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Abstract: This article presents the results of an analysis of the influence of friction process parameters
on the coefficient of friction of steel sheets 1.0347 (DC03), 1.0338 (DC04) and 1.0312 (DC05). A special
tribometer was designed and manufactured in order to simulate the friction phenomenon occurring
in the blankholder area in deep drawing operations. Lubricant was supplied to the contact zone under
pressure. The value of the coefficient of friction was determined under various contact pressures
and lubrication conditions. Multi-layer artificial neural networks (ANNs) were used to predict the
value of the coefficient of friction. The input parameters considered were the kinematic viscosity
of lubricants, contact pressure, lubricant pressure, selected mechanical properties and basic surface
roughness parameters of sheet metals. The value of the coefficient of friction of 1.0312 steel sheets
was predicted based on the results of friction tests on 1.0347 and 1.0338 steel sheets. Many ANN
models were built to find a neural network that will provide the best prediction performance. It was
found that to ensure a high performance of ANN prediction, it is necessary to simultaneously take
into account all the considered roughness parameters (Sa, Ssk and Sku). The predictive performance
of the ‘best’ network was greater than R2 = 0.98. The lubricant pressure had the greatest impact on
the coefficient of friction. Increasing the value of this parameter reduces the value of the coefficient
of friction. However, the greater the contact pressure, the smaller the beneficial effect of pressure-
assisted lubrication. The third parameter of the friction process, the kinematic viscosity of the oil,
exhibited the smallest impact on the coefficient of friction.

Keywords: coefficient of friction; lubrication; surface roughness; surface topography; metal forming

1. Introduction

Friction in plastic forming processes is an undesirable phenomenon that limits the
achievement of the appropriate degree of sheet metal deformation and causes deterioration
of the surface quality of drawpieces [1]. Friction also increases the force parameters of
the forming process. The most important factors influencing friction include the surface
roughness of the materials, the method of preparing the tool surfaces (coatings, heat
treatment, thermo-chemical treatment, mechanical strengthening of the tool subsurface)
and the mechanical properties of the sheet metal [2,3]. Friction conditions also strongly
depend on technological parameters of the forming process, such as the strain rate and
temperature. Additionally, some materials such as aluminium alloys and titanium alloys
have a strong tendency to galling [4]. A common way to reduce friction is to lubricate the
surface of sheet metal with petroleum-based [5] or vegetable-oil-based [6] lubricants. The
lubricant should be adapted to the temperature and contact pressures [7].

Due to the many factors that determine friction conditions, estimating the value of the
coefficient of friction is a difficult task. This task is made more difficult by the change in
the topography of the sheet metal surface resulting from the change in sheet deformation.
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Knowledge of the nature of the friction phenomenon in a given forming process is necessary
for the optimal design of the die and the proper selection of forming parameters. Due to the
complex relationships between the coefficient of friction and friction parameters, analytical
and statistical methods are used to understand the friction properties. Furthermore, it is
very difficult to predict tribological structure–property relationships from fundamental
physical principles [8].

