohydrodynamic lubrication from mixed lubrication.
Subsequently, the application of machine learning algorithms has significantly advanced
the lubrication identification research field. By integrating clustering algorithms, artificial
neural networks, and other machine learning methods, the mapping models between the
above monitoring features and the lubrication degradation states were constructed [13-15].
These methods effectively improve the accuracy and efficiency of lubrication degradation
identification efforts.

The above investigations characterized the lubrication degradation process of fric-
tion pair interfaces through multi-dimensional analyses, encompassing oil film thickness,
surface friction, and wear. However, from the perspective of the lubrication degrada-
tion mechanism, a single physical monitoring method is usually effective for a specific
lubrication state. For instance, the oil film thickness monitoring is only applicable to a
full-film lubrication state, while the vibration and acoustic emission methods become
meaningful during the lubrication states involving surface contacts. Therefore, using
a single physical monitoring indicator, it is difficult to characterize the entire lubrica-
tion degradation process. Moreover, current investigations predominantly depend on
qualitative trend comparisons with the Stribeck curve, exhibiting a critical deficiency in
mechanistic interpretability.

Physics-informed, data-driven (PIDD) methodologies have revolutionized conven-
tional lubrication modelling and identification paradigms by embedding fluid dynamics-
governing equations (e.g., Navier-Stokes and Reynolds equations) as constraints within
neural network architectures [16]. This approach enables accurate prediction of key tribo-
logical parameters, including oil film thickness, pressure distribution, elastic deformation,
and friction coefficients, while simultaneously identifying lubrication states. For instance,
Zhao et al. [17-19] applied the physics-informed neural network (PINN) to the analysis
of 2D hydrodynamic lubrication, demonstrating that the PINN could achieve satisfactory
accuracy in calculating the film thickness, pressure distributions, and elastic responses. Xia
et al. [20] developed a PINN model to address both forward and inverse problems related
to frictional contact temperature. The results show that the PINN exhibits exceptional
predictive accuracy across various operational scenarios. Tang et al. [21] used a multiscale
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lubrication neural network model (MLNN) to solve the Reynolds equation for rough sur-
faces exhibiting complex multiscale features. The proposed model reduces errors in terms
of predicting the pressure distribution and load-carrying capacity, which are crucial for
optimizing tribological systems requiring accurate surface interaction modelling. Although
PIDD methods offer novel analytical perspectives, current research studies remain lim-
ited to parameter prediction and methodological validation, lacking robust solutions for
tracking lubrication degradation processes under coupled tribological behaviors at con-
tact interfaces. Further development is needed to address complex engineering scenarios
requiring domain-specific knowledge integration.

In summary, while the classical Stribeck curve lays the theoretical foundation for lubri-
cation state identification, its engineering applications face limitations due to the challenges
in real-time monitoring of intrinsic parameters and the absence of precise identification
criteria. Various physical monitoring methods, including vibration, acoustic emission,
and oil film thickness monitoring, can effectively identify the lubrication states with the
collaboration of machine learning algorithms. However, existing studies predominantly
rely on a single physical monitoring indicator, limiting comprehensive analysis efforts.
Additionally, their black box nature compromises the interpretability. Although PIDD
approaches have advanced the lubrication identification research through the prediction of
key tribological parameters, it is still in a preliminary research stage and is not sufficient to
explain the complex degradation process involving coupled frictional behaviors. The above
analysis reveals two key shortcomings in current lubrication state identification research:
(1) a single physical monitoring indicator is insufficient to characterize the complete lubri-
cation degradation process; (2) the mechanism interpretation of the degradation process
remains inadequate.

To address these two issues, this study proposes a fuzzy evaluation method for lu-
brication degradation state identification. Based on the coupled degradation mechanisms
(oil film rupture, solid contact, and surface wear) in rolling-sliding contacts, multiple
monitoring indicators extracted from the mixed elastohydrodynamic lubrication and con-
tact dynamic models are integrated to characterize the complete lubrication degradation
process. Distinct from existing machine learning and PIDD methods, this study assesses the
diagnostic value of multiple monitoring indicators through mechanism evolution law and
probability distribution to distinguish three typical lubrication degradation stages, which
provides the superior interpretability of the multifactorial coupled lubrication degradation
process analysis.

This paper is organized as follows. Section 2 introduces the methodology for char-
acterizing lubrication degradation. Section 3 proposes a multi-index fusion approach for
lubrication degradation identification. Experimental validation methods and results are
detailed in Section 4, followed by conclusions in Section 5.

2. Lubrication Degradation Characterization

The lubrication degradation process of a line contact friction pair under ideal condi-
tions is simulated using a coupled mixed-EHL model and contact dynamic model. Four
key monitoring indicators are extracted to characterize this process—the oil film thickness
(OFT), wear surface roughness (WSR), contact resonance frequency (CRF), and ampli-
tude of CRF (CRFA). The evolutionary trend analysis reveals three distinct degradation
stages—good lubrication, normal wear, and severe wear, as illustrated in Figure 1.
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Figure 1. The lubrication degradation characterization workflow.

