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Abstract: To improve the accuracy of gear fault diagnosis and overcome the low diagnostic accuracy
of the model caused by manual parameter selection, a combined diagnostic model based on time-
frequency fusion features is combined with the improved global search whale optimization algorithm
(GSWOA) to optimize the fault diagnosis capability of the kernel extreme learning machine (KELM).
First, the time-domain and frequency-domain features of the gear fault state are extracted separately,
and feature vectors are constructed through feature fusion, which overcomes the limitations of
single features. Second, the GSWOA based on three strategies is used to optimize the regularization
coefficient C and kernel function parameter γ of KELM, and a GSWOA-KELM fault diagnosis model
is built to avoid the problem of low fault diagnosis accuracy caused by the manual selection of KELM
parameters. Finally, the public dataset from Southeast University is taken to verify the performance
of the proposed model by comparing it with KELM, SSA-KELM, and WOA-KELM models. The
experimental results demonstrate that the improved time-frequency fusion features-based GSWOA-
KELM model shows faster convergence speed and stronger global search ability. Compared with
KELM, SSA-KELM, and WOA-KELM models, the performance of the proposed model has been
improved by 11.33%, 8.67%, and 1.33%, respectively.

Keywords: gear fault diagnosis; kernel extreme learning machine; global search whale optimization
algorithm; feature fusion; machine learning

1. Introduction

Gears are essential components to ensure the normal operation of various types of
rotating machinery and are widely used in all kinds of industrial scenarios, such as wind
turbines and automotive transmissions [1–3]. However, gear mesh surfaces are subjected
to operating environments that result in poor lubrication, as evidenced by the mechanical
impurities in oil, oil film disruption, etc., which further causes non-lubricating factors such
as friction on the tooth surface, leading to surface deterioration, scuffing, and permanent
deformation, etc. [4]. In addition, due to quenching, fatigue, grinding, and cyclic loading,
gears are often subject to cracks and fractures [5]. Once the gear fails, it will not only
greatly reduce the safety and reliability of the equipment but also cause enormous safety
production accidents, which will bring immense hidden dangers to the social economy and
stability. Therefore, it is of great importance to detect gear faults and take timely measures
to ensure the safe operation of equipment and maintain social security and stability.

At present, the use of intelligent diagnosis technology based on machine learning for
gear fault diagnosis is a major research trend among scholars at home and abroad [6–8].
Reference [9] used frequency-modulated empirical mode decomposition to extract vibration
signal features and calculated the energy entropy as a feature vector, which was inputted
into the support vector machine (SVM) to realize gear fault diagnosis. Reference [10]
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input the extracted vibration signal characteristic parameters into the K-nearest neighbor
(KNN) fault diagnosis model, which effectively achieved the predictive maintenance of
rolling bearing faults. Although traditional machine learning algorithms can complete
fault diagnosis, they still have some shortcomings in training speed and diagnosis accuracy.
Therefore, scholars are gradually turning their attention to neural network-based algo-
rithms. The literature [11] combined the traditional machine learning algorithm SVM and
convolutional neural network (CNN) to build a CNN-SVM fault diagnosis model, avoiding
the artificial feature extraction process and improving fault diagnosis accuracy and stability.
In the literature [12], a BP-AdaBoost gear fault strong classifier model based on the BP
neural network and AdaBoost algorithm was proposed and verified using experiments,
and the results showed that the proposed method has higher accuracy than traditional
fault diagnosis methods. The literature [13] proposed a new hierarchical fine composite
multiscale fluctuation dispersive entropy (HRCMFDE) feature extraction method, which
inputs the extracted features into a regularized extreme learning machine (RELM) using
relief dimensionality reduction, effectively improving the practicality and versatility of
model fault diagnosis.