In the last decade, machine learning (ML) methods (i.e., fuzzy systems [9], genetic
algorithms [10], principal component analysis [11], decision trees [12], support vector
machines [12], artificial neural networks [13], adaptive neuro-fuzzy inference systems [14],
Bayesian neural networks [15], etc.) have become important in the analysis of tribological
phenomena [16]. Generally, machine learning algorithms can be divided into unsupervised
learning and supervised learning [17]. Artificial neural networks (ANNs) are an effective
tool in modelling non-linear relations and identifying hidden patterns associated with fric-
tion phenomena [18]. Bhaumik et al. [19] used ANNs for predicting the anti-wear properties
of vegetable-oil-based lubricants using a pin-on-disk tribometer. They investigated the anti-
wear effect of the lubricants with modifiers via ANNs optimised by the genetic algorithm.
In another work, Baumik et al. [20] used ANNs and the genetic algorithm to design a new
lubricant based on the experimental data from a pin-on-disk test. Humelnicu et al. [21]
used ANNs to optimize the composition of lubricants with significantly lower coefficient of
friction. It was concluded that ANNs can be used to optimise the tribological performance
of biodiesel–diesel mixtures. Trzepieciński and Najm [22] applied ANNs for predicting
the coefficient of friction in a drawbead profile in the deep drawing process of low-carbon
steel sheets. It was concluded that the normalised transfer function provided the best
forecasting of the coefficient of friction. Otero et al. [13] applied ANN models for predicting
the coefficient of friction under elastohydrodynamic friction conditions. Lubricants with
various properties were tested using a ball-on-disc mini-traction machine. It was found that
properly trained multi-layer networks exhibit a high level of correlation between the contact
load, sliding velocity, lubricant temperature and coefficient of friction. Hasan et al. [23]
investigated the friction behaviour of aluminium-based alloys using ANNs and data-driven
analyses. They correlated tribological pin-on-disc test variables and material properties of
workpieces with friction and wear. They found that the ML models are able to predict the
wear behaviour of several grades of 2xxx–7xxx series aluminium alloys. Trzepieciński and
Szpunar [24] used ANNs to investigate the effectiveness of vegetable-oil-based lubricants
in reducing the friction of Ti-6Al-4V material. The response surfaces of the neural networks
allowed for finding the relationship between the contact pressure and oil viscosity and the
coefficient of friction. Najm et al. [25] predicted the friction of steel sheets using ANNs and
the CatBoost ML algorithm. The Levenberg–Marquardt learning algorithm provided the
best prediction of the friction. Najjar et al. [26] used an ANN model to predict the coefficient
of friction for Al-SiC nanocomposites. The proposed model provided a high accuracy of
prediction with a determination coefficient R2 value of 0.9768. Predicting the coefficient
of friction is important for the operation of texture surfaces [27], coatings [28,29] and self-
lubricating coatings [30,31]. Argatov [32], Puturi et al. [33], and Marian and Tremmel [34]
provided a review of the role of ML in the analysis of tribological phenomena. They focused
on the application of various ML methods and artificial intelligence in tribology.

ANNs are a rather well-known tool for analysing many tribological problems. How-
ever, only a few studies can be found on the use of ANNs to analyse the friction phenomena
occurring in sheet metal forming (SMF) processes. Friction in these processes is associated
with the contact of hard tools with relatively soft sheet metal material, which undergoes
deformation. Under these conditions, the relationships between the input parameters of
the friction process and the coefficient of friction are much more complex compared to
those for the typical friction nodes of machines (including roller bearings) [35]. Therefore,
in this study, it was decided to use ANNs to assess the friction phenomenon of selected
steel sheets tested using a tribometer developed by the authors.
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2. Materials and Methods
2.1. Test Material

The materials used in the tests were three grades of steel sheets with the designations
1.0347 (DC03), 1.0338 (DC04) and 1.0312 DC05 (EN 10130:2009 [36]). Due to its high
formability, deep-drawing steel is often used in the automotive industry. The mechanical
parameters of the sheet metal materials were determined in a uniaxial tensile test carried
out using a Zwick/Roell Z030 (Zwick/Roell, Ulm, Germany) testing machine (Figure 1a)
equipped with an extensometer (Figure 1b). As a result of the uniaxial tensile test, the
true stress–strain curves (Figure 2), as well as the basic mechanical properties (Table 1),
were obtained.
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Table 1. Sheet thickness and basic mechanical properties of the sheet metals.

Material Sheet Thickness
tsh, mm

Ultimate Tensile
Stress Rm, MPa

Yield Stress
Rp0.2, MPa

Young’s Modulus
E, GPa Elongation A50, %

DC03 1.2 322.7 203.9 165.8 23.9
DC04 1.25 315.4 180.2 176.9 24.7
DC05 1.25 289.1 162.5 163.2 25.9

The surface roughness of the test materials was measured using a Hommel-Etamic
T8000RC (Jenoptik, Jena, Germany), stationary profilometer. The values of the selected
surface roughness (SR) parameters (Figures 3a, 4a and 5a), isometric views of the sheet
metal surfaces (Figures 3a, 4a and 5a) and material ratio curves (Figures 3b, 4b and 5b)
were obtained.
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Based on the material ratio curve (Figure 5b), it can be seen that the DC05 sheet metal
was characterised by the most concentrated material density distribution, with a material
ratio of over 17%. In turn, the DC03 (Figure 4b) and DC04 (Figure 5b) sheet metals were
characterised by a relatively lower material ratio (12%) compared to the DC05 steel sheet.

