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Abstract: The importance of skid resistance performance assessment in pavement engineering and
management is crucial due to its direct influence on road safety features. This paper provides
a new approach to skid resistance predictive model definition based on experimentally obtained
texture roughness parameters. The originally developed methodology is based on a photogrammetry
technique for pavement surface data acquisition and analysis, named the Close-Range Orthogonal
Photogrammetry (CROP) method. Texture roughness features were analyzed on pavement surface
profiles extracted from surface 3D models, obtained by the CROP method. Selected non-standard
roughness parameters were used as predictors in the skid resistance model. The predictive model
was developed by the partial least squares (PLS) method as a feature engineering procedure in the
regression analysis framework. The proposed model was compared to the simple linear regression
model with a traditional texture parameter Mean Profile Depth as the predictor, showing better
predictive strength when multiple non-standard texture parameters were used.

Keywords: skid resistance; pavement texture; prediction model; photogrammetry method; 3D surface
model; regression analysis

1. Introduction

Skid resistance is one of the most significant functional properties for pavements [1].
It reflects the frictional characteristics of rough pavement surfaces in contact with vehicle
tires. The importance of skid resistance performance assessment in pavement engineering
and management is crucial due to its direct influence on road safety features, such as
stopping distance or vehicle stability in curves. It is a physical problem in the rough contact
mechanics domain theoretically explained by rubber friction theories by Persson [2,3] and
Heinrich and Kluppel [4]. Both theories focus on dissipation of energy on the contact
of rough and rigid pavement surface and smooth and viscoelastic vehicle tire, resulting
from the hysteresis component of friction force directly related to the geometry of contact
interface, i.e., pavement surface texture.

The pavement surface texture is a deviation from the true planar surface within specific
wavelength and amplitude ranges defining several texture levels [5]. When pavement
frictional properties are considered, two relevant texture levels are micro-texture and
macro-texture [6]. It is generally acknowledged that micro-texture predominates pavement
friction performance for low-speed and dry surface driving conditions, while macro-texture
influences pavement friction more significantly in high-speed and wet road conditions.
However, it is not recommended to exclude any of these texture levels in the analysis
of skid resistance as they both have a meaningful impact on frictional performance of
road surfaces [7]. In case when pavement skid resistance is observed, pavement texture is
traditionally evaluated only on macro-texture level by indicators describing volumetric or
geometrical properties of texture morphology. European standards recognize two main
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macro-texture indicators related to skid resistance: Mean Texture Depth (MTD) and Mean
Profile Depth (MPD). The former is a measure of pavement texture volumetric properties
evaluated by a standardized Sand Patch Test [8] and the latter is a measure of the texture’s
geometrical properties calculated on pavement texture profiles, collected by following
the standard [5]. These indicators describe macro-texture properties by generalizing their
volumetric and geometrical properties into one single indicator [9].

Pavement surface properties related to skid resistance are evaluated on the installed
pavement surface layer. This is achieved by measurement methods described in relevant
standards [10,11]. In European countries, skid resistance is mostly evaluated either by
static measurement method with a pendulum device or by dynamic methods with friction
trailers [12]. The static method results in an approximation of road’s frictional performance
for low-speed conditions, estimated from the loss of kinetic energy during the sliding
process of rubber pad attached to the pendulum arm [13]. Dynamic measurement methods
provide true frictional performance of inspected roads, as the measurements are carried out
by devices operating at driving speeds with actual contact conditions—vehicle tire rolling
and braking with a fixed or variable amount of slip.

Direct evaluation of pavement’s friction performance by any of the measurement
methods has some advantages, but also several drawbacks. The main advantage is a
relatively simple and straightforward evaluation of friction performance expressed as skid
resistance or friction coefficient values with well-known procedures [14]. When dynamic
measurement devices are used, pavement friction data are collected continuously on road
network, without traffic interruption during the data acquisition. However, the frictional
performance estimated from the direct measurements does not reflect the exclusive effect
of the pavement surface texture. The obtained friction values result from the effect of
some other influencing factors such as the operating principle of the measurement device,
measurement speed, contact conditions such as temperature, presence of water or other
contaminants, and material properties of bodies in contact. Therefore, the repeatability
of friction measurements is possible only in very similar measurement conditions with
equal measurement devices. On the other hand, pavement texture measurements provide
a general description of surface roughness features specific for applied measurement
procedure which are not affected by other influencing factors as friction measurements.
Therefore, they represent an objective descriptor of pavement’s friction performance [7].

To overcome the drawbacks of direct estimation of friction performance, the develop-
ment of a pavement friction prediction model became one of the main goals for researchers
and practitioners in the field. An extensive overview of previously established prediction
models and obtained results, with unique classification to simple and complex models, con-
sidering the number and type of the model’s influencing parameters was proposed in [15].
An emphasis was given to empirical models, with texture indicators being the governing
influence parameters. The proposed models aimed to investigate the relationship between
several influencing factors (including texture indicators) and resulting friction performance,
most commonly by inferential statistical methods [16]. The proposed prediction mod-
els showed various performance, from very significant relationship between the selected
texture indicator and measured friction to absence of any meaningful relationship. The
results obtained by several empirical prediction models, derived from traditional texture
characterization methods, are presented in the next chapter.

Recent development of optical measurement methods enabled a more detailed in-
sight to surface roughness properties related to various physical phenomena, including
friction on rough contact interface [17]. Research dealing with surface roughness features
related to pavement friction exploits optical measurement methods to gain more detailed
description of pavement surface properties, in comparison to the traditional measurement
procedures. Texture roughness characteristics derived experimentally from advanced
methods for texture analysis are being used in the friction performance predictive models
overviewed in the next chapter. The results of performed research indicate a promising
potential of optical methods for texture characterization in friction phenomena analysis,
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as the proposed models show better performance in comparison to ones developed by
traditionally obtained texture roughness indicators. Some research results obtained by
alternative texture characterization methods are elaborated in Section 2, where an overview
of performed research in the field is presented.

The goal of this study was to propose a new model for pavement frictional perfor-
mance prediction based on non-standard texture parameters, derived from an experimental
pavement surface morphology analysis method Close-Range Orthogonal Photogrammetry
(CROP). The CROP method utilized photogrammetry technology for texture data collec-
tion and digital surface reconstruction. The development and verification of the CROP
method is thoroughly explained in [15]. Texture roughness parameters were calculated
from surface profiles extracted from the digital surface models and used as predictors in the
skid resistance predictive model. The main aim was to explore the potential of alternative
pavement texture characterization by the CROP method for a more reliable insight to
pavement texture–friction relationship in comparison to traditional texture indicators.

2. An Overview of Existing Prediction Models

Pavement friction predictive models are being developed in the analytical, numerical
and empirical framework [14]. Analytical models follow the postulates of rubber friction
theories, where the friction phenomenon is related to surface roughness, material properties
and speed. The frictional response obtained from analytical models represents an approxi-
mation of actual physical phenomenon, due to the assumptions and limitations specific for
applied theory. Numerical models stem from the analytical models, with the possibility of
accurate representation of physical problem due to the application of numerical methods
such as finite element method for non-linear problem solutions [18–20]. By using numerical
methods for friction performance prediction, it is possible to include the true effect of each
specific influencing parameter without the necessary simplifications or approximations
as in the analytical models. Thus, the result of numerical models’ prediction is a highly
accurate representation of real phenomenon. However, numerical models developed in the
FEM framework require the discretization of contact interface, which might be a very com-
plex task in case when surface roughness features are recognized as the main influencing
parameter [14]. Empirical friction prediction models result from data collected by different
experimental procedures and measurement methods, with the aim to relate measured
influencing parameters with the friction performance [16]. Due to the experimental nature
of research presented in this article, empirical models will be further elaborated as a basis
for the development of a new prediction model.

2.1. Empirical Models Based on Traditional Texture Characterization

Empirical models aim to describe the relationship between measured influencing
parameters such as texture, speed, and climatic conditions and friction performance on
pavements. By following the proposed prediction model classification in [15], empirical
models with one or two influencing parameters as predictors are classified as simple.
Models accounting for more than two influencing parameters as predictors are categorized
as complex. In this overview, special attention was given to empirical models—both simple
and complex—where pavement texture indicator was considered as the main influencing
parameter. Texture–friction relationship was observed exclusively or in combination with
other influencing parameters.