The kernel extreme learning machine (KELM), as a novel feed-forward neural network,
has higher generalization ability and stability than the BP neural network, RBF neural
network, and ELM, so it has greater application advantages [14]. However, the performance
of KELM is affected by the regularization coefficient C and kernel function parameter γ,
and the classification accuracy of KELM, which relies on manual experience to select the
regularization coefficient and kernel function parameter, is low [15]. To solve this problem,
the researchers proposed to use an intelligent optimization algorithm to optimize the KELM
parameters to improve the fault diagnosis accuracy. The scholars used the particle swarm
optimization (PSO) algorithm [16], the sparrow search algorithm (SSA) [17], and the Harris
Hawks optimization (HHO) [18] to optimize the KELM model in order to reduce the errors
caused by manual parameter selection. However, the experimental results manifested
that all of the above optimization algorithms have their own shortcomings [19,20]. At the
same time, the whale optimization algorithm (WOA) has been rapidly developed due to its
powerful search capability and less parameter setting [21]. However, WOA also has some
problems, such as slow convergence speed and insufficient global search capacity [22].
Therefore, it is necessary to propose an improved whale optimization algorithm to solve
the above problems. The literature [23] proposed an improved global search whale op-
timization algorithm (GSWOA) based on three strategies. The adaptive weight strategy,
variable spiral position update strategy, and optimal neighborhood perturbation strategy
were adopted to improve the whale optimization algorithm, which improved the global
search performance and convergence speed of the whale optimization algorithm.

In addition, feature extraction is an indispensable step before applying machine
learning methods for fault diagnosis. The literature [24] extracted 17 time-domain features
from circuit breaker vibration signals and input them into the XGBoost model to implement
the diagnosis of the mechanical condition of the circuit breaker. The literature [25] used
sparse filtering technology to automatically extract the frequency-domain features of gear
vibration signals and input them into the Softmax classifier as feature vectors in order to
realize gear fault diagnosis. However, extracting only a single time-domain or frequency-
domain feature often leads to the insufficient ability to represent the information of the
signal, which affects the accuracy of fault diagnosis [26].

Therefore, an improved time-frequency fusion features-based GSWOA-KELM model
is proposed in this study. First, the time-domain and frequency-domain features of the
gear fault state are extracted separately, and feature vectors are constructed through feature
fusion, which overcomes the limitations of single features. Second, the GSWOA based on
three strategies is used to optimize the regularization coefficient C and kernel function
parameter γ of KELM, and a GSWOA-KELM fault diagnosis model is built to avoid the
problem of low fault diagnosis accuracy caused by the manual selection of KELM parame-
ters. Finally, the public dataset from Southeast University is taken to verify the performance
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of the proposed model by comparing it with KELM, SSA-KELM, and WOA-KELM models.
The experimental results demonstrate that the improved time-frequency fusion features-
based GSWOA-KELM model shows faster convergence speed and stronger global search
ability. Compared with KELM, SSA-KELM, and WOA-KELM models, the performance of
the proposed model has been improved by 11.33%, 8.67%, and 1.33%, respectively.

The main innovations and contributions of this paper are as follows:

(1) This study proposes the GSWOA-KELM model for the first time. In the new model, the
GSWOA is used to find the optimal parameters of the KELM, and the results show that
compared with the existing model, the proposed GSWOA-KELM model has higher
diagnostic accuracy, faster convergence speed, and stronger global search capability;

(2) The time-domain and frequency-domain features are extracted and fused in this study,
which overcomes the limitations of single-domain features and improves the fault
diagnosis ability of the model. Meanwhile, the superiority of multi-domain features in
representing information ability is examined in this study, which provides a reference
basis for the application of feature extraction work in other aspects.

2. Time-Frequency Features Extraction
2.1. Time-Domain Features

Since the time-domain signal of gears tends to change when they are faulty, the time-
domain characteristic parameters of the gear vibration signal can be analyzed to make an
effective diagnosis of the type of fault.

Dimensional time-domain characteristic parameters and dimensionless time-domain
characteristic parameters are two commonly used time-domain characteristic parameters.
The 13 dimensional and dimensionless time-domain characteristic parameters extracted in
this study and their calculation formulas are shown in Table 1 [27].

Table 1. The 13 time-domain characteristic parameters and their calculation formulas.