2.2. Experimental Procedure

Research on the influence of friction process parameters such as the nominal pressure,
kinematic viscosity of the lubricant and lubricant pressure on the coefficient of friction (COF)
was carried out using a strip drawing test with flat countersamples. Countersamples were
made of 1.2063 chromium-alloyed steel. The tribometer (Figure 6) allowed the sheet surface
to be lubricated with liquid lubricants (oils) under pressure-assisted lubrication. The lubri-
cation method and design of the tester are the subject of patent application P–444834 [37].
Sheet metal strips with dimensions of 25 (width) × 140 (length) × tsh (thickness) were
tested. Specimens were cut along the rolling direction of the sheet metal.

The test stand shown in Figure 7 enables the measurement of the contact (normal)
force FN and the pulling force FP of the sheet metal strips. The measurement of force
parameters was carried out by two independent measurement channels with a frequency
of 100 Hz. The first measurement channel of the Zwick/Roell Z100 machine recorded
the displacement and pulling force of the sheet metal strip. The contact force FN and the
lubricant pressure poil were acquired using the second measuring channel.

Values of the contact force FN were measured using a Kistler® type 9345B (Kistler,
Winterthur, Switzerland) force sensor. The force FN was selected in such a way as to
correspond to the contact pressures pc of 2, 4, 6 and 8 MPa, which reflect the range of
contact pressures in the real SMF process [38,39]. The S100+ and S300 (Naftochem® sp.
z o.o., Krakow, Poland) oils with different kinematic viscosities were used as lubricants.
Friction tests were performed at an ambient temperature of 20 ◦C. The kinematic viscosity
of oils at 20 ◦C was determined using an Ostwald viscometer (Alchem Grupa, Torun,
Poland). The viscosity values for S100+ and S300 oil were 360 mm2/s and 1135 mm2/s,
respectively. Oil was supplied to the contact zone at pressures poil of 0.6, 1.2 and 1.8 MPa.
Oil was supplied through channels in flat countersamples (Figure 8) and hydraulic conduits
integrated with the hydraulic power unit (Figure 7). Experiments were also carried out
with conventional lubrication (poil = 0 MPa).
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Figure 8. Schematic diagram of the strip drawing test with flat countersamples.

As a result of the friction tests, graphs of changes in the contact force FN and the pulling
force FP were obtained (Figure 9). Combining the values of these forces in accordance with
the relationship presented in Figure 8 allowed for determining the value of the COF. The
value of the COF was determined as the average value obtained over three lengths of the
friction path, each approximately 10 mm long. In total, the length of the friction path in
the three analysed areas was approximately 30 mm (Figure 9). The curve of changes in the
coefficient of friction was very stable (horizontal line in Figure 9). Therefore, the standard
deviations, depending on the friction conditions, were between 0.00019 and 0.0024. In total,
the average value of the coefficient of friction was determined on the basis of approximately
9000 instantaneous values of the coefficient of friction over the friction path.
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Figure 9. Variation in the process forces and coefficient of friction during the friction test (pc = 8 MPa,
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A total of 96 experiments were performed (32 experiments for each sheet metal) taking
into account all combinations of oil viscosities, contact pressures and oil pressures. The
experimental plan for the DC03 steel sheet metal is shown in Table 2. The same plan was
applied to the remaining tested sheets.
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Table 2. Experimental plan for DC03 steel sheets.

Measurement Number Lubricant Type Contact Pressure pc, MPa Lubricant Pressure poil, MPa

1 S100+ 2 0

2 S100+ 4 0

3 S100+ 6 0

4 S100+ 8 0

5 S100+ 2 0.6

6 S100+ 4 0.6

7 S100+ 6 0.6

8 S100+ 8 0.6

9 S100+ 2 1.2

10 S100+ 4 1.2

11 S100+ 6 1.2

12 S100+ 8 1.2

13 S100+ 2 1.8

14 S100+ 4 1.8

15 S100+ 6 1.8

16 S100+ 8 1.8

17 S300 2 0

18 S300 4 0

19 S300 6 0

20 S300 8 0

21 S300 2 0.6

22 S300 4 0.6

23 S300 6 0.6

24 S300 8 0.6

25 S300 2 1.2

26 S300 4 1.2

27 S300 6 1.2

28 S300 8 1.2

29 S300 2 1.8

30 S300 4 1.8

31 S300 6 1.8

32 S300 8 1.8

2.3. Artificial Neural Networks

After all experimental tests for various steel grades and process parameters were
conducted, it was decided to create a predictive model of the COF using ANNs. The
Statistica program was used as a tool for neural analyses. Multi-layer neural networks with
one hidden layer were considered.