Simple models [21–27] were derived from extensive pavement texture and friction
measurements, performed by traditional measurement procedures defined in relevant
European standards for texture measurements [5,8] and friction measurements [10,11].
Complex models [28–32] were derived in cases where influential parameters other than
texture, such as friction measurement speed, environmental effects, and different dataset
sizes, were considered in the model establishment. The predictive strength of empirical
models from previous research, expressed as Pearson’s coefficient of determination R2, is
given in Figure 1.
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Figure 1. An overview of empirical friction prediction models established by traditional texture and
friction indicators; blue color marks simple predictive models accounting for one or two influencing
parameters and orange color marks the complex models accounting for more than two influencing
parameters [21–33]. Different versions of the models developed by same authors are marked with an
asterisk and described in parentheses.

From Figure 1, it can be seen that simple prediction models showed no consistency in
friction prediction, expressed in R2 values. These models were developed by using tradi-
tional texture indicator MTD and/or MPD for texture–friction relationship establishment.
The obtained R2 values vary from no significant correlation for simple models [26–28] to
moderate or even strong correlation for models [21–25]. By observing the obtained R2

values for complex models, it can be seen that they generally showed more consistency
in friction prediction in comparison to simple models with only one or two predictors.
Complex models [29–31] where texture indicators were complemented with other influ-
encing parameters such as speed, pavement type or vehicle tire properties, showed better
performance. However, in some cases complex models did not provide a significant texture–
friction relationship despite the inclusion of additional influencing parameters in the model,
such as traffic load, climatic conditions or water effect [32,33].

The analysis of existing empirical friction prediction models derived from tradition-
ally obtained texture measurements showed that complex models considering several
influencing parameters generally provide more reliable prediction of pavement friction
performance in comparison to simple models with one or two traditional texture indicators
as predictors. However, there is no unique trend in successful prediction of friction per-
formance by multiple parameters models, as even some of simple models with only one
predictor showed significant texture–friction correlation. In general, traditionally deter-
mined texture roughness indicators MTD and MPD were unreliable for the establishment
of a meaningful texture–friction relationship. Therefore, in search for a more significant
relationship between texture roughness features and friction performance of pavement
surface, advanced methods for texture characterization are being implemented.
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2.2. Empirical Models Based on Advanced Texture Characterization

An extension of pavement texture features description by traditional indicators be-
came possible by using alternative methods for texture characterization, with the aim to
investigate and analyze texture morphology features and provide more significant relation
to friction behavior than for traditional texture parameters. For this purpose, different
methodologies were explored for texture data assessment based on remote sensing and
optical measurements of pavement surface with two most common technologies being
photogrammetry and laser scanning [17,34]. These methods result in a realistic 3D digital
representations of pavement surface morphology—digital surface models (DSMs), which
can be further analyzed in a variety of texture parameters in addition to the traditional
MTD and MPD indicators.

Photogrammetry is an optical measurement method utilizing digital camera for im-
age acquisition, from which a realistic digital model of the photographed object can be
reconstructed [17]. The reconstructed object consists of a large number of points with
defined coordinates, utilized for further measurements and analysis of object’s geometrical
features. If the distance between the object and camera is less than 300 m, photogrammetry
is characterized as close range [35]. The main advantage of the photogrammetry method
is the availability of data acquisition equipment. Digital cameras used for image acquisi-
tion are widely available and some research pointed out that even smartphone-integrated
cameras can provide relevant results in terms of accuracy and precision of obtained digital
models [36,37]. Laser scanning is another optical measurement method, where light beams
are emitted from the scanner to the target surface following the triangulation principle, with
known distances and angles between the light source and the sensor [38]. It is a widespread
technology already in use for traditional pavement texture measurements in 2D, resulting
in an MPD value as a texture indicator [39]. Recently, 3D laser scanning technology is ex-
perimentally applied for pavement surface morphology characterization, where, similar to
the photogrammetry method, 3D digital surface representations are created and utilized for
texture roughness analysis [40–42]. Laser technology enables fast collection of a relatively
large database with very high precision and accurate representation of true surfaces [43].
However, the equipment is less available in comparison to the digital cameras used in the
photogrammetry method, which is the main drawback of this method.

European standards [44,45] recognize and define several texture roughness parameters
in the 2D and 3D domains, respectively, which are not related to any specific surface type
but describe general morphology features of any rough surface. Texture parameters are
grouped to describe amplitude, spatial, hybrid and material roughness features of profiles
or surfaces. When analyzing pavement surface morphology, most commonly the rough-
ness parameters are selected from the amplitude and material groups [46,47]. Advanced
pavement texture characterization by roughness parameters has been utilized recently in re-
search dealing with pavement friction performance assessment. Table 1 summarizes recent
research utilizing optical measurement methods for texture roughness characterization in
the establishment of friction predictive models. The focus of such studies is to determine
texture-related roughness parameters from the digital representations of pavement profiles
or surfaces and establish the relationship to the friction performance through a friction
prediction model. Models are being developed in an empirical framework, with experi-
mentally determined texture roughness features obtained by previously described optical
measurement methods: photogrammetry or 3D laser scanning.
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Table 1. Friction prediction models developed from alternative pavement texture data collection and
characterization.

Authors Data Collection Method Model
Parameters Results

Kogbara et al., 2018 [48] Photogrammetry-based
Surface-related texture

roughness parameters for
different texture scales

Obtained R2 = 0.75 for
predictive model accounting
for two selected parameters
calculated for top 2 mm of

pavement surface

Alhasan et al., 2018 [49] 3D laser scanner

Fractal characterization of
texture roughness by the PSD

function and the Hurst
exponent, MPD

Obtained R2 = 0.71 for
predictive model accounting
for fractal characteristics of

pavement surfaces in
combination with the

traditional MPD indicator

Huyan et al., 2020 [50] Photogrammetry-based Profile-related roughness
parameters and MTD

Obtained R2 > 0.7 for
predictive model accounting

for two profile-related
indicators and MTD for

low-speed friction
measurements

L. Li et al., 2016 [51] 3D laser scanner
Surface-related texture

rough-ness parameters from
EN ISO 25178-2

Obtained R2 = 0.95 for
predictive models accounting

for six selected roughness
parameters of pavement

surfaces

Hu et al., 2016 [52] 3D laser scanner

Surface-related texture
rough-ness parameters from

EN ISO 25178-2, surface
fractal dimension

Obtained R2 = 0.76–0.83 for
predictive models accounting

for two selected roughness
parameters of pavement

surfaces, while fractal
dimension showed no
significant effect to the

model’s predictive strength

Chen D., 2020 [53] Photogrammetry based Spectral texture indicators
related to profiles and MTD

Obtained R2 = 0.88 for
predictive model accounting
for spectral texture indicator