Dimensional Formula Dimensionless Formula

Mean Value x = 1
N

N
∑

n=1
x(n) Pulse Factor I = max|x(n)|

x

Standard Deviation
σx =

√
1

N−1

N
∑

n=1
[x(n)− x]2 Margin Factor L =

max|x(n)|(
1
N ∑N

n=1

√
|x(n)|

)2

Root-Mean-Square Value xrms =

√
1
N

N
∑

n=1
x2(n) Waveform Factor W = xrms

x

Maximum Value xmax = max(xn) Kurtosis K = ∑N
n=1[x(n)−x]

4

(N−1)σ4
x

Minimum Value xmin = min(xn) Skewness S = ∑N
n=1[x(n)−x]

3

(N−1)σ3
x

Peak-peak Value xpp = xmax − xmin Amplitude Factor A = xmax
xrms

Energy E = ∑N
n=1 x(n)2

Note: where x(n) represents the time-domain sequence of the signal, n = 1, 2, . . ., N; N is the sample number.

2.2. Frequency-Domain Features

Extracting and analyzing the frequency-domain characteristic parameters of the gear
fault vibration signal is also one of the efficient methods for gear fault diagnosis.

Therefore, in this study, the original time-domain vibration signal is transformed
into the frequency domain using Fourier transform to observe the characteristics of the
vibration signal from the perspective of frequency. The conversion from time-domain to
frequency-domain can be defined as:

s(k) =
N−1

∑
k=0

x(k∆tz)e
−2πjnk

N , (n = 1, 2, . . . , N − 1) (1)
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where x(k∆tz) represents the sample value; N denotes the number of sample points; ∆t
indicates the sampling interval; k refers to the discrete value of the time-domain signal.

After conversion into frequency signals, the corresponding frequency-domain char-
acteristic parameters can be calculated according to the corresponding frequency-domain
statistical index formula. The five frequency-domain characteristic parameters extracted in
this study and their calculation formulas are shown in Table 2 [28].

Table 2. The five frequency-domain characteristic parameters and their calculation formulas.

Frequency Domain Characteristic Parameters Formula

Amplitude Mean AM = 1
K

K
∑

k=1
s(k)

Center Frequency CF = ∑K
k=1 fk·s(k)

∑K
k=1 s(k)

Mean Square Frequency MSF = ∑K
k=1 fk

2s(k)
∑K

k=1 s(k)

Root-Mean-Square Frequency RMSF =

√
∑K

k=1 fk
2s(k)

∑K
k=1 s(k)

Frequency Variance FVAR = ∑K
k=1 (f k−CF)2·s(k)

∑K
k=1 s(k)

Note: Where s(k) stands for the spectrum of signal x(n), k = 1, 2, . . ., K; K is the number of spectral lines; fk denotes
the frequency value of the k-th spectral line.

2.3. Fusion Features

Extract the above 13 time-domain features and 5 frequency-domain features to form
the time-domain feature vector matrix T and the frequency-domain feature vector matrix F,
respectively. Assuming that the total number of samples is n, then:

T =

t1,1 · · · t13,1
...

. . .
...

t1,n . . . t13,n

 (2)

F =

f1,1 · · · f5,1
...

. . .
...

f1,n . . . f5,n

 (3)

The above time-domain feature vector matrix T and frequency-domain feature vector
matrix F are fused to form the fused feature vector TF, then:

TF =

x1,1 · · · x18,1
...

. . .
...

x1,n . . . x18,n

 (4)

3. GSWOA-KELM Fault Diagnosis Model
3.1. Kernel Extreme Learning Machine

The KELM is an improved algorithm developed on the basis of an extreme learn-
ing machine (ELM). It introduces a kernel function on the basis of an ELM, has better
generalization performance, and has a faster learning ability [29].

The ELM is a feed-forward neural network including input, hidden, and output
layers [20], and its typical neural network structure is given in Figure 1.
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The mathematical expression of an ELM is as follows:

Hβ = T (5)

H(w1, . . . , wl, b1, . . . , bl, x1, . . . , xn) =

g(w1·x1 + b1) · · · g(wl·x1 + bl)
...

. . .
...

g(w1·xn + bl) · · · g(wl·xn + bl)

 (6)

where H represents the output matrix of the hidden layer, β is the output weight, T denotes
the target output matrix, wl is the weight of the l-th neuron in the hidden layer, and bl
denotes the bias of the l-th neuron in the hidden layer.