The procedure for building the neural model is shown in Figure 10. The parameters
of the friction process (contact pressure, oil pressure, kinematic viscosity of lubricants),
selected mechanical properties of the sheets and sheet surface roughness parameters (mean
roughness Sa, skewness Ssk, kurtosis Sku) were considered as input parameters (Table 3).
The COF was considered as the output parameter. The SR parameters Sa, Ssk and Sku
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were chosen because they are the most suitable for describing the surface roughness under
lubricant friction conditions in sheet metal forming [40]. Artificial neural networks were
used to verify the correlation between the SR parameters and the value of the COF.
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Table 3. List of groups of input parameters.

ANN
Denotation

Oil
Viscosity,

mm2/s

Contact
Pressure,

MPa

Oil
Pressure,

MPa

Ultimate
Tensile Stress,

MPa

Yield
Stress,
MPa

Young’s
Modulus,

GPa

Elongation,
%

Sa,
µm Ssk Sku

ANN-1–ANN-5 • • • • • • • • • •

ANN-6.1 • • • • • • • – • •

ANN-6.2 • • • • • • • • – •

ANN-6.3 • • • • • • • • • –

The experimental data regarding DC03 and DC04 sheets were assigned to the training,
validation and test sets in proportions of 70/15/15%. The experimental data set was
randomly split into training and test sets to prevent these data from influencing the model
performance. Random data splitting was done at the beginning so that the same data sets
were used for all models. Based on the trained networks, the values of the COFs were
predicted for the DC05 sheet. The iterative BFGS (Broyden–Fletcher–Goldfarb–Shanno)
algorithm was used to train the ANNs. The training process was stopped automatically
when the minimum training error value was reached. The analysed activation functions of
neurons are presented in Table 4.
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Table 4. Activation functions used in analysed ANNs.

ANN Denotation Hidden Layer Output Layer

ANN-1 tanh function (hyperbolic tangent) tanh function (hyperbolic tangent)

ANN-2 logistic activation function exponential linear unit function

ANN-3 exponential linear unit function exponential linear unit function

ANN-4 exponential linear unit function tanh function (hyperbolic tangent)

ANN-5 tanh function (hyperbolic tangent) exponential linear unit function

3. Results and Discussion

Based on the experimental data, the Statistica program automatically performed
analyses with multi-layer networks with different numbers of neurons in the hidden layer
(the numbers of input and output neurons resulted from the set of experimental data). The
number of neurons in the hidden layer also influenced the convergence of the training
process, as well as the error value of the trained network. The training process for various
network architectures was carried out automatically by the Statistica program. For the
training data set containing all selected input parameters (Table 3), analyses were carried
out using neural networks with various numbers of neurons in the hidden layer. In this
way, five networks were selected (ANN-1–ANN-5) that were characterised by the lowest
error values (Table 5). The accuracy of the prediction of the coefficient of friction was
assessed based on the root mean square (RMS) error:

RMS =

√√√√
∑

(
µ(r) − µ(e)

)2

N
(1)

where µ(r) and µ(e) are the measured and estimated values of the COF, respectively; N is
the number of measurements.

Table 5. Performance parameters of networks ANN-1–ANN-5.

ANN
Denotation

ANN
Structure

Correlation Error

Training Validation Testing Training Validation Testing

ANN-1 MLP 10-5-1 0.9898 0.9877 0.9922 0.000004 0.000005 0.000005

ANN-2 MLP 10-12-1 0.9923 0.9673 0.9915 0.000003 0.000009 0.000006

ANN-3 MLP 10-6-1 0.9885 0.9805 0.9947 0.000005 0.000005 0.000005

ANN-4 MLP 10-12-1 0.9936 0.9619 0.9877 0.000003 0.000011 0.000009

ANN-5 MLP 10-10-1 0.9804 0.9576 0.9870 0.000008 0.000011 0.000009

The RMS error is one of the most widely used measures for assessing the prediction
performance of ANNs [41–43]. It shows how far predictions fall from the measured true
values using the Euclidean distance [44].