2.1. Mixed-EHL Model

The mixed-EHL model is established with a mixed elastohydrodynamic lubrication
analysis software that is capable of analyzing lubrication and contact characteristics in a
wide range of operating conditions and simulating surface interactions in a full spectrum of
lubrication regimes, from full-film and mixed lubrication down to boundary lubrication and
dry contact. This commercial software, provided by Tri-Tech Solutions Inc., was developed
by Professor Dong Zhu, a leading scholar in tribology, based on many years of research
documented in technical papers. Numerous model validation cases have been conducted
to ensure the accuracy of numerical simulation results in his early studies [22-26]. The
governing equations are detailed below.

Under mixed lubrication conditions, the pressure within the entire domain is governed
by the Reynolds equation below [22]:

9 [ ph® 9p o [ ph® ap\ . 9(ph) = 9(ph)
5 (faon) ~ 3y (o) ~ U700 “)

ox ot

where the x-coordinate coincides with the motion direction, p is the pressure distributed
over the solution domain, and U is the sliding velocity; p is the lubricant density, which
can be expressed as [27]:

0.6 x 10 %p ) )

p:p°<1+ 1+17 x 109

where py is the density of the lubricant at p = 0. The effective viscosity 7" is calculated as
follows to describe the non-Newtonian effects [28]:

1 1 ) T
- = Tosmh<1> 3)
i mn T0
where 19 is a reference shear stress and 7; denotes the shear stress acting on the lower
surface. The viscosity 7 follows the Barus rule, which can be expressed as [29]:

1 = noe"? 4)

where 1) is the lubricant viscosity at p = 0 and « is the pressure—viscosity exponent.
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The local oil film thickness & (or gap between two rough surfaces) is formulated as [22]:
%2
2R,

h=ho(t) + 5= +o(xy,t) +01(x,y, 1) + &2 (x,y,1) ()

Here, hy(t) is the normal approach between the contacting bodies, Ry refers to the
effective radii of curvature across the contact width, and 6; and J, denote the real roughness
heights of surfaces 1 and 2, respectively. The surface elastic deformation v is obtained
through the Boussinesq integral [30]:

o(x _ i p(grg)
(% y,1) ngfg VE=82+ -9

_dgdc ©)

where E’ is the equivalent elastic modulus and () indicates the entire solution domain.
The load balance equation is [22]:

w(t) = [[ p(x,y, t)dxdy (7)
Q

Friction in mixed lubrication is usually considered as the comprehensive effect of hy-
drodynamic friction and asperity contact friction. The shear stress 7, in the hydrodynamic
area can be estimated by the Bair-Winer model, expressed as [31]:

-t _x
fy—Goo 77ln(l ) (8)

in which the limiting shear stress 77 and the limiting shear elastic modulus G, are functions
of pressure and temperature that can be estimated empirically. The flash temperature is
calculated as follows [22]:

05 &
T1(C) = Tp1 + (1> /{f[Tz(E) —Ti(&)] + q(zf,)}(c_dc;()b_ ©)

05 G
n@=nﬁ(]'>/{fm©—nmwﬂﬁhézw (10)

where g is the heat generated either by the lubricant shear stress in the hydrodynamic areas
or the boundary friction in the asperity contact areas.

In the asperity contact area, the friction coefficient f, is assumed as a constant (typically
between 0.08 and 0.12) [19], and the shear stress 7. can be expressed as:

T = fpp (11)

The total friction F; can then be obtained through the integration of shear stress over
the entire domain, which can be expressed as:

Fr = ﬂ T,dA, + jj T.dA. (12)

where Ay, is the hydrodynamic area and A, is the asperity contact area.

Based on the above basic governing equations, the specific rough surfaces, constant
geometric parameters, material parameters, lubricant properties, and operating condi-
tions are input into the mixed-EHL solver. The mixed-EHL solver numerically solves the
Reynolds equation using a finite difference scheme on a 256 x 256 structured grid. The
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computational domain spans [-1.9a, 1.9a] x [—1.6b, 1.6b] in the x-y plane, where a and
b represent the Hertzian contact ellipse semi-axes. The rough surfaces are dynamically
updated at each time step, and after convergence, yielding spatial distributions of film
thickness, pressure, contact ratio, and friction coefficient. These results reflect the friction
contact behavior under different lubrication states. The major input geometric, material,
and lubricant parameters are summarized in Table 1.

Table 1. The lubrication degradation simulation method.