The learning process of an ELM is the process of solving the output weight β, which is
solved using the least squares method:

βELM = HT
(

HHT
)−1

T = H+T (7)

where H+ represents the generalized inverse matrix of H.
In KELM, the regularization coefficient C and kernel function parameters γ are in-

troduced to improve the performance of the KELM, and the kernel function matrix is
expressed as:

Ω = HHT (8)

Ωij = h(xi)h
(
xj
)
= K

(
xi, xj

)
(9)

Then, the least square solution of the β value of the KELM is:

βKELM = HT
(

I
C
+ HHT

)−1
T (10)

Based on the above equations, the output function of the KELM can be expressed as:

f(x) =

K(x, x1)
...

K(x, xn)

(Ω +
I
C

)−1
T (11)

In addition, the radial basis function (RBF) is chosen as the kernel function in this
research, whose expression is as follows:

K
(
xi, xj

)
= exp

(
−
∣∣∣∣xi − xj

∣∣∣∣2
2γ2

)
(12)

where γ is the kernel parameter.
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3.2. Whale Optimization Algorithm

The WOA is a swarm intelligence optimization algorithm that imitates the hunting
process of whales in nature, which can be divided into three stages: the encircling prey
stage, the bubble-net attacking stage, and the random hunting prey stage [30,31]. In each
stage, the position of the whale is updated. The process of using the whale optimization
algorithm to solve the problem is to represent the position of each whale as a feasible
solution and obtain the optimal solution by constantly updating the position of the whale.

During the encircling prey phase, the whale’s position update formula can be
expressed as: {

X(t + 1) = X* (t)− A·D
D =

∣∣∣C·X*(t)− X(t)
∣∣∣ (13)

where t represents the number of iterations; X(t) indicates the current position of the whale;
X*(t) represents the optimal whale location; D is the distance between the whale and the
prey; and A and C represent the coefficient, whose expression is:

A = 2a·r1 − a
C = 2r2

a = 2 − 2t/tmax

(14)

During the bubble-net attacking phase, the position update of the whale can be
described using two mechanisms, namely, the contraction surround mechanism and the
spiral update mechanism. The mathematical expression of the spiral update mechanism is{

X(t + 1) = X* (t) + D·ebl cos(2πl)
D = |C·X* (t)− X(t)| (15)

where l represents the random number in the range between 0 and 1; b is a constant that
reflects the shape of the helix.

It is worth noting that during the bubble-net attacking stage, the whale not only
approaches the prey in a spiral shape but also shrinks the encircling circle, which is then
mathematically modeled as:

X(t + 1) =

{
X*(t)− A·

∣∣∣C·X*(t)− X(t)
∣∣∣, p < 0.5

X*(t) + D·eblcos(2πl), p ≥ 0.5
(16)

where p represents random numbers in the range between 0 and 1.
During the prey search phase, whales use a random search mechanism to search for

prey globally. At this time, the updating method of whale position is determined by the
range of A: if |A| < 1, the position is updated by spiral encircling; if |A|≥1, the location
is updated by random search. The mathematical model of the random search mechanism
updating location is

X(t + 1) = Xrand(t)− A·|C·Xrand(t)− X(t)| (17)

where Xrand(t) denotes the position of a random whale.

3.3. Global Search Whale Optimization Algorithm

In order to improve the convergence speed and global search ability of traditional
whale optimization algorithms, an improved global search whale optimization algorithm
(GSWOA) is proposed based on three strategies, namely, adaptive weight strategy, variable
spiral position update strategy, and optimal neighborhood perturbation strategy [32].
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First, the adaptive weight strategy is to introduce an adaptive inertia weight based
on the number of iterations t into the position update of the whale, and its expression is
as follows:

w(t) = 0.2cos
(
π

2
·
(

1 − t
tmax

))
(18)

where w(t) is the adaptive inertia weight, and the variation range is [0, 1]; t is the current
iteration number; and tmax indicates the maximum iteration number.

According to Equation (18), in the early stage of the algorithm, the weight value is
small but changes quickly; in the later stage of the algorithm, with the increase in the
number of iterations, the weight is large, but the change speed slows down, thus improving
the convergence of the algorithm.