in wavelength range related to
micro-texture and low-speed

friction measurements

Li, Q.J. et al., 2020 [25] 3D laser scanner

Surface-related texture
roughness parameters

(multiscale) and aggregate
feature, amplitude and

material parameters

Obtained R2 = 0.78 for
predictive model accounting

for selected roughness
parameters texture entropy

and aggregate feature
parameter

Kovač et al., 2021 [54] 3D laser scanner

Surface-related texture
roughness parameters on

micro and macro level from
EN ISO 25178-2

Obtained R2 = 0.84 for
predictive model accounting

for three micro-texture-related
parameters and one

macro-texture parameter

Research by [48] investigated the relationship between six surface-related roughness
parameters in amplitude, volume and feature group determined from a photogrammetry-
based data collection method and friction measurements performed by a Grip Tester
device for fixed slip continuous measurements on 900 m long constructed road sections.
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The proposed friction predictive model was established in the multiple linear regression
framework with two roughness parameters as predictors: peak material volume and
peak density, describing volumetric and feature properties of top 2 mm surface rough-
ness, respectively. The top 2 mm of analyzed pavement surface was considered as the
most relevant for texture–friction phenomenon since the surface asperities on this level
directly interact with the device’s measuring tire. Furthermore, research results pointed
out that no significant texture–friction correlation was obtained for separate observation of
micro- and macro-texture influence to friction performance. This research was performed
in wet friction measurement conditions, meaning that the water film sprayed onto the
surface during the measurements filled texture cavities and, therefore, could affect the
obtained low correlations for texture levels below 2 mm. Another photogrammetry-based
research [50] performed in laboratory on fabricated asphalt samples investigated the influ-
ence of macro-texture range roughness parameters determined from profiles extracted from
digital surface models of two different asphalt pavement mixture types: five dense graded
and three open graded. The developed texture analysis system produced digital surface
models with resolution of 0.1 mm in horizontal and lateral plane and 0.01 mm in vertical
plane. Ten roughness parameters were calculated on 100 mm long profiles, from which the
micro-texture roughness features were filtered out. The effectiveness analysis of selected
parameters to friction performance was performed by comparing correlation coefficients
obtained between each roughness parameter and corresponding value of friction, mea-
sured by a low-speed pendulum device. The best correlation was obtained for following
profile-related parameters: arithmetic mean height—Ra, root mean square wavelength
lq and traditional parameter MTD. Roughness parameters extracted from open-graded
asphalt mixture samples generally showed higher correlation to measured friction. The
results indicated a promising perspective for texture roughness analysis by experimentally
established data collection method; however, the methodology where micro-texture values
were filtered out was contradictory to previous research findings. A different approach in
photogrammetry application was proposed by [53], where digital surface models of pave-
ments were utilized for profile extraction and calculation of spectral indicators as roughness
descriptors. Surface images were captured by using tricolor light sources (red, green and
blue). A 10 cm2 surface area was captured by the established image acquisition system
and subjected to spectral analysis. The power spectral density function was calculated
from the profiles and the mixture surface profile levels were calculated for different texture
wavelengths. The results analysis showed that texture wavelength corresponding to the
macro-texture level correlates well with the traditionally measure macro-texture indicator
MTD, while texture wavelength corresponding to micro-texture level obtained significant
correlation to friction performance measured by a low-speed device. This conclusion
corroborated the previous research results in [48], where it was observed that texture scale
separation should not be performed a priori in the analysis of texture–friction relationship.

Friction prediction models developed by texture roughness input obtained by high-
end 3D laser scanning devices showed similar results, despite the advances of applied
technology. Authors [49] obtained a moderate relationship between friction performance
and texture features presented through texture’s fractal characterization with the Hurst
exponent and the power spectral density function, calculated from surface’s digital rep-
resentations generated from a 3D laser scanning device. In their predictive model, they
also included traditional parameter MPD determined from digital surface model. Friction
performance was determined by low-speed measurements with a pendulum device on
18 different locations. The predictive model was defined by Persson’s rubber friction theory,
showing promising potential for pavement friction estimation based on surface’s fractal
characteristics which supplement the traditional profile-related texture indicator. Research
by [51] obtained a very strong predictive model based on surface roughness parameters
from amplitude, spacing, hybrid and functional group calculated with the EN ISO 25178-2
standard. They utilized a high-end 3D laser scanning device for data acquisition and
performed sensitivity analysis for determined roughness parameters to detect which are
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the most suitable for friction performance prediction. The friction predictive model was de-
veloped in multivariate regression analysis with six texture indicators as model predictors.
Obtained values were compared to friction measurements by a high-speed dynamic device
on 84 segments, showing very significant correlation with coefficient of determination
of 0.95. In research by [52], roughness was examined on eighteen test sections by a 3D
laser scanning device and measured by a dynamic low-speed friction measurement device.
From the obtained surface scans, several parameters from amplitude, hybrid and feature
group according to EN ISO 25178-2 standard were calculated, together with the fractal
dimension of analyzed surfaces and traditional parameter MPD. Surfaces were processed
to account only for macro-texture features and qualitatively compared to measured friction
performance. The analysis showed that MPD parameter showed no significant relationship
to friction, while two parameters from the feature parameters group influenced the friction
performance the most. The proposed predictive model accounted for these two parameters
and obtained coefficient of determination ranging from 0.76 to 0.83 with the friction values
measured at different speeds. An important conclusion derived from this research is that
predictive models accounting for multiple texture roughness parameters have better predic-
tive strength than a single-predictor model. The 3D laser scanning equipment was utilized
in research by [25], focusing on aggregate roughness characteristics and their influence
on friction performance determined by a high-speed measurement device on 22 locations.
There was no scale separation to micro- and macro-texture in roughness analysis of ag-
gregates. In addition to friction measurements, high-speed texture measurements were
also performed with traditional MPD parameter as output, differentiated on inspected
locations for the type of aggregate used in pavement surface layer. The measured data
were used for initial friction prediction model development, with R2 = 0.58 for MPD as
a single model predictor. A multivariate linear egression predictive model was devel-
oped with aggregate roughness parameters selected from textural, amplitude, material,
volume and feature parameters group after an extensive correlation analysis between the
calculated parameters. The obtained coefficient of determination between measured and
predicted values for the final model was 0.78, which was a significant improvement in the
model’s predictive strength in comparison to preliminary model with MPD as a predictor.
Authors [54] proposed a friction predictive model based on 3D texture parameters deter-
mined from an originally developed laser scanning device for the 3D reconstruction of
scanned surface. They examined 17 road sections, measuring friction performance by a
low-speed pendulum device and calculated 85 texture roughness parameters determined
from 120 mm × 30 mm scanned area. The parameters were correlated to measured friction
to select the parameters significant for the predictive model. The model was developed
in the multiple linear regression analysis framework, with three roughness parameters
describing a micro-texture feature characterized as the most relevant for the predictive
model with optimal performance. This research pointed out the possibility of utilizing
roughness parameters determined from optical measurement method for reliable prediction
of friction performance.

In general, it can be concluded that existing predictive models based on alternative
roughness texture parameters are more consistent in friction performance prediction in
comparison to empirical models with traditional texture characterization indices. An-
alyzed research results pointed out the importance of inclusion of both texture scales
relevant for friction in roughness features analysis [48]. Texture parameters determined
from optical measurement methods showed good correlation to low-speed friction measure-
ments [49,50]. The proposed predictive models with multiple texture roughness parameters
as predictors resulted in better model performance in comparison to single-parameter mod-
els [25]. In research where the effect of water film on pavement surface was included, the
proposed model’s strength was moderate, indicating a possible negative effect of water
to texture–friction correlation establishment [48]. These conclusions motivated research
performed in this study, with the aim to propose a friction predictive model based on
non-standard texture parameters derived from an optical measurement method. The ex-
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perimental setup for texture roughness data acquisition and analysis is described in the
following chapter.

3. Materials and Methods

The research presented in this article was performed in two phases. The first phase
was the development and verification of a reliable methodology for texture roughness data
assessment. This was performed experimentally by a new photogrammetry-based method
named Close-Range Orthogonal Photogrammetry (CROP) method, described thoroughly
in [15]. The second phase was the development of the pavement friction predictive model
based on non-standard texture roughness parameters, described further in the text.

To obtain the pavement texture dataset for the development of the pavement friction
predictive model, research activities were executed in following order:

• Application of a new experimental method named Close-Range Orthogonal Pho-
togrammetry (CROP) for the creation of pavement surfaces database for further rough-
ness analysis, described in Section 3.1.

• Creation of 3D digital surface models (DSMs) from the pavement surfaces database
for the analysis of roughness features on surface profiles, detailed in Section 3.2.

• Selection of relevant texture roughness parameters for the establishment of the skid
resistance performance predictive model, elaborated in Section 3.3.

A graphical summary of performed experimental research activities is given in Figure 2.
Each activity will be described more in detail in the following sections.

Lubricants 2024, 12, x FOR PEER REVIEW  2  of  9 
 

 

 

Figure 2. A graphical summary of texture data collection activities in the creation of the pavement 

texture parameters dataset for friction prediction model establishment. 

   

Image acquisition 
by CROP method

Creation of 3D 
digital surface 
model (DSM)

DSM processing 
and surface 

profiles extraction

Surface profiles 
processing for texture 

parameters 
calculation

Calculation of profile‐
related texture 

parameters following 
ISO 21920‐2

Profile‐related 
parameters 

conversion to surface‐
related parameters

Pavement texture dataset 
for friction prediction 
model assessment

Figure 2. A graphical summary of texture data collection activities in the creation of the pavement
texture parameters dataset for friction prediction model establishment.