Parameters Values Parameters Values
Radius of curvatureR, (mm) 54 Lubricant density (g-cm~3) 0.88
Contact length (mm) 10 Lubricant viscosity (Pa-s) 0.096
Equivalent elastic modulus (GPa) 219.78 Frictional coefficient 0.15
Poisson’s ratio 0.3

Ac: .93%
(a) 4m/s

To validate the model accuracy, a specific case was conducted using the parameters
in Table 1, with a load of 500 N, speeds ranging from 4 to 0.2 m/s, and a composite
surface roughness of 0.5 um. Figure 2 illustrates the evolution of surface contact states
during lubrication degradation. In the solution domain, the color gradient from blue to
red indicates regions filled with lubricant where the oil film progressively thins, while
yellow areas represent asperity contact due to film rupture, as shown in Figure 2e. Oil
film distributions along the Hertzian contact centerline at different speeds are depicted in
Figure 3. Both axes display the dimensionless values. The Y-axis indicates positions along
the contact length. The dimensionless OFT is obtained by dividing the average OFT in the
Hertz contact area by the Hertz contact width.

LY D1

= —’3= —r

Ac: 18.65%

-

c:9% o Ac: 5.57% Ac53.93-%'

(b) 3m/s (c) 2m/s (d) 1m/s () 0.2m/s

Figure 2. The evolution of surface contact states during lubrication degradation.

At 4 m/s, the friction pair approaches a full-film lubrication state, with an asperity
contact ratio of only 0.93%, as shown in Figures 2a and 3a. As speed decreases, the reduced
hydrodynamic pressure leads to the gradual film thinning and an increased asperity contact
ratio (Figures 2b—d and 3b-d). At 0.2 m/s, extensive film rupture occurs, resulting in zero
film thickness and an asperity contact ratio of 53.93% (Figures 2e and 3e). The average OFT
and friction coefficient under varying speeds are depicted in Figure 3f. During lubrication
degradation, the OFT progressively decreases, varying within a range of 0.18-0.88 um.
These values align broadly with predictions from the classical Dowson-Higginson for-
mula (1.1507-0.1413 um), with the discrepancy attributable to the incorporation of surface
roughness effects in the present model. The friction coefficient initially exhibits a stable
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state followed by a rapid increase. This trend indicates that frictional forces in the initial
phase of lubrication degradation originate primarily from shear within the lubricating fluid,
then asperity contact friction becomes dominant due to the increased contact area. These

observations are consistent with the fundamental principles of EHL theory.
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Figure 3. The oil film distribution during lubrication degradation.

2.2. Contact Dynamic Model

The contact dynamic behavior of the line contact friction pair is described by a two-
dimensional mass spring damping system, as shown in Figure 4a [32]. The mass block m
slides at a constant velocity v over a rough surface. Taking into account the damping force,
spring force, and external load acting on the mass, the equation of motion for the system
can be expressed as:

mij=C(ji—y) +Syi—y+z0)"°—F (13)

where y; and y denote the system input and output, respectively, and y; corresponds to
the rough surface profile. The damping coefficient is represented by C, while S denotes the
Hertzian contact stiffness; z refers to the static spring compression, and (y; — y + zp) indicates
the instantaneous spring compression. The spring restoring force is directly proportional to
the difference in spring compression (y; — y + 20)1'5. F represents the external load.

The Hertz contact stiffness can be linearized to facilitate solving the system’s vibration
response. Under constant load and small-amplitude vibration conditions, the nonlinear
spring force may be approximated by an equivalent linear spring force, whose stiffness
corresponds to the incremental stiffness. The motion of the mass block sliding over the
rough surface can be approximated as the contact between a sphere and a smooth plane.
Based on Hertz contact theory, when the contact spring reaches equilibrium under the
applied external load, the static compression is given by [30]:

1

9F2 3
Y 14
20 (16E2R) (14)

where E denotes the equivalent elastic modulus and R represents the equivalent
contact radius.
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The incremental stiffness Sy is derived by differentiating Equation (14), yielding:

1 2
16R\3 /1\(73)
Then, the theoretical CRF w; can be expressed as [33]:
1 /S
Ws = 5| (16)

In contact dynamics, the damping coefficient is commonly derived from experimen-
tally measured damping ratios, typically ranging from 0.01 to 0.1. The damping coefficient

can be obtained as:
C =2wsm{ (17)

where ( represents the damping ratio, which is assigned a value of 0.02 in this model. Thus,
Equation (13) can be simplified as:

mijy = C(yi — ) + So(yi — ) (18)

The rough surface is simulated using Gaussian white noise subjected to low-pass
filtering. This processing converts the two-dimensional spatial surface profile into a tem-
poral displacement input. Notably, the amplitude variation corresponds to the surface
height modification, while the cut-off frequency adjustment represents the sliding velocity
changes. Equation (15) is solved numerically using a fifth-order Runge-Kutta algorithm.
Without additional signal processing, the characteristic frequency can be directly extracted
from the power spectral density (PSD) of the acceleration response.

S]

_
S

(3320.72, 1.95)

o
7?: 10

g

z 107

=

= ol

g 10

-

]0—8 ‘ ’ - ’
0 1000 2000 3000 4000 5000
J Frequency (Hz)
(a) The contact dvnamic model (b) The contact resonance frequency

Figure 4. The contact dynamic model and the contact vibration response.