The position update formula of the improved whale optimization algorithm is

X(t + 1) =

{
w(t)·X*(t)− A·

∣∣∣C·X*(t)− X(t)
∣∣∣, p < 0.5

w(t)·X*(t) + D·eblcos(2πl), p ≥ 0.5
(19)

X(t + 1) = w(t)Xrand(t)− A·|C·Xrand(t)−X(t)| (20)

Second, the variable spiral position update strategy refers to changing the constant b,
which reflects the spiral shape in the bubble-net attacking stage, to a dynamically adjusted
variable based on the number of iterations. The mathematical formula is as follows:

b = e5·cos (π·(1− t
tmax )) (21)

From Equation (21), it can be seen that in the early phase of the algorithm, the spiral
shape range is larger, and the whale can search for optimization in a larger range and has
a stronger global search ability; with the increase of the number of iterations, the spiral
shape range becomes smaller, and the whale can search in a smaller range to improve the
optimization accuracy.

Now, the position update formula of the improved whale optimization algorithm is

X(t + 1) = w(t)·X*(t) + bD·eblcos(2πl) (22)

Finally, the optimal neighborhood perturbation strategy is to expand the search scope
of the optimal location to the vicinity of the current optimal location when the whale
position is updated and search the nearby space simultaneously instead of being limited
to the current optimal location. In this way, the search efficiency of the whale and the
convergence speed of the algorithm can be enhanced. The mathematical expression for
generating a disturbance in the neighborhood of the current optimal location and generating
a new location is

X̂(t) =
{

X*(t) + 0.5·rand1·X*(t), rand2 < 0.5
X*(t), rand2 ≥ 0.5

(23)

where rand1 and rand2 indicate uniform random numbers in the range [0, 1]; X̂(t) is the
generated new location.

If the generated new position is better than the original position, the new position is
kept. If the generated new position is inferior to the original position, the original position
is retained. The formula is expressed as:

X*(t) =

X̂(t), f
(
X̂(t)

)
< f
(

X*(t)
)

X*(t), f
(

X*(t)
)
≤ f
(
X̂(t)

) (24)

where f(x) represents the fitness value when the position is x.
The overall flow of the GSWOA is shown in Figure 2.
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3.4. Kernel Extreme Learning Machine Optimized Using the Global Search Whale
Optimization Algorithm

In this study, GSWOA is used to intelligently optimize the regularization coefficient
C and kernel function parameter γ of KELM, and a GSWOA-KELM gear fault diagnosis
model is constructed to avoid the problem of low fault diagnosis efficiency of KELM
caused by artificial parameter selection. The process of using GSWOA to optimize KELM
parameters is shown in Figure 3. The specific steps are as follows:

Step 1: Initialize the parameters of the GSWOA, set the whale population size to
10, the maximum number of iterations to 60, the problem dimension to 2, and the whale
exploration boundary to [1,20];

Step 2: Initialize the whale position and map it to the initialization parameters of
KELM: regularization coefficient C and kernel function parameter γ;

Step 3: Calculate the fitness value of each whale in the whale population and find the
optimal whale location in the population;

Step 4: Update the current optimal location using Formulas (23) and (24);
Step 5: Randomly generate the update parameter p. If p < 0.5 and |A| < 1, update the

whale position using Formula (16); if p < 0.5 and |A| ≥ 1, use Formula (20) to update the
position of the whale. If p ≥ 0.5, the whale position is updated using Formula (22), where
A is the step coefficient of the convergence factor optimization;

Step 6: Determine whether the maximum number of iterations has been reached. If it
is, output the whale position at this moment as the optimal parameters of KELM, input
these optimal parameters into the KELM model, and train the model for fault diagnosis; if
not, repeat the above steps until the maximum number of iterations is reached.
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4. Experimental Verification and Result Analysis
4.1. Data Acquisition and Preprocessing

The open gearbox fault data set collected from the drivetrain dynamic simulator (DDS)
of Southeast University is used to verify the proposed method, whose data acquisition
test platform is shown in Figure 4. This test platform includes a brake, brake controller,
planetary gearbox, reduction gearbox, motor, motor controller, and other components.
Gear bearings are mounted on the second-stage drive shaft of the reduction gearbox or
the second-stage planetary shaft of the planetary gearbox, and seven vibration sensors of
type 608A11 are mounted in the direction of the x, y, and z-axes of the planetary gearbox
and reduction gearbox as well as in the direction of the motor’s z-axis with a sampling
frequency of 5120 Hz. Its collected data include two working conditions, with the speed
and load of 20 Hz/0 V and 30 Hz/2 V, respectively. There are five types of gear faults:
health, chipped, root, miss, and surface. A detailed description of them is shown in Table 3.
The gears of different fault states are processed in advance, the variable speed can be
realized via the motor controller, and the change of load is realized via the load controller.
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Table 3. Dataset fault type description and classification label.