3.1. Pavement Surface Data Collection by the CROP Method

In pursuit for a detailed description of pavement texture morphology, first a reliable
method for texture data collection and analysis was to be established. Following the results
and conclusions derived from previous research utilizing optical measurement methods for
texture data acquisition overviewed in previous chapter, this research aimed to investigate
the applicability of existing photogrammetric equipment for the analysis of pavement
texture roughness features. The photogrammetry method was used in this research as an
existing expertise, applied earlier to some large-scale civil engineering problems [55,56];
therefore, the necessary equipment, i.e., a digital camera, for data acquisition were available
as research resources.

Experimental procedures performed in the process of the method’s development
and verification are thoroughly described in [15]. The method was named Close-Range
Orthogonal Photogrammetry—the CROP method—as the pavement surface images were
captured with a camera positioned orthogonally to the pavement surface from a 0.5 m
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height. The method was suitable for pavement texture data acquisition on full scale of
macro-texture and micro-texture up to 0.01 mm in lateral and vertical directions, obtaining
higher accuracy than previous research utilizing photogrammetry as data acquisition
method [50]. The CROP method was verified for its accuracy and precision by performance
comparison with a high-end 3D laser scanning equipment. The obtained verification results
presented in [15] proved the method’s suitability for the analysis of pavement surface
morphology features related to its frictional performance.

The CROP method was applied to collect the pavement texture roughness data from
20 asphalt pavement surfaces on urban road network locations. The goal was to investigate
the effect of surface texture features on friction performance without including any other
influencing factors, such as surface asphalt mixture type, age or traffic load. Furthermore,
environmental effects on friction performance were excluded as data were collected under
same weather conditions for all locations. The only known property was the friction perfor-
mance measured by a static device—a pendulum—following the standard for measurement
procedure expressed as skid resistance value SRT [10]. Skid resistance was measured in dry
surface conditions, to eliminate the effect of water on the frictional properties of inspected
surfaces. The measurement results are given in Figure 3, expressed as SRT number spe-
cific for each inspected surface, ranging from SRT = 68.4 for surface no. 3 to SRT = 103.2,
determined for surface no. 17.
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The procedure for texture roughness data collection followed the skid resistance
measurements. The exact area of skid resistance evaluation on each inspected pavement
surface was marked so the texture can be acquired on the same area and roughness features
could be compared to the friction performance of the exact same surface. The size of
inspected area was approximately 125 mm × 75 mm, corresponding to the surface measured
by a skid resistance pendulum device [10]. Previously performed research [39] investigated
optimal size of evaluation area for pavement texture roughness analysis and concluded
that the minimal size of inspected area should be 80 mm × 80 mm. To assure precise
image acquisition and further model reconstruction, a custom-made aluminum reference
and calibration frame was placed on the marked surface. A digital camera Nikon D500
20 Mpix with AF Nikkor 50 mm f1.8D lens was used for image acquisition. Camera
was mounted on a tripod with a fixed height of 0.5 m and positioned orthogonally to
the surface. Images were taken consecutively to capture the surface inside the reference
frame by moving the camera along the horizontal and vertical edges of the frame in a
5 × 5 grid. Each consecutive image was overlapped with the previous one for 60% side and
80% forward overlap, following the recommendations given in [57]. A total of 25 surface
images were captured. Two additional images of the whole upper half and lower half of the
reference frame were captured for the sake of accuracy improvement in the surface model
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reconstruction procedure. An example of SRT measurements and surface data acquisition
by the CROP method is given in Figure 4.
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3.2. Digital Surface Models (DSM) Creation

Acquired images were utilized in the process of digital surface model (DSM) creation
for further analysis of surface roughness properties. This was performed in a specialized
photogrammetry software Agisoft Metashape, v1.5 Pro, LLC, Sankt Petersburg, Russia.
Images were acquired in RAW format to save the original data stored in a pixel, whose size
was 4.31 × 4.31 microns. Afterwards, images were pre-processed and stored in 16-bit TIFF
format compatible with the photogrammetry software, to avoid any data loss or distortion
of originally captured images. For each inspected surface, a unique folder was created
in the software where all corresponding images were imported. Each folder consisted
of 27 images and a set of DSM reconstruction properties related to the alignment and
reconstruction procedure. The reconstruction properties were previously determined on
laboratory samples and applied to all investigated surfaces so the roughness properties
analyzed in this study can be comparable. The described reconstruction procedure in the
following text was applied equally to all surfaces, with detailed explanations in [15].

The reconstruction procedure in Agisoft Metashape software is based on seek-and-
match procedure of common points in all acquired and imported images, used for the
image alignment as a precondition for the 3D object reconstruction. The DSMs were recon-
structed by setting up the same properties for image alignment and model reconstruction,
generating a set of common points as a basis for the DSM reconstruction. The final set of
points resulting from the seek-and-match and alignment procedures represents a sparse
point cloud (SPC) entity. The SPC entity was subjected to further adjustments by three
error reduction features to improve the final model’s quality: reconstruction uncertainty,
projection accuracy and reprojection error. Reconstruction uncertainty reduces the model’s
error by excluding the points that are generated from poor geometric relations of the camera
and therefore reduces the noise and highly uncertain points. Projection accuracy feature
seeks the points having low values of match accuracy generated by the seek-and-match
algorithm of the software. Reprojection error is applied to sort out the points in SPC which
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were generated by a false match procedure, meaning that such points represent a weak
estimation of a true point location after the alignment was performed. In this research,
the error reduction features were selected starting from the initial values recommended
by the software setup and increased gradually to remove 10% of SPC points with lowest
quality. After each iteration, three SPC features were analyzed to indicate the potential
improvement of the model: reprojection error value for the reconstruction uncertainty
feature, Mean Key Point Size value for the projection accuracy feature and RMS reprojec-
tion error value for the reprojection error feature. The procedure of model optimization
was terminated when the RMS reprojection error was equal to or below 0.3 for the lowest
values of reprojection error and Mean Key Point Size. These threshold values were adopted
from [57].

The SPC object established by applying the described error reduction features was the
basis for the reconstruction of the digital surface model (DSM) in a form of a dense point
cloud (DPC) object. The DPC is a 3D entity consisting of a large number of points with
defined XYZ coordinates, describing the morphology features of inspected surfaces. For
each investigated surface, the same settings were applied in the reconstruction procedure
of pavement DSMs. The properties of all resulting DSMs is available as a part of research
database created in [15]. An example of created DSMs and sectioned profiles is presented
in Figure 5.
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Figure 5. Digital surface model created from the CROP method application (a) and profiles sectioned
from a surface and subjected to roughness features analysis (b), units expressed in millimeters.

3.3. Texture Data Processing and Analysis—Profile-Related and Surface-Related Texture Parameters

To investigate the surface morphology properties of created DSMs, the DPC entities
were further processed in an open-source software for point cloud data analysis CloudCom-
pare, v2.11.3 (Anoia), Paris, France. The models were scaled to correspond to millimeter
unit size, levelled to remove any vertical alignment of the surface resulting from the road’s
geometrical properties and segmented to exclude all DSM points falling out of the reference
frame’s inner edge. The final pavement surface DSMs were sectioned to profiles. Each
DSM was sectioned by profiles of 100 mm length. The profile’s length was selected to
correspond the length specified for the calculation of traditional pavement texture profile-
related indicator, MPD [5]. The lateral distance between the profiles was selected to be
10 mm in the profile extraction procedure, to cover the whole surface measured by SRT
pendulum. The lateral distance of the extracted profiles was selected arbitrary, as no
recommendations were found in previous similar research. However, to investigate how
the number of extracted profiles affected the mean roughness representation of analyzed
surfaces, traditional roughness parameter MPD and non-standard parameters Pa, Pq, Pz
and Pc described in Table 2 were calculated for all extracted profiles on a trial surface.
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Furthermore, mean value of these parameters were calculated separately for even and odd
profiles and for the whole profile dataset. The analysis of statistical variability indicators
standard deviation, variance and coefficient of variation showed no significant difference
in the mean values of analyzed roughness parameters [15]. Therefore, the lateral distance
of 10 mm was considered acceptable for roughness analysis on all investigated surfaces. A
total of 180 profiles were sectioned from all analyzed pavement surfaces by applying the
same settings in the profile extraction procedure. The number of profiles varied from eight
to ten for each surface, depending on the exact width of the analyzed DSM. The number of
points in each sectioned profile was slightly different, with respect to the surface morphol-
ogy on a given profile’s position. Furthermore, the profile extraction procedure required the
specification of profile’s section thickness, i.e., the width of the zone in the DPC entity from
which the profile was extracted. A comparison of two different section thicknesses was
performed on a trial surface to determine the optimal thickness [15]. The analysis showed
that selected profile section thickness of 0.01 mm generates profiles with higher average
horizontal resolution, which implies more detailed roughness representation capturing
both micro- and macro-scale of texture. The selected optimal section thickness of 0.01 mm
generated profiles with average point density of 70 pts/mm.