To validate the accuracy of the contact dynamic model, a specific case was exam-
ined with the following parameters: m = 0.1 kg, v = 0.1194 m/s, E = 219.78 GPa,
R =54 mm, F = 200 N. Using Equations (14)—(17), the following parameters were cal-
culated: zg = 6.877 x 107 % m, Sy = 4.362 x 10’ N/m, ws = 3322 Hz, C = 13.2966. Subse-
quently, the Gaussian white noise was low-pass-filtered at a cut-off frequency of 30 Hz to
generate a rough surface with an amplitude of 2 um. Both the derived parameters and
the rough surface were incorporated into the contact dynamic model for solution. As
illustrated in Figure 4b, a characteristic frequency at (3320.72, 1.95) can be identified as the
CRE, which is consistent with the theoretical CRF w; calculated by Equation (16), thereby
confirming the validity of the dynamic model.
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During the lubricant degradation of the line contact friction pair, the reduction in OFT
leads to surface asperity contacts, transitioning into the mixed lubrication condition. As the
asperity contact area increases, surface wear initiates and progresses, eventually inducing
system vibration when the wear becomes severe. Consequently, the lubrication degradation
process cannot be adequately characterized by any single parameter of the oil film, wear
surface, or vibration alone. In this study, the OFT, WSR, asperity contact area ratio, and contact
load ratio can be obtained through the mixed-EHL model. The solved WSR, asperity contact
area ratio, and contact load ratio are then incorporated into the contact dynamic model to
determine the CRF and CRFA. Figure 5 shows a mathematical flowchart of the parameter
transfer relationship between two models. The specific method is detailed below:

(1) The WSR represents the surface profile height within the contact dynamic model. The
Gaussian white noise was low-pass-filtered to generate a rough surface profile with
the same value as the WSR.

(2) Given a constant external load, the asperity contact load ratio during lubrication
degradation can be utilized to determine the contact load, incremental stiffness,
damping coefficients, and theoretical CRF.

(3) The cut-off frequency corresponds to the sliding velocity, representing the number of
asperities traversed by the mass block per unit time. Consequently, the contact area
ratio during lubrication degradation corresponds to the cut-off frequency. Here, the
contact area ratio can be regarded as a coefficient for adjusting the cut-off frequency,
thereby investigating the CRF evolution.

Mixed-EHL model Contact dynamic model
| Geometric parameters ‘ Gaussian white noise Rough surface
4 421070
| Material parameters | g R
| Lubricant parameters | 5! ol
r— | |2 0 I 2o
| Rough surface | A - 2
= |25 k=
| Load ‘ | = 54 &
a & 9 0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1
| Velocity I | i Time (s) Time (s)
- | A
{' Input l r— === ->| Low-pass filter |
g
Mixed- EHL solver : | a.:; ! Tnput
Output I & ” A
! |1z my=C(y,=3)+ 81, - )
o
| OFT \ bz A _
: o Input Runge-Kutta algorithm | Output
I
\ WSR H - | Y
| | Incremental stiffness Sy |
| Contact area ratio |— - | CRA |
|_> | Theoretical CRF w, |
| Contact load ratio ‘— - § ’ Damping coefficient C ‘ ‘ CRFA ‘

Figure 5. The mathematical flowchart of the mixed-EHL model and contact dynamic model.

2.3. Characterisation Indicators Extraction

The lubrication degradation process of a line contact friction pair is simulated through
the mixed-EHL model and contact dynamic model. The simulation method is detailed in
Table 2, and comprises two distinct phases:
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(1) Maintaining a constant surface topography (S; = 0.5um) and a normal load, an oil
film-dominated lubrication degradation state is simulated by progressively reducing the
sliding velocity from 4 m/s to 2 m/s in 21 discrete steps (with an interval of 0.1 m/s).
(2) Then, with the fixed velocity (2 m/s) and normal load, a surface wear-dominated
lubrication degradation state is simulated by incrementally increasing the surface
roughness from 0.6 pm to 4 pm in 35 steps (with an interval of 0.1 um).
Table 2. The operating parameters for lubrication degradation simulation.
Steps Control Variable Velocity (m-s—1) WSR (um) Load (N) Indicators
1 Velocity 4~2 0.5 500 OFT WSR
2 WSR 2 0.6~4 500 CRF CRFA

Throughout both phases, the OFT, WSR, asperity contact area ratio, and contact load
ratio are recorded for each simulation step. Then, the WSR, asperity contact area ratio, and
contact load ratio are input into the contact dynamic model to compute the CRF and CRFA.
This set of data is used to establish the fuzzy identification model for the next section.
Following a complete simulation cycle, the surface topography is regenerated to establish a
new set of data for subsequent model validation.

Figure 6 presents the evolution of four indicators (OFT, WSR, CRF, CRFA) during
the lubrication degradation. The horizontal axis represents the sampling number of 56
sets of data. It can be seen from Figure 6a that in the oil film-dominated stage, the OFT
exhibits gradual reduction until WSR-induced surface gap formation triggers linear growth
in the OFT. Figure 6b shows the constant and linearly increasing WSR simulated in the
mixed-EHL model. It can be seen from Figure 6¢,d that in the oil film-dominated stage,
minimal asperity contact maintains low CRF and CRFA values, while progressive surface
wear drives their subsequent increase.