After the preliminary tests, networks ANN-1–ANN-5 (Table 3) were determined
in accordance with the schematic diagram shown in Figure 10. The network that was
characterised by the smallest RMS error for predicting the value of the COF was selected
for analysis. By determining the value of the RMS error, the quality of the responses of
networks trained on various combinations of input data was compared. The smallest value
of RMS error was obtained for the MLP-10-12-1 network. The architecture of the network
that allowed for obtaining the most accurate prediction was identified, and this architecture
was used for subsequent analyses consisting in building three new models using different
surface roughness parameters as inputs of the ANN (Table 3).
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Then, the neural networks built on the basis of experimental data for the two steel
grades DC03 and DC04 were used to determine the value of the COF for the DC05 sheet.
In order to compare the prediction performance of the ANNs, the predicted values were
compared with the experimental values (Figure 11).
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In order to determine the ‘best’ network in terms of predicting the value of COF, the
values of RMS errors were determined for all measurement points. Then, the RMS error
value was determined for each network, as shown in Figure 12. It can be seen that among
the analysed networks, the ANN-4 network (MLP-10-12-1) had the smallest RMS error.
Therefore, to further analyse the importance of roughness parameters (Table 3) in predicting
the coefficient of friction, MLP-10-12-1 was used.
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Figure 12. Values of RMS error for neural networks ANN-1–ANN-5.

After the training process was carried out for the neural networks based on the
sets of experimental data for DC03 and DC04 sheets using variable input parameters,
three networks with the ‘best’ prediction quality were determined. The architectures and
performance parameters of these ANNs are presented in Table 6. The ANN-6.1 network
was built based on the inputs shown in Table 3, with the mean roughness Sa omitted. In
the input of the ANN-6.2 and ANN-6.3 networks, the skewness Ssk and kurtosis Sku were
omitted (Table 3). In order to show the impact of omitting selected roughness parameters on
the quality of prediction of the COF for DC05 steel sheets, Figure 13 presents a comparison
of experimental values and predictions of the COF depending on the structure of the
network analysed.

Additionally, for the analysed neural networks ANN-6.1–ANN-6.3, the RMS errors of
the predicted coefficients of friction were determined in relation to the measured values.
Then, the values of the RMS errors were determined for all measurement points (Figure 14).
Based on the values of RMS errors for the individual ANNs presented in Figure 14, it can
be observed that the ANN-4 network is characterised by the smallest RMS error compared
to the others. On this basis, it can be concluded that omitting any roughness parameter
negatively affects the network’s ability to predict the value of the COF.

Table 6. Performance parameters of the networks ANN-6.1–ANN-6.3.

ANN
Denotation

ANN
Structure

Correlation Error

Training Validation Testing Training Validation Testing

ANN-6.1 MLP 9-12-1 0.9803 0.9304 0.9394 0.000008 0.000043 0.000037

ANN-6.2 MLP 9-12-1 0.9926 0.9072 0.9709 0.000003 0.000043 0.000022

ANN-6.3 MLP 9-12-1 0.9881 0.9595 0.9861 0.000005 0.000012 0.000009
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Finally, it can be concluded that the ANN-4 network (MLP-10-12-1) containing all
roughness parameters in the network input has the ‘best’ predictive ability. The response
surfaces of this network presenting the effects of friction process parameters on the COF
are presented in Figure 15. The kinematic viscosity of the lubricant has little effect on the
COF (Figure 15a). However, an increase in kinematic viscosity causes a slight increase
in friction. As concluded by Pathmasiri et al. [45], too high a viscosity may reduce the
lubrication efficiency, while too low a viscosity may result in excessive mechanical contact
of the surface asperities. The lubricant pressure has the greatest influence on the value
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of the COF. This effect occurs only up to a certain lubricant pressure, beyond which side
leakage might occur or the oil could be squeezed to low-pressure locations [46,47].
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Figure 15. Response surfaces of ANN-4 showing the effect of (a) the lubricant pressure and kinematic
viscosity of lubricant (contact pressure pc = 5 MPa), (b) the contact pressure and lubricant pressure
(kinematic viscosity ηk = 747 mm2/s) and (c) the contact pressure and kinematic viscosity of lubricant
(lubricant pressure poil = 1.2 MPa) on the value of the COF.