Table 2. Profile-related texture parameters calculated from the DSM sectioned profiles, from
EN ISO 21920-2 [15].

Texture Parameter Abbreviation Description

Arithmetic mean height [mm] Pa Arithmetic mean of absolute ordinate values on
the profile evaluation length le

Root mean square height [mm] Pq Square root of the mean square of the ordinate
values on the profile evaluation length le

Maximum height [mm] Pz Mean value of the per section sum of largest
peak height and pit depth for all section lengths

Total height [mm] Pt Sum of the largest height and largest depth on
the profile evaluation length le

Skewness Psk Quotient of the mean cube value of the ordinate
values and Pq cube value

Kurtosis Pku Quotient of the mean quartic value of the
ordinate values and fourth power Pq value

Mean profile element spacing [mm] Psm Mean value of profile elements spacing for a
total number of profile elements

Maximum profile element spacing [mm] Psmx Maximum profile elements spacing on the
evaluation length

Maximum peak height [mm] Ppt Largest peak height of all section lengths ls
Maximum pit depth [mm] Pvt Largest pit depth of all section lengths ls

Mean profile element height [mm] Pc Mean value of profile element heights Zt for a
total number of profile elements

Maximum profile element height [mm] Pcx Maximum value of profile element heights Zt for
a total number of profile elements

The calculation of profile-related roughness parameters was performed in Moun-
tainsLab, v9.3 software where sectioned surface profiles were imported and processed
prior to the parameters’ calculation. The processing involved profile slope suppression
and profile data filtering by a low-pass Gaussian filter with 2.5 microns set as threshold
value to remove all noise-like data irrelevant for the analysis of friction-related texture
morphology, with respect to the acquired CROP method’s accuracy. Selected profile-related
roughness parameters were calculated on primary profiles, i.e., the profiles including both
micro- and macro-texture scale, following the standard [44]. The parameters were selected
in the amplitude-related group and profile features group as peak and element parame-
ters. Traditional profile-related parameter MPD was calculated separately for all sectioned
profiles, following the standard [5]. Selected texture parameters and their descriptions are
given in Table 2.
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The selected non-standard texture parameters were subjected to exploratory data
analysis in XL Stat-Basic+, v.2022.4.5 software to determine their statistical properties, such
as data distribution type and correlation strength. Profile-related non-standard parameters
showed non-normal distribution. Correlation strength was evaluated by non-parametric
Kendall’s correlation coefficient indicating monotonic but non-linear relationship, with
threshold values of 0.4 as indicator of moderate correlation and 0.6 as indicator of strong
relationship, adopted from [58,59]. The strongest correlation between non-standard param-
eter and traditional MPD was obtained for Ppt parameter and the weakest correlation was
obtained for the MPD and Pvt parameter. Four parameters were excluded from the further
analysis as they showed no statistical significance in the correlation analysis: Psk, Pku, Psm
and Psmx (Table 3).

Table 3. Kendall’s correlation coefficients for calculated profile-related texture parameters; highly
correlated parameters with Kendall’s coefficient > 0.6 are bold [15].

Variables Pq Psk Pku Pt Ppt Pvt Pz Pa Psm Psmx Pc Pcx MPD

Pq 1
Psk −0.202 1
Pku −0.198 −0.416 1
Pt 0.827 −0.269 −0.055 1

Ppt 0.674 0.043 −0.308 0.655 1
Pvt 0.726 −0.403 0.047 0.837 0.495 1
Pz 0.835 −0.174 −0.194 0.792 0.679 0.692 1
Pa 0.932 −0.158 −0.261 0.769 0.684 0.673 0.818 1

Psm 0.247 −0.198 0.098 0.268 0.176 0.292 0.168 0.225 1
Psmx 0.190 −0.118 0.001 0.212 0.168 0.220 0.105 0.179 0.486 1

Pc 0.834 −0.226 −0.152 0.802 0.634 0.735 0.817 0.808 0.300 0.186 1
Pcx 0.792 −0.271 −0.057 0.840 0.604 0.789 0.753 0.742 0.259 0.227 0.787 1

MPD 0.713 0.031 −0.319 0.670 0.879 0.518 0.722 0.728 0.173 0.135 0.673 0.620 1

To relate texture roughness parameters to measured friction performance, profile-
related parameters were converted to surface-related parameters. To do so, calculated
parameters were divided in two groups: overall roughness parameters and extreme rough-
ness parameters. The first group consisted of four non-standard parameters describing
profile’s overall roughness property as they were calculated as a mean value of a profile
feature for a full profile length. These parameters were Pa, Pq, Pz and Pc. Traditional param-
eter MPD was also categorized as an overall roughness parameter, evaluated from the mean
profile features on full profile length. The extreme roughness parameters group included
four parameters calculated from an extreme profile feature, profile peak or profile pit: Pt,
Ppt, Pvt and Pcx. To convert profile-related parameters to their surface-related equivalents,
homogeneity of profiles sectioned from a single surface was evaluated. Homogeneity was
evaluated by coefficient of variation (CV) for the overall roughness profile-related param-
eter Pa calculated for all the profiles belonging to the same surface. If the profiles were
found to be homogenous, the mean value of overall roughness parameter calculated for
all profiles sectioned from the same surface was considered to be a genuine representation
of surface’s roughness feature. A value of CV = 19% was set to be a threshold value for
homogeneity classification. It was calculated as a 3rd quartile value for all calculated CVs
of Pa parameter on all inspected surfaces. Homogeneity analysis showed that 75% of
surfaces are homogenous and, therefore, the mean values of overall roughness parameters
determined from profile-related parameters values could be adopted as surface-related
texture roughness features. The values of extreme roughness parameters were adopted as
absolute maximum values in the profile dataset belonging to the same surface. The extreme
roughness parameters values were not averaged to avoid the reduction in parameters’
values that could influence the results of the future predictive model.

Surfaces classified as non-homogenous were further processed by excluding the pro-
files characterized as outliers, detected by a custom outlier test. For each surface, the
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absolute difference between mean value of Pa parameter and its absolute maximum value
in a surface-related dataset was calculated. The profile having the highest absolute dif-
ference was selected as the potential outlier profile. The values of extreme roughness
parameters determined for this potential outlier were compared to the absolute maximum
values of extreme roughness parameters in the corresponding surface dataset. Profiles hav-
ing extreme roughness parameters values lower than the determined absolute maximum
values were excluded from the surface dataset and mean overall roughness parameters
values were re-calculated with reduced number of profiles and compared to the defined
threshold value for homogeneity. In case when the highest extreme roughness parameters
values were equal to those of the potential outlier profile, they were not directly excluded
from the dataset as these extreme values might affect the roughness characterization of
the surface and future prediction model. If the difference between the absolute maximum
and the next highest value of extreme roughness parameters was below 0.1 mm, the profile
was after all selected as an outlier as this difference was considered to be insignificant for
the later model development. For differences larger than 0.1 mm, the surfaces remained
categorized as non-homogenous. The outlier analysis found two non-homogenous surfaces
with two extreme roughness parameters having higher difference between extreme value
and the next highest parameter value: Pcx and Pt. However, as the differences were slightly
higher than the established threshold value, these surfaces were not excluded from the anal-
ysis but considered as non-homogenous. A special attention was given to the parameters
Pcx and Pt in further analysis and establishment of the predictive model.