25 5
L 4,
_ 2.0 .”’-.’,1' - ......_a
515} . g3} -
= 1.0+ ""H. % 2t _.-'".-..
O "--.I--..._...- ] _.." B ....l.
0.5} - 1 o
S
ooL——— ... o
0 10 20 30 40 50 060 0 10 20 30 40 50 60
Sample number Sample number
(a) OFT (b) WSR
4010 _ 40
3.5 L T 301 .
s %
T 3.0/ 7 ¢ |
o / = 20
e 25} ] = A
~ o < 10 [
20 L. é N
- e o~
l 5 ) , \ ) ) 0 --lI X X
0 10 20 30 40 50 60 0 10 20 30 40 50 60

Sample number

(¢c) CRF

Sample number

(d) CRFA

Figure 6. Four monitoring indicators of the lubrication degradation process.
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Based on the evolutionary trend of four indicators, the lubrication degradation process
exhibits three distinct stages:

(1) Good lubrication stage (samples 1-21): Characterized by the decreasing OFT and
increasing CRF, this stage maintains constant WSR and near-zero CRFA despite
minimal asperity contact, indicating a good lubrication state.

(2) Normal wear stage (samples 22-41): Emerging surface wear drives linear WSR growth
and corresponding OFT increases, accompanied by elevated CRF and CRFA values
due to enhanced asperity contact. Therefore, this stage is characterized by the increas-
ing OFT, WSR, CRF, and CRFA, indicating a normal wear state.

(38) Severe wear stage (samples 42-56): Marked by linearly increasing OFT and WSR,
this stage shows CREF stabilization and significant CRFA fluctuations resulting from
coupled contact area, load, and roughness effects. This stage is distinguished by the
differences in OFT, WSR, and CRFA, indicating a severe wear state.

2.4. Discussion

(1) The physical interpretability of four indicators

The proposed modelling framework and indicator extraction methodology demon-
strate that all four parameters possess distinct physical significance and collectively provide
essential characterization of the lubrication degradation process. Specifically, the OFT can
effectively quantify the lubricating oil film during full-film lubrication, but it becomes
less important for lubrication degradation characterization once the oil film ruptures and
the asperity contact occurs. The WSR serves as a direct measure of surface wear. Due to
its inherent statistical nature and negligible elastic deformation effects, it exhibits limited
sensitivity for slight asperity contact, and significant WSR variations only emerge during
severe wear stages. The CRF demonstrates high sensitivity to asperity contacts, enabling
real-time monitoring of contact state transitions through characteristic frequency shifts
correlated with contact load variations. The CRFA serves as a robust indicator of the
late-stage degradation, where nonlinear coupling between the surface morphology, contact
area, and contact load induces characteristic fluctuation patterns indicative of a severe wear
state (see [32] for complete analysis).

This study focuses on extracting lubrication degradation indicators from mechanism
models. Nevertheless, it is necessary to discuss the feasibility of other monitoring parame-
ters such as the temperature, acoustic emission features, and friction coefficient. Although
temperature critically influences lubrication degradation, its effect predominantly manifests
as oil film thinning and eventual rupture. Acoustic emission monitoring relies on detect-
ing elastic stress waves generated by dynamic interfacial events, including film collapse,
asperity contact, and wear particle generation. It remains difficult to establish a mapping
relationship between acoustic emission features and lubrication states through physical
models. While the friction coefficient serves as a direct indicator of lubrication conditions
under Stribeck theory, its accurate measurement in practical engineering applications is
often unfeasible. Therefore, the four indicators used in this study may be more reasonable.

In addition, this study adopts an idealized lubrication degradation simulation method,
disregarding operational variations such as fluctuating loads, temperatures, and contami-
nation. These factors, which are intrinsically linked to the four indicators, merit further
consideration. Load directly influences the CRF. The absence of CRF excitation under
fluctuating load suggests adequate lubrication, whereas its presence indicates oil film
rupture—characteristic of normal or severe wear stages. Temperature variations are cap-
tured directly through changes in OFT, and do not affect the generalizability of the proposed
method. Contaminants exhibit a negligible impact on the OFT under good lubrication
conditions. However, under normal or severe wear stages, micron-scale contaminants
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at the interface can behave similarly to the surface roughness, leading to unstable CRFA
values. In summary, the lubrication state in this study is characterized collectively by
four indicators and ultimately determined through probabilistic distribution. Although
real-world operational variations introduce uncertainty, their impact is not deterministic.

(2) Three typical lubrication degradation stages

The current classification of lubrication degradation stages follows the Stribeck curve,
which distinguishes between full-film, mixed, and boundary lubrication regimes. However,
this approach presents two limitations: (1) the absence of precise differentiation criteria;
(2) for the prolonged mixed lubrication conditions commonly encountered in point and
line contacts, it is difficult to further determine the state at the contact interface. This study,
therefore, proposes a contact-based classification method consisting of three distinct stages:
(i) non-contact (good lubrication); (ii) initial contact (normal wear); (iii) large area contact
(severe wear), which provides more precise characterization of the lubrication degradation
process for point and line contact scenes.