Increasing the value of this parameter reduces the value of the COF. Nevertheless, the
intensity of this effect depends on the contact pressure (Figure 15b). The greater the contact
pressure, the smaller the beneficial effect of delivering pressurised lubricant. The increase
in contact pressure accelerated the lubricant breakdown, as found by Yang et al. [48]. This is
related to the interaction of the asperities of sheet metal with the tool surface at high contact
pressures. Under these conditions, the lubricant film can be easily broken. Sutcliffe [49]
found that a high pressure between contacting asperities affects asperity deformation.
Local contact pressures prevailing at the surface of asperities cause their elastic–plastic
deformation [50]. The rate of asperity flattening with bulk straining is related to the spacing
and contact pressure [51]. The relationships between the friction and surface roughness
change during compression were identified by Li et al. [52]. Under conventional lubrication
conditions (poil = 0 MPa), an increase in contact pressure causes a slight decrease in the
coefficient of friction. Moreover, Azushima and Ingarashi [53] observed an increase in
the coefficient of friction with increasing contact pressure. This involves a non-linear
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relationship between the friction force and the normal force [54,55]. The relationship
between the COF and contact pressure was reversed during pressure-assisted lubrication
(Figure 15b). The kinematic viscosity of the lubricant has little effect on the nature of the
interaction between the contact pressure and the coefficient of friction (Figure 15c). In the
range of contact pressures considered, the tested S100+ lubricant with a lower viscosity
provided a slightly lower value of the COF compared to the S300 lubricant. Despite the
three-fold difference in the kinematic viscosity of both lubricants, the difference in the COF
for the specific contact pressure level does not exceed 0.006.

4. Conclusions

The article presents the results of using ANNs to predict the COF of steel sheets
with different surface roughness and mechanical properties. Experimental results on the
friction of DC03 and DC04 sheets, obtained using a special tester enabling friction tests
in pressure-assisted lubrication conditions, were used to train the networks. The trained
networks predicted the value of the COF of the DC05 sheet. The main conclusions from the
analyses performed are as follows:

• To ensure a high performance of ANN prediction, it is necessary to simultaneously take
into account all the considered roughness parameters (Sa, Ssk and Sku). Removing
even one of these parameters from consideration reduces the quality of prediction of
the multi-layer ANN.

• The predictive quality of the ‘best’ network (MLP-10-12-1) determined by the coeffi-
cient of determination for the validation set was greater than R2 = 0.96. The coefficient
of determination for the test set was greater than 0.98.

• The lubricant pressure had the greatest impact on the COF. Increasing the value of
lubricant pressure reduced the value of the COF.

• As the contact pressure increases, the mechanical interaction of the surface roughness
peaks increases, and under these conditions, the beneficial effect of the pressurized
lubricant is limited. Therefore, to obtain the optimal COF value, the simultaneous
effect of contact pressure and oil pressure should be considered.

The conclusions obtained in these investigations are suitable for sheet metal forming
processes. A strip drawing test with flat dies is suitable for modelling the friction conditions
between the surface of the blankholder and the sheet metal.

Knowledge of the mechanical properties of the sheet metal and friction conditions is
necessary for the correct design of tools and selection of forming conditions. Due to the large
deformations of the sheet, the topography is changed; therefore, the value of the coefficient
of friction is constantly changing. The deformation of the sheet metal changes not only
the topography of the sheet surface but also its mechanical properties through the strain
hardening phenomenon. In future research, the influence of the degree of deformation of
the sheets on the value of the coefficient of friction should be checked. In the use of neural
networks, the authors believe it is possible to predict the value of the coefficient of friction
based on a sufficiently large experimental database for a given grade of sheet metal or
materials with similar properties. This approach is believed to make it possible to reduce
the need for time-consuming experimental tests. One limitation is the correlation between
the number of training data and the prediction performance of ANNs, in that the network’s
ability to generalize data increases as the size of the training set increases.
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