The final dataset included twenty sets of surface-related texture parameters, corre-
sponding to the inspected surfaces. Each set consisted of four overall roughness parameters
and four extreme roughness parameters [44] and one standard pavement texture evaluation
parameter MPD [5]. This dataset was also tested for distribution type, again showing non-
normal distribution of parameters. Kendall’s correlation coefficients are given in Table 4,
where it can be seen that most parameters exhibit statistically significant correlation with
each other and moderate to strong correlation to measured friction, except the parameter
Pvt which was also statistically insignificant for the SRT values. Correlation analysis was
performed to investigate the relationship among the parameters and their correlation to
measured friction performance expressed in SRT values. Kendall’s correlation coefficient
was again selected as a measure of monotonic and non-linear relationship, since the gener-
ated scatter plots showed no strong linear relationship (Figure 6). Obtained coefficients of
determination range from 0.146 for Pvt to 0.587 for Ppt parameter versus SRT friction.

Table 4. Kendall’s correlation coefficients for surface-related texture parameters and measured
friction performance SRT value; values in bold are highly correlated with Kendall’s correlation
coefficients > 0.6 [15].

Variables Pq Pa Pz Pc Pt Ppt Pvt Pcx MPD SRTmean

Pq 1
Pa 0.968 1
Pz 0.884 0.895 1
Pc 0.947 0.937 0.937 1
Pt 0.737 0.726 0.747 0.789 1

Ppt 0.632 0.663 0.684 0.642 0.537 1
Pvt 0.632 0.621 0.600 0.663 0.811 0.368 1
Pcx 0.779 0.768 0.768 0.811 0.874 0.516 0.789 1

MPD 0.684 0.695 0.758 0.716 0.547 0.800 0.442 0.589 1
SRTmean 0.389 0.421 0.484 0.421 0.358 0.653 0.232 0.358 0.663 1

Traditional pavement texture parameter MPD showed a significant correlation to sev-
eral non-standard texture parameters, especially Ppt, Pz and Pc. A meaningful correlation
was obtained between MPD and measured SRT values and generated scatter plot showed
a positive and monotonic moderate linear relationship with coefficient of determination
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of 0.592 (Figure 7). This linear regression model with MPD as the only predictor was
statistically significant with model error metric value RMSE = 6.162.
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Figure 6. Scatter plots for surface-related non-standard texture parameters and measured friction
performance expressed as SRT value: (a) Pa, (b) Pq, (c) Pz, (d) Pc, (e) Pt, (f) Ppt, (g) Pvt, (h) Pcx. Blue
dots represent the datapoints for each analyzed surface and black line is the linear trendline with
obtained R2 value as given on plots [15].

The newly proposed experimentally derived method for pavement texture data
acquisition—the CROP method—was suitable for roughness analysis on micro- and macro-
scale of texture with obtained resolution of 0.01 mm in all directions and accuracy of up to
0.05 mm, verified by a benchmark optical measurement method 3D high-precision laser
scanner [15]. The stablished CROP method’s performance enabled the roughness analysis
of investigated surfaces on full macro-texture scale and micro-texture scale up to 0.01 mm.
The CROP method for texture data assessment enables a more detailed description of
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roughness features in comparison to traditional texture characterization methods, which
is the main advantage of the proposed method. Previous research results showed that
traditional texture parameters obtained by similar photogrammetry-based methods are
comparable to the same indicators obtained by traditional measurement techniques [49,53].
This makes the photogrammetry-based techniques a potential substitute for traditional
measurement methods, with more detailed and accurate characterization of roughness
features. Therefore, obtained roughness parameters were further analyzed to investigate if
they could provide more reliable relationship to the measured friction performance.
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Figure 7. MPD versus SRT scatter plot; blue dots are calculated MPD values versus measured SRT
values for all inspected surfaces and black line represents the linear trendline with obtained R2 value
as given in plot [15].

4. Friction Prediction Model Development

Following the results of performed exploratory data analysis of the texture dataset,
four non-standard parameters were selected for further predictive model development: Pa,
Pz and Pc as overall roughness parameters and Ppt as an extreme roughness parameter.
They obtained the highest correlation coefficients with measured SRT values and moderate
positive linear relationship, given in scatter plots in Figure 6. The first attempt to develop a
friction performance prediction model by using significant non-standard texture parameters
as model predictors was performed by using all four parameters for model establishment in
the multiple linear regression (MLR) framework. The initial MLR model consisted of four
predictors and resulted in better model performance in comparison to the simple friction
prediction model using only MPD parameter as a predictor (Table 4). However, analysis of
variance and sum of squares analysis indicated that the parameter Pa is not statistically
significant for the model and it was excluded in the next model iteration. The second
model version observed three predictors, where again one of them (Ppt) was statistically
insignificant. Another issue was the negative sign of coefficient attributed to the Pc, which
was contrary to the previous correlation analysis results showing a positive monotonic
relationship with all texture parameters and friction. The final prediction model involved
two non-standard parameters, Pz and Pc, with coefficient of determination R2 = 0.720
and RMSE of 4.970 which again, in comparison to the initial simple model showed better
predictive strength (Table 5). However, the model’s reliability was violated due to the
multicollinearity issue between the predictors detected by variance inflation factor (VIF)
value exceeding recommended threshold value of VIF < 10 for no collinear variables [60].
If there exist multicollinearity between the predictors, the model’s strength and confidence
could be jeopardized. Some examples given in [60,61] are wrong coefficient signs due to the
mixed effect of predictors to regression coefficients, model instability evident in a notable
change in regression coefficient for a slight change in model input, increase in standard
error estimate and test insignificance or confidence intervals widening. Therefore, it was
necessary to solve the multicollinearity problem to deliver a reliable prediction model in
the MLR framework.
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Table 5. Model parameters and model performance for the initial MLR framework models [15].

Regression Model Model Parameters Adjusted R2 RMSE Note

LR MPD 0.592 6.162 Moderate linear relationship between MPD
and friction

MLRv1 Pa, Pz, Pc, Ppt 0.760 3.987 Pa was found to be statistically insignificant

MLRv2 Pz, Pc, Ppt 0.762 4.581

Pa was found to be statistically insignificant,
Pc was attributed with a negative coefficient

(contrary to the previous correlation
analysis where a monotonic positive

relationship with friction was detected)

MLRv3 Pz, Pc 0.720 4.970
Multicollinearity for predictor variables

(VIF > 10), Pc was attributed with a
negative coefficient

The simplest method for multicollinearity removal is to reject highly collinear and
insignificant predictors from the model [61]. This approach is particularly useful in case
when there is a large number of model predictors having various influences to the model
and resulting from different data sources. This solution was not applicable in this study
as all four texture parameters were significant for the friction performance. Also, they all
described a specific roughness feature of texture morphology and none of them was to be
excluded “a priori”. The second approach would be to implement some feature engineering
procedures to the existing dataset, such as regularization techniques or dimensionality
reduction techniques [62,63]. In this way, none of the original predictors is directly excluded
from the model and categorized as insignificant. In regularization techniques predictors
are modified by penalization of “original” model coefficients to reduce their variance,
while in the dimensionality reduction techniques the predictors are combined to composite
variables whose number is usually smaller than the number of “original” predictors.
To investigate the effect of feature engineering techniques, the initial MLR model was
subjected to ridge regression regularization, principal component regression and partial
least squares regression.

4.1. Model Development by Ridge Regression Regularization

Ridge regression is a regularization method for model generalization by a penalty
term added to the loss function, with the aim to reduce the variance of the model’s coef-
ficients [61]. The penalty term l is introduced in the loss function RSS (residual sum of
squares) through a squared coefficient value b [61],

RSS =
n

∑
i=1

(Yi −
p

∑
j=1

Xijβ j)
2 + l

p

∑
j=1

β j
2 (1)

where Yi is the actual response variable and Xijβj is the predicted value of response variable
calculated from predictors Xij and coefficients βj. The magnitude of the penalty term
regularizes the variance reduction; therefore, it is important to adequately select the proper
value of l. In case when the value is too small (close to zero), there is no effect to the loss
function and ridge regression would converge to simple MLR. On the other hand, if l
is too large it could cause model under-fitting [62]. To avoid manual tuning of penalty
parameter, a k-fold cross-validation method was applied to select the optimal value of l
with k = 5 and k = 10 folds, resulting in two different penalty terms used for the model
establishment. Both models were defined with all four predictors (Pa, Pz, Pc and Ppt), with
resulting model statistics shown in Table 5. The model showed better performance for
penalty obtained by 5-fold cross-validation; therefore, it was further optimized. A Z-score
outlier test was performed to exclude potential outliers from the dataset, resulting in an
enhanced model version. By observing the coefficients associated to the predictors, two
of them were negative which was contrary to the initial correlation analysis, where all
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texture parameters showed a positive monotonic relationship with friction. The “negative”
parameters were excluded in the next iteration step and the final prediction model was
defined by two predictors, Pz and Ppt. The model statistics obtained for the final model
version (V2) were improved in comparison to the previous iterations (Table 6).