Fault Type Fault Description Classification Label
Sample Number Total Sample

NumberTrain Set Test Set

Health Healthy gear. 1 70 30 100
Chipped The gear is cracked or even broken. 2 70 30 100

Miss Gear defect. 3 70 30 100
Root There is a crack at the root of the gear. 4 70 30 100

Surface Gear surface wear. 5 70 30 100

In this study, the data under the 20 Hz/0 V condition are selected for research; each
type of fault intercepts 100 sample groups, and each sample group contains 2048 sample
points. The data set is randomly divided according to the ratio of the training set to the
test set = 7:3, and the labels for the five types of gearbox faults are established, as shown in
Table 3.

4.2. Time-Frequency Features Extraction

Thirteen time-domain features described in Table 1 and five frequency-domain features
described in Table 2 are extracted and normalized, respectively. The data distributions of
different time-domain features and frequency-domain features in different gear fault states
are shown in Figures 5 and 6, respectively.
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4.3. Fault Diagnosis and Result Analysis
4.3.1. Fault Diagnosis and Result Analysis without Feature Fusion

The time-domain feature matrix T, frequency-domain feature matrix F, and fusion-
feature matrix TF obtained after the above feature extraction are input into the GSWOA-
KELM fault diagnosis model, respectively. In this model, the number of the whale popu-
lation is set to 10, the maximum number of iterations is 60, the dimension is 2, the upper
bound is 1, and the lower bound is 20. The dataset partitioning and labeling settings are
set, as shown in Table 3. The fault diagnosis results under three different inputs are shown
in Figures 7–9, respectively, where Figures 7a, 8a and 9a shows the comparison results of
predicted classification and actual classification, and Figures 7b, 8b and 9b indicates the
confusion matrix of classification results. In Figures 7b, 8b and 9b, the blue line indicates
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the number and proportion of samples correctly classified and the red line indicates the
number and proportion of samples misclassified.
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The accuracy rate of fault diagnosis under three different inputs is shown in Table 4.

Table 4. The accuracy rate for different inputs.

Input Accuracy Rate

T 86.67%
F 85.33%

TF 100%
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As can be seen from Table 4, the classification accuracy of GSWOA-KELM is lower
when the inputs are single-domain features in time-domain or frequency-domain, and
the classification accuracy of the training set is 86.67% and 85.33%, respectively, whereas
when the inputs are fusion features, GSWOA-KELM has the highest classification accuracy,
and the classification accuracy reaches 100%. Compared to when the time domain and
frequency domain are used as separate feature vectors, the accuracy is improved by 13.33%
and 14.67%. Therefore, extracting multi-domain features of gear faults as inputs to the
model can significantly improve the classification accuracy of the fault diagnosis model.

4.3.2. Fault Diagnosis and Result Analysis with Feature Fusion

First, in order to verify the superiority of the GSWOA-KELM model in terms of
convergence speed and global search performance, the fusion feature vector TF is input into
the SSA-KELM, WOA-KELM, and GSWOA-KELM fault diagnosis models, respectively,
and the fitness curves of the three models are compared, as shown in Figure 10. During
fault diagnosis, the parameters of the three models are set to be consistent, where the
population number is 10, the maximum number of iterations is 60, and the dimension is 2.
The dataset partitioning and label setting are set as shown in Table 3.
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Figure 10. Convergence curves for three models. (a) SSA-KELM; (b) WOA-KELM; and (c) GSWOA-
KELM.

Figure 10a shows the algorithm converges after 50 iterations, and the final convergence
value is 0.098. Figure 10b shows that when WOA is used to optimize KELM, its fitness
curve is a straight line, which is analyzed because the model falls into local optimality
from the beginning. As shown in Figure 10c, GSWOA-KELM only iterates twice to find
the optimal value, and the final convergence value is 0, which is lower than the final
convergence value of SSA-KELM, with faster convergence speed and higher optimization
accuracy. Meanwhile, compared with WOA-KELM, GSWOA-KELM avoids premature
convergence and local optimization and has a stronger global search ability.