(3) The lubrication degradation modelling framework

It is well established that replicating the lubrication degradation through numer-
ical simulations or experimental methods presents significant complexity and time re-
quirements, as the process involves lubricant thermal degradation, asperity contact and
deformation, and surface wear. Consequently, fundamental studies typically employ
idealized degradation protocols, with velocity variation being the most common control
parameter [11,25]. Given the protracted nature of wear development, this study imple-
ments an alternative approach by simulating wear progression through controlled surface
roughness variation.

The adopted simulation methodology represents an idealized scenario that may not
fully conform to real-world lubrication degradation, particularly under noisy and unsta-
ble operational conditions. However, the four indicators possess fundamental physical
significance and enable robust lubrication degradation characterization. Crucially, re-
gardless of the operational variability or degradation sequences, an integrated analysis
of these indicators” evolutionary patterns permits unambiguous identification of current
degradation stages.

In summary, this section establishes a coupled modelling framework for lubrication
degradation analyses, integrating the mixed-EHL model with the contact dynamic model.
Although the mixed-EHL model can effectively simulate the degradation process, experi-
mental measurements of real-time contact state evolution remain challenging. To bridge
this gap, a contact dynamic model is adopted by taking the contact ratio variations as
inputs to solve for contact vibration. The synergistic integration of these models generates
four physically meaningful degradation indicators for line contact friction pairs.

3. Lubrication Degradation Identification Based on Multi-Index Fusion

While all four indicators collectively characterize the complete lubrication degradation
process, each contributes uniquely to different degradation stages. This study employs a
fuzzy evaluation method that dynamically adjusts indicator weights based on their stage-
specific relevance. The methodology involves (1) calculating dynamic weights using the im-
portance of criteria through the inter-criteria correlation (CRITIC) method [34], (2) determin-
ing membership degrees for each degradation stage, and (3) constructing a fuzzy evaluation
probability function for identification. Figure 7 illustrates the methodological workflow.
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Figure 7. The fuzzy identification workflow of lubrication degradation stages.

3.1. Weight Assigning

The CRITIC method is an objective weighting technique that quantifies the relative
importance of indicators through two dimensions: (1) contrast intensity, measured by
data variability, where higher variability indicates greater information content and larger
weights; (2) conflict, assessed via inter-indicator correlations, where stronger correlations
imply higher redundancy and consequently smaller weights. This approach prioritizes in-
dicators with substantial independent information while minimizing redundancy, ensuring
robust weight allocation.

As illustrated in Figure 6, the four indicators evolve continuously throughout the
lubrication degradation process, implying that the weight of each indicator also varies
dynamically. Therefore, the CRITIC method was applied iteratively to compute time-
varying weights. In this study, with four indicators and only 56 samples per indicator, a
window size equal to the number of indicators (i.e., four samples per group) was used
to ensure computational reliability in estimating variability and conflict. This may be the
minimum requirement for reliability calculation. For cases with larger sample sizes, it is
recommended to use a window exceeding 5-10 times the number of indicators to enhance
the robustness of the results. The implementation procedure consists of the following steps.

(i) Data standardization using the min-max normalization method:

Xij = Ximin

Xij = (19)

Ximax — Ximin
where x;; is the initial value of the j-th sample for the i-th indicator and X;; is the
normalized value; x;,,;, and Xj;;,, are the minimum and maximum values of the i-th
indicator, respectively.

(i) Measure the variability of four indicators using standard deviation:
{Yij = 1Y01 Xijn
i = / 154 (X — Xi)

; 0)
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where Yi]- and S;; are the mean and standard deviation of X;;, respectively. With each group

consisting of four samples, based on X;; and its first three samples, the dynamic variability
of each indicator is obtained iteratively.

(iii) Measure the conflict of four indicators using correlation coefficients:

Rij = Z::l (1 — rijn) (21)

where R;; represents the conflict between X;; and other indicators; r;;, is the correla-
tion coefficient of Xjj,, and the correlation coefficient matrix is calculated based on X;;
and its first three samples. The dynamic conflict of each indicator is obtained through
successive iterations.

(iv) Calculate the information content C;; based on the variability and conflict:

Ci]' = Sij X Rij (22)
Here, a larger C;; indicates greater importance of this indicator.

(v) Normalize the information content to obtain the final weights W;;:
Wy = ——0— (23)

assuming there are N sets of samples for the i-th indicator, there are a total of N — 3 sets of
weight values.