Table 6. Ridge regression for prediction model establishment.

Regression Model Penalty Term Model Predictors Adjusted R2 Note

Ridge (k = 5) 0.6873 Pa, Pz, Pc, Ppt 0.684 5-fold cross-validation (initial)
Ridge (k = 10) 0.5464 Pa, Pz, Pc, Ppt 0.600 10-fold cross-validation (initial)

Ridge (k = 5)V1 0.6800 Pa, Pz, Pc, Ppt 0.694
Optimization by Z-score test

outlier removal, penalty
term updated

Ridge (k = 5)V2 0.812 Pz, Ppt 0.768

Optimization by removal of
predictors with negative

coefficients (Pa and Pc), penalty
term updated

4.2. Model Development by Principal Components Regression

Principal components analysis (PCA) is a dimensionality reduction technique for
resolving the multicollinearity problem in prediction models [64]. The key feature of this
feature engineering technique is to create new model variables as a linear combination of
original variables, called principal components [65]. These new variables are orthogonal
so they are no longer collinear; therefore, the multicollinearity issue is resolved [66]. The
number of resulting principal components k is usually lower than the number of original
model predictors n, so the problem dimension is reduced. The selection of principal
components is based on their eigen values, resulting from spectral decomposition of
original predictors matrix. If the eigen value of a given principal component is equal or
higher than 1, it is considered as a significant predictor for the model. Also, if the principal
component’s eigen value describes dominantly the data variance (usually 90% or more), it
is considered to be a significant new model predictor [64].

The results of performed PCA for the selected non-standard texture parameters dataset
is given in Table 7. From the calculated eigen values, it can be seen that only the first
principal component PC1 obtained value higher than 1. By observing the contribution
of each principal component to the variance, in addition to the PC1, there is a significant
contribution of PC2 to the variability for the parameter Ppt. Therefore, two versions of
prediction models were evaluated: one with only one principal component PC1 and another
with two principal components, PC1 and PC2.

Table 7. Principal component analysis results for four principal components derived as spectral
decomposition of original variables matrix [15].

Principal
Component Eigen Value Variability [%]

Pa
Contribution

[%]

Pz
Contribution

[%]

Pc
Contribution

[%]

Ppt
Contribution

[%]

PC1 3.736 93.403 26.033 26.054 25.969 21.944
PC2 0.232 5.796 5.744 5.889 10.661 77.676
PC3 0.024 0.603 53.127 46.703 0.168 0.002
PC4 0.008 0.197 15.066 21.355 63.201 0.378

Prediction models were defined with principal components PC1 and PC2, consisting
of original predictors attributed with calculated factor loadings as coefficients,

PC1 = 0.986Pa + 0.987Pz + 0.985Pc + 0.905Ppt (2)

PC2 = −0.116Pa − 0.117Pz − 0.157Pc + 0.424Ppt (3)
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New model predictors were no longer collinear; however, some of the coefficients
showed a negative sign. Therefore, another model iteration was tested with only one
principal component PC1 as a predictor. Model was tested for outliers with Z-score test,
showing one critical value which was excluded from the dataset. The final PCA regression
model iteration showed no outliers and all the coefficients associated to the original model
predictors were positive (Table 8).

Table 8. Results of PCA regression analysis for prediction model establishment [15].

Regression Model Model Predictors VIF Model Equation Adjusted R2 Note

PCAv1 PC1, PC2 1.040
SRT = 85.170 − 1.217 Pa −

1.239 Pz − 2.186 Pc +
11.402 Ppt

0.569

Initial model with 2 PCs
resulted in negative

coefficients associated to
some predictors

PCAv2 PC1 n.a.
SRT = 85.17 + 1.679 Pa +

1.681 Pz + 1.676 Pc +
1.541 Ppt

0.503
A Z-score outlier test

performed to detect and
remove outliers

PCAv3 PC1 n.a.
SRT = 85.8609 + 1.8917 Pa
+ 1.8937 Pz + 1.8898 Pc +

1.7363 Ppt
0.667 Final model iteration

4.3. Model Development by Partial Least Squares Regression

Another dimensionality reduction technique applied in this study was the partial least
squares (PLS) method. Similar to the PCA method, in the PLS method the dimensionality
of the observed problem is reduced by creating new composite variables whose number
is usually lower than the number of original variables [62]. The difference between PCA
and PLS is that the PLS method accounts not only for the predictors but also the model
output in the process of new variables creation. The goal of this method is to find the linear
combination of predictors’ associated coefficients which would result in a maximization
of covariance between the predictors and model output [67]. PLS is considered as more
efficient when the research goal is to define a prediction model in the MLR framework,
in comparison to PCA [64]. The new model predictors resulting from the PLS method
are called latent variables (LVs), whose coefficients are iteratively calculated to obtain the
maximum covariance between the predictors and model output [68]. The coefficients’
weights indicate the importance of original predictors to the new latent variables and their
contribution to the model output. In the PLS method, the values of variable importance in
the projection or VIP scores are evaluated for all original predictors. These values are an
indicator of predictors’ importance in the definition of PLS components (LVs), where a VIP
score > 1 marks a highly important variable and a VIP score < 0.8 marks a predictor with
no significant influence to the component’s definition [68].

PLS regression was defined with one latent variable created as a linear combination
of all four non-standard texture parameters and measured friction values. The initial
PLS prediction model’s performance was weaker in comparison to the initial LR model;
therefore, the model was optimized by excluding the outlier data detected by Z-score test
and by selecting only the predictors with VIP score > 1. In this way, the performance of the
final PLS regression model was improved, as can be seen from Table 9.
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Table 9. PLS regression model characteristics for model iterations [15].

Regression
Model

Model
Predictors

LV’s Global
Contribution to the

Model
(Q2cumulative)

LV’s Explanatory
Power for Model

Predictor
(R2Xcumulative)

LV’s Explanatory
Power for Model

Output
(R2Ycumulative)

Model Equation Note

PLSv1 Pa, Pz, Pc, Ppt 0.376 0.975 0.510
SRT = 85.17 + 1.6005 Pa +

1.6997 Pz + 1.5177 Pc +
1.8086 Ppt

Initial model with
weaker performance

than LR model

PLSv2 Pa, Pz, Pc, Ppt 0.479 0.978 0.594
SRT = 85.9813 + 1.5896 Pa +

1.6786 Pz + 1.5778 Pc +
1.7203 Ppt

A Z-score outlier
test performed to

detect and
remove outliers

PLSv3 Pz, Ppt 0.668 0.974 0.784 SRT = 85.4377 + 3.9748 Pz +
3.93478 Ppt

Only predictors
with VIP scores > 1

accounted in
the model

4.4. Comparison of Predicition Models’ Performance

The proposed friction predictive models were defined in XL Stat-Basic+, v.2022.4.5
software by application of built-in feature engineering procedures for ridge regression, PCA
regression and PLS regression. The final versions of all three models and the resulting model
performance statistics R2 and RMSE are compared in Table 10. Model performance was
evaluated on the validation dataset, selected randomly from the full dataset by following
the 75/25 rule for training and validation data. The results show that the best performance
is obtained for the PLS regression model, having highest coefficient of determination R2

and lowest value of RMSE. The PCA regression model showed the weakest performance,
while the ridge regression model with two predictors showed similar performance to the
PLS regression model.

Table 10. A summary of proposed friction predictive models by feature engineering procedures—
model type, model equation, R2 training set, R2 validation set, and RMSE validation set [15].

Regression Model Model Predictors Model Equation R2 (Adjusted)
Training Set

R2 (Adjusted)
Validation Set

RMSE
Validation Set

Ridge Pz, Ppt SRT = 83.928 + 3.762 Pz + 2.899 Ppt 0.774 0.767 4.442

PCA Pa, Pz, Pc, Ppt SRT = 85.8609 + 1.8917 Pa + 1.8937 Pz +
1.8898 Pc + 1.7363 Ppt 0.617 0.667 5.757

PLS Pz, Ppt SRT = 85.4377 + 3.9748 Pz + 3.93478 Ppt 0.739 0.780 4.412

Figure 8 presents the regression plots for the training and validation dataset obtained
for all three proposed models. In comparison to the initial LR predictive model where only
the traditional MPD texture parameter was used as the model predictor, all three proposed
models showed better predictive strength.