Next, in order to verify the fault diagnosis accuracy of the GSWOA-KELM model,
KELM, SSA-KELM, and WOA-KELM models are selected for comparison and verification.
At first, the fusion feature vector TF is input into the above four fault diagnosis models
respectively, in which the population number of SSA, WOA, and GSWOA optimization
algorithms is set as 10, the maximum number of iterations is 60, and the dimension is
two-dimensional. What is more, the dataset partitioning and label settings are set, as shown
in Table 3. The classification accuracy rate of each fault diagnosis model is shown in Table 5.
The fault diagnosis results of each model are shown in Figures 11–14, where Figures 11a,
12a, 13a and 14a is the comparison results of the predicted classification and the actual
classification of each model, and Figures 11b, 12b, 13b and 14b shows the confusion matrix
of the classification results of each model.



Lubricants 2024, 12, 10 14 of 17

Table 5. The classification accuracy rate of each fault diagnosis model.

Fault Diagnosis Model Fault Type Accuracy Rate Overall Accuracy

KELM

Health 100%

88.67%
Chipped 100%

Miss 88.0%
Root 93.3%

Surface 65.7%

SSA-KELM

Health 100%

91.33%
Chipped 100%

Miss 82.6%
Root 83.5%

Surface 79.4%

WOA-KELM

Health 100%

98.67%
Chipped 100%

Miss 100%
Root 100%

Surface 96.8%

GSWOA-KELM

Health 100%

100%
Chipped 100%

Miss 100%
Root 100%

Surface 100%
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As shown in Table 5, the fault diagnosis classification accuracies of KELM, SSA-KELM,
WOA-KELM, and GSWOA-KELM models are 88.67%, 91.33%, 98.67%, and 100%, respec-
tively. Among them, GSWOA-KELM, established in this study, has the highest accuracy,
which reaches 100%. Compared with the other three models, the fault diagnosis classifica-
tion accuracy of GSWOA-KELM is improved by 11.33%, 8.67%, and 1.33%, respectively.

As can be seen from Figures 11–14, the GSWOA-KELM model can accurately identify
various fault types and has no misclassification. Compared with GSWOA-KELM, the
misclassified fault types of the other three models mainly focus on Miss and Surface.
Figure 11 denotes that, in the KELM model, three Root samples are misclassified as Miss
samples, one Root sample is misclassified as Surface samples, and two Miss samples are
misclassified as Root samples. Figure 12 indicates that in the SSA-KELM model, four Root
samples are misclassified as Miss samples, two Miss samples are misclassified as Root
samples, and seven Miss samples are misclassified as Surface samples. As can be seen
from Figure 13, in the WOA-KELM model, one Miss sample and one Surface sample are
misclassified as Root samples separately.

5. Conclusions

Aiming at the problem of low accuracy caused via manual parameter selection in
KELM fault diagnosis, an improved time-frequency fusion features-based GSWOA-KELM
model is proposed. The results have confirmed that the model proposed in this study has
the ideal effect on gear fault diagnosis. The specific conclusions are as follows:

(1) Compared with KELM, SSA-KELM, and WOA-KELM, the GSWOA-KELM has faster
convergence speed, stronger global search capability, and higher recognition accuracy;

(2) When constructing a GSWOA-KELM model for gear fault diagnosis, the GSWOA-
KELM performance can be improved by considering the fusion features rather than
the single time-domain or frequency-domain features;
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(3) Compared to KELM, SSA-KELM, and WOA-KELM, the GSWOA-KELM model pro-
posed in this study improved the fault diagnosis accuracy by 11.33%, 8.67%, and
1.33%, respectively.

Since real-world gear systems usually have different signal-to-noise ratios, the pro-
posed method needs to be tested in more practical engineering application scenarios. In the
next step, it is necessary to study the applicability of the proposed method under different
signal-to-noise ratios and port the proposed algorithm to an embedded terminal to realize
on-line diagnosis of gear faults [10].
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