3.2. Membership Degree Calculation

According to Section 2.3, the lubrication degradation process can be divided into three
stages—good lubrication, normal wear, and severe wear, represented by S, Sy, and S3,
respectively. Using the Gaussian membership function as the fuzzy membership function,
the membership degree of each sample for different stages can be expressed as [35]:

X — u: 2
P;i(Sk) = exp (— (”’“Sk) ) k=1,2,3 (24)

7is,

where P;;(Sy) refers to the membership degree of X;; belonging to the stage of S;; s, is
the mean of all samples corresponding to Sy for the i-th indicator; 0js, is the proportion of
samples in the stage of S to the total sample number of the i-th indicator. This study utilized
only a single dataset to determine the mean and variance of the Gaussian membership
functions. Should sufficient datasets be available, cross-validation is recommended to
determine these parameters, thereby enhancing the model’s generalization capability.

3.3. Fuzzy Evaluation Probability Function

According to the dynamic weights of each indicator and the Gaussian membership
degrees, a fuzzy evaluation probability function can be constructed:

M;j(S) = WijPij(Sk) (25)

where M;;(Sy) is the fuzzy probability that X;; is in the stage of S, and the result is
determined based on the maximum probability.

3.4. Result Analysis

Figure 8b—d demonstrates that the WSR, CRFE, and CRFA exhibit monotonically in-
creasing trends throughout the degradation process. However, the OFT displays a non-
monotonic trend characterized by an initial decrease followed by an increase (Figure 8a).
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To facilitate state identification, the OFT slope is adopted as a derived monitoring indicator,
converting this parameter into a monotonically increasing trend.
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Figure 8. The normalized results of the OFT, WSR, CRF, and CRFA.

Furthermore, since all monitoring samples were obtained under idealized conditions,
the WSR remains constant in the initial phase followed by a perfectly linear progression,
and the CRFA consistently registers zero values in the initial phase. To ensure numerical
stability during normalization, random noise with an amplitude of 1 x 102 is introduced
to each raw data point. The noise magnitude is negligible compared to the original data
(order-of-magnitude difference), and it is empirically verified to alter the dataset’s mean and
variance by less than 0.1%. Figure 8a presents the preprocessed data of all four indicators,
including the OFT, WSR, CRF, and CRFA.

The dynamic weights of each indicator are shown in Figure 9. In the good lubrication
stage (samples 1-21), the weight of the OFT gradually decreases while the weight of the
CRF gradually increases (Figure 9a,c), and the weights of the WSR and CRFA are zero
(Figure 9b,d). During the normal wear stage (samples 21-40), the weights of the OFT and
CRF decrease (Figure 9a,c), while the weights of the WSR and CRFA gradually increase
(Figure 9b,d). In the severe wear stage (samples 41-56), the CRFA accounts for the main
weight (Figure 9d), the OFT and WSR account for smaller weights (Figure 9a,b), and the
weight of CRF gradually approaches zero (Figure 9c).

The membership degrees of the OFT, WSR, CRF, and CRFA, corresponding to three
stages, were computed according to the method in Section 3.2, as shown in Figure 10. To
avoid potential over-fitting in the fuzzy evaluation model, it is necessary to ensure that
the sum of probabilities for each sample belonging to the three stages is 1. Hence, the
proportional scaling method is applied to normalize the membership degree.

Figure 11 presents the fuzzy identification results. The known lubrication degradation
stages for 53 samples are shown in Figure 11a, while Figure 11b displays the fuzzy evalua-
tion outcomes, achieving 96% accuracy (51/53 correct identifications). Then, another set
of new data is used to test the model’s effectiveness. The test results yield 92% accuracy
(49/53), as demonstrated in Figure 11c. The errors mainly occur at the junction of two
stages (Figure 11d), which are caused by the extremely close probability of belonging to
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these two stages. For instance, at the first error point, the probability of being in the good
lubrication stage is 0.6, while the probability of being in the normal wear stage is 0.4. At
the subsequent error point, these probabilities shift to 0.55 and 0.45 for good lubrication
and normal wear stages, respectively. For maintenance of personnel monitoring lubrication
states, such close probabilities already indicate the transition to the next degradation phase,
necessitating corresponding maintenance interventions. These marginal deviations are,
therefore, both inherent to the monitoring process and operationally acceptable.
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Figure 11. The fuzzy identification results based on the simulation data.

4. Experimental Verification

A sliding-rolling test rig was employed for the lubrication degradation experiments.
Four indicators, including the OFT, WSR, CRF, and CRFA, were collected to verify the
effectiveness of the fuzzy identification method.

4.1. Experimental Method

The test rig comprises a line contact friction pair (a 12-mm-diameter roller and a
108-mm-diameter ring), as shown in Figure 12a. The roller is driven by a high-speed
electric spindle, and the ring is fixed on a low-speed electric spindle. Rolling—sliding
motions are obtained by setting different drive speeds. A vertical load can be applied to
the roller via the loading system. Vibration signals are acquired through an accelerometer
(with a measurement range of £50 g, sensitivity of 100 mV /g, and frequency response
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range of 0.5 Hz to 10 kHz). The WSR of the ring is obtained via a three-dimensional surface
reconstruction system [36] (Figure 12b). The lubricating oil is driven by a peristaltic pump
and injected into the contact region. The OFT is measured using an ultrasonic film thickness
detection method [4] (Figure 12c). A 6 x 0.6 mm? piezoelectric element is bonded to the
inner surface of the ring. The ultrasonic system transmits ultrasonic waves to the contact
region of the ring and roller through the piezoelectric element and receives the reflected
waves for OFT determination. More details of the test rig structure and monitoring methods
can be found in [4,32,36]. The experimental method is detailed in Table 3.