The success of the PLS regression model’s performance could be attributed to the
method’s algorithm, which accounts for linear relationship not only among model predic-
tors, but also between the predictors and model output in the creation of latent variables.
Another advantage of the PLS regression model is the calculation of variable importance
in projection (VIP) scores based on obtained latent variables, which provides automatic
selection of the most significant predictors in the model. None of the coefficients associated
to the model predictors in the PLS regression model was negative in any of the model’s
iterations; therefore, it can be concluded that PLS-generated model parameters are the
closest to the actual positive and monotonic relationship between texture roughness fea-
tures and pavement friction, explored in the initial correlation analysis. The selection of
texture parameters as model predictors based on their VIP scores optimized the model’s
performance and showed that the predictive strength does not depend on the number of
predictors but on their effect to the model outcome.
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Figure 8. Regression plots for training and validation set for (a) the ridge regression model, (b) the
PCA regression model, and (c) the PLS regression model; blue dots represent the datapoints for
training and validation dataset (measured versus predicted values) and blue lines are the linear
trendline with obtained R2 value as given on plots.

5. Discussion

In this study, the originally developed method named Close-Range Orthogonal Pho-
togrammetry (CROP) was used for pavement texture data collection and analysis. The
CROP method is based on photogrammetry technology as an alternative method for texture
roughness characterization, recently in use for a thorough investigation of relationship
between pavement texture morphology and friction performance. The method enables sim-
ple texture data collection by using a single digital camera for surface images acquisition,
from which digital surface models are created and further analyzed. A detailed description
of the method’s development and verification is given in [15].

The CROP method was applied for texture data collection and analysis on twenty
selected asphalt pavement surfaces of various road sections, where low-speed friction
performance was previously determined. The method was suitable for pavement texture
data acquisition on full scale of macro-texture and micro-texture up to 0.01 mm. The
accuracy of experimentally derived method was verified by performance comparison
of digital surface models created by the CROP method and the benchmark method for
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optical measurements—a high precision 3D laser scanning device, with obtained devia-
tions of measured dimensions up to 0.05 mm. In some previous research where a new
photogrammetry-based method was proposed for texture data acquisition [37,69], the
validation procedure was performed with traditional texture parameters MPD or MTD,
determined traditionally. In this way, the proposed method’s precision in terms of actual
geometry of roughness features or the accuracy of calculated roughness parameters other
than the traditional ones could not be determined, as in the case for the CROP method.

Texture roughness parameters were analyzed on digital surface model profiles, ex-
tracted from each investigated surface equally by following the established data analysis
procedure. Selected non-standard texture parameters and the traditional texture parameter
MPD were calculated for all extracted profiles, without the scale separation to micro- and
macro-texture levels, following the conclusions of previous research [48]. In comparison to
similar research utilizing photogrammetry technique for texture roughness data acquisition,
where texture parameters were calculated separately for micro- and macro-scale [50,70],
the results obtained in this study showed that scale separation should not be performed
prior to the investigation of texture–friction relationship.

The predictive model was developed in the multiple linear regression framework,
which is a simple method for model establishment and interpretation, especially in case
when the dataset has a limited size [62]. The overviewed empirical predictive models
are mostly established within the LR framework, accounting for one or more parameters
related to the pavement’s frictional performance. As pavement texture is one of significant
friction influencing parameters related to the properties of pavement materials, it was
selected as the exclusive parameter in the model. The performance of initial friction
model accounting only MPD parameter calculated from pavement DSMs was comparable
to models developed in similar research by [71,72]. The obtained simple LR model’s
performance was moderate, with R2 equal to 0.592; therefore, additional non-standard
texture roughness features were included as predictors in the proposed models. Friction
predictive models were defined by three different feature engineering procedures, which
was a novel approach for the development of a friction performance prediction model in
the linear regression framework. This was performed as the predictors were collinear and
none of them was considered as less significant to be excluded a priori from the dataset.
The applied procedures were ridge regularization, principal components analysis (PCA)
and partial least squares (PLS) analysis. In comparison to the initial LR model, all three
procedures resulted in a final model with better performance. The predictive strength of
proposed models was evaluated by the resulting coefficient of determination R2 and error
metric RMSE. In case of the ridge regularization regression model the obtained R2 was
0.767 and RMSE 4.442, for the PCA regression model R2 was 0.667 and RMSE 5.757 and for
the PLS regression model the R2 was 0.780 and RMSE 4.412. The presented results were
obtained for the validation dataset, selected randomly from the whole dataset by following
75/25 rule. The final model was defined within the partial least squares (PLS) regression
algorithm, showing the best model performance values. Furthermore, the PLS regression
model selected the most significant texture parameters with the highest influence on friction
performance evaluated through VIP scores of predictors: amplitude parameter maximum
height Pz and feature parameter maximum peak profile height, Ppt. The former describes
an overall roughness property and the latter is a description of extreme surface roughness.
The final PLS regression model showed superior performance in comparison to similar
research where photogrammetry-based method was used for texture data assessment in
friction prediction model establishment [48,69,73].

The error metric RMSE was selected as one of the predictive model’s performance
measures. The final model’s performance for the obtained RMSE for the validation dataset
was 4.412 (Table 9), which is not a negligible difference in friction performance assessment
by a static pendulum measurement device. This indicates the necessity of further im-
provements of the proposed predictive model in the PLS regression framework for a more
accurate prediction of measured friction values. As a limitation of the performed study a
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relatively small dataset and a narrow range of measured SRT values can be pointed out. A
larger dataset with a broader range of measured SRT values, including low-level friction
surfaces which were not included in this study, could contribute to the improvement of the
model’s performance.

6. Conclusions

The aim of this study was to establish a pavement friction predictive model with
texture roughness features as exclusive model predictors. For this purpose, pavement
surfaces were analyzed by a novel, originally developed method for 3D texture data
collection. The method was named Close-Range Orthogonal Photogrammetry (CROP)
method and it was experimentally developed and verified as a part of author’s doctoral
thesis research. The CROP method was utilized for collection of pavement surface images,
used as input for 3D digital surface model creation. Texture roughness parameters were
calculated from the profiles extracted from the DSMs and used for the establishment of the
friction predictive model in the partial least squares (PLS) regression framework.

The main conclusions drawn from this research are:

1. The developed photogrammetry-based CROP method is applicable for pavement
texture roughness characterization in micro- and macro-texture scale, resulting in
digital surface models with sub-millimeter resolution. This makes the CROP method
suitable for analysis of texture morphology on full scale of macro-texture and micro-
texture up to 0.01 mm, with accuracy of 0.05 mm confirmed by a benchmark 3D data
acquisition method with a high-end laser scanning device.

2. Traditional texture characterization parameter MPD derived from digital surface
models showed a notable correlation to measured friction, proving that digital surface
models are realistically representing the actual surface roughness characteristics.

3. Non-standard texture roughness parameters obtained from digital surface models
are suitable predictors in the establishment of pavement texture–friction relationship.
Analysis showed that the amplitude and feature parameters with the most significant
impact on friction performance are maximum height Pz, describing overall rough-
ness property and maximum peak profile height, Ppt, describing extreme roughness
property of a pavement surface.

4. The proposed predictive model’s performance was superior in comparison to that of
the initial model defined by a single traditional texture indicator Mean Profile Depth
(MPD), showing that non-standard texture parameters better describe the effect of
texture roughness on frictional characteristics of a pavement surface. The obtained R2

of the proposed PLS regression model was 0.780 while the predictive model with the
traditional MPD indicator obtained R2 of 0.592.

By comparing predictive models proposed in previous similar studies where optical
method utilizing digital camera was used for texture data assessment, the PLS regression
model showed better performance. Further model improvements will be made by extend-
ing the database size and range of measured friction values. True surface-related texture
parameters in the 3D framework will be calculated from the digital surface models and
used as predictors for the model’s performance improvements. Further analyses of asphalt
mixture type properties in terms of roughness features related to frictional response will be
conducted in the next research phase.
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