High-speed electric spindle Loading system

The friction pair |

ey R =

= L ] Ultrasonic film
Three-dimensional surface thickness measurement
reconstruction sysyem = ___ system

(b) Measurement of WSR (c) Measurement of OFT

Figure 12. The sliding—rolling test rig and the monitoring methods.

Table 3. The lubrication degradation experimental method.

Steps Control Variable Load (N) WSR (um) Speed of the Ring (r-min—1) Tl(sm)es
1 Load 50~500 0.57 300 300
0.87; 1.25; 1.31; 1.64; 1.68; 1.92;
2 WSR 500 2.17; 2.43; 2.90; 3.06; 3.49 300 300

Firstly, a new friction pair sample was applied (with a surface roughness of 0.57 pm
for the ring and 0.3 pm for the roller), and the load was increased from 50 N to 500 N at
intervals of 50 N to simulate the oil film-dominated lubrication degradation stage. Then,
under a constant load of 500 N, eleven ring samples with different surface roughness were
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sequentially replaced to simulate the surface wear-dominated lubrication degradation
(according to [25], the first five samples would lead to a normal wear state, and the last six
would lead to a severe wear state). During the experiments, the slip rate remained at 0.2,
and the rotational speed of the ring remained at 300 r/min. The feed of the lubricating oil
volume remained constant at 20 mL/min. Each test lasted 300 s. To ensure the repeatability
and reproducibility of the experimental results, each test was repeated five times. These
data were divided into two parts. The average OFT, WSR, CRF, and CRFA of the first four
sets of data are used to establish the fuzzy evaluation model, and another indicator is used
for subsequent method validation.

4.2. Result Analysis

The ultrasonic measurement technique for determining the oil film thickness in roller—
ring contacts has been comprehensively described in our prior work [4]; thus, is not
reiterated herein. The acquired vibration signals require comprehensive time-domain and
PSD analyses. To mitigate interference effects, all PSD signals were preprocessed using a
quintic spline smoothing algorithm. The highest point was selected as the CRFE. For the
statistical analysis, the mean CRF and CRFA values were extracted from three groups of
vibration signals.

Figure 13 presents all 21 experimental samples. The horizontal axis represents the
sampling number of 21 sets of data. Due to the technical limitations of ultrasonic film
thickness measurements, it is difficult to obtain OFT information during severe asperity
contact and wear conditions. This study, therefore, adopted a constant-value assumption
for monitoring the OFT after wear initiation, as depicted in Figure 13a. The premise of
this assumption is that a severe asperity contact state between the friction pair can be
determined based on the abnormal OFT values, and the OFT has lost its significance for
lubrication degradation characterization. Therefore, alternative measurement or treatment
methods should be explored in future research. The remaining three indicators exhibit
evolutionary trends consistent with theoretical simulations, as seen in Figure 13b—d.
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Figure 13. Four monitoring indicators collected during lubrication degradation experiments.
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The proposed multi-index fusion-based fuzzy identification method was validated
using the aforementioned monitoring samples. The known lubrication degradation stages
for 18 samples are shown in Figure 14a. Figure 14b,c indicate that the method achieved
100% identification accuracy (18/18) for training samples and 89% accuracy (16/18) for test
samples. The observed misclassifications primarily occurred during stage transitions, where
classification probabilities exhibited minimal separation (Figure 14d), thereby confirming
the method’s effectiveness for lubrication degradation identification.
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Figure 14. The fuzzy identification results based on the experimental data.
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This study presents a lubrication degradation identification method developed specifi-
cally for rolling-sliding line contacts, which may potentially be extended to the lubrication
condition monitoring of critical components (e.g., gears and bearings) in large mechanical
equipment. It should be noted that the multi-indicator fusion approach for lubrication
degradation identification remains at an early exploratory stage, with current validation
limited to fundamental laboratory experiments. The generalizability of this methodology
to other tribological systems would require more extensive investigation in future studies.

5. Conclusions

This study develops a multi-index fusion-based fuzzy evaluation method for identify-
ing the lubrication degradation. The methodology involves: (1) simulating degradation
processes using coupled mixed-EHL and contact dynamic models to extract four key indi-
cators (OFT, WSR, CRF, CRFA); (2) establishing a fuzzy evaluation framework for stage
identification; (3) experimental validation.

The key findings include:

(1) The integrated four-indicator system effectively discriminates three characteristic
degradation stages (good lubrication, normal wear, severe wear), with each indicator
providing unique and essential contributions.

(2) The fuzzy evaluation method achieves 89% identification accuracy, with misclas-
sifications primarily occurring at stage transitions due to overlapping probability
distributions.
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