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Abstract: Lubrication in the contact area can be considered as a viscoelastic layer, especially in the
presence of particles in it, or under conditions of low temperatures. The properties of this layer are
often non-linear, in particular, they depend on local pressure. The paper presents a formulation and
numerical-analytical method for solving the contact problem in the presence of viscoelastic layers,
the compliance of which depends on the applied pressure and is included in the formulation as the
corresponding operator. The layer is homogeneous or coated elastic half-space. For the selected
type of operator, the influence of parameters, which characterize the nonlinearity of the model,
on the distribution of contact pressure and the coefficient of friction due to hysteresis losses was
analyzed. It is shown that for the nonlinear model, the maximum contact pressures are higher, and
the friction coefficient is lower than for the linear model with constant compliance. The effect of
non-linearity for a wide range of sliding velocities is considered. An analysis of principal shear and
tensile-compressive stresses for a homogeneous elastic half-space and for a coating, in particular, for
a coating-substrate interface, was also carried out.

Keywords: contact problem; coating; viscoelastic layer; stresses; nonlinear Maxwell model

1. Introduction

A contact problem with thin viscoelastic layers on the surface arises when the contact
occurs in the presence of a ‘third body’. This could be a fretting process [1] or lubricated
contact [2,3] under conditions of high pressure in the contact area [4–8], as well as relatively
low temperatures [9], in which oil lubricants begin to behave like solid viscoelastic bodies.

In cases where the thickness and/or modulus of elasticity of the layer is relatively
large, 3D models of material are used [10–13], in which the layer is considered as an
isotropic viscoelastic body. When the layer is relatively soft and thin, it is possible to use
simplified one-dimensional viscoelastic models, including the Maxwell model [2,3,14,15],
the Kelvin–Voigt model [16–19], and the standard viscoelastic body model [20,21]. More
information about the viscoelastic contact can be found in review [22].

In references [14,15], the rolling of cylinders was considered in the presence of a
lubricant. The effect of thin surface layers of lubricant on contact characteristics and
internal stresses was analyzed. To describe the properties of surface layers in the normal
and tangential directions, the one-dimensional model of Maxwell viscoelastic layer was
used [14,15], and the lubricant flow between the surfaces was described using the Reynolds
equation [15].

In reference [2], the mutual sliding of two discs was modeled in the presence of high-
pressured lubricant. To simulate the viscoelastic properties of an oil film in a sliding contact,
a one-dimensional nonlinear (in tangential direction) Maxwell model was proposed. This
model is in good agreement with the Eyring fluid flow theory. In reference [3], a similar
model was used, differing only in the form of the nonlinear function.

The rolling of an elastic sphere over an elastic half-space covered with a viscoelastic
layer was studied in references [17,18]. The viscoelastic layer was modeled using the

Lubricants 2023, 11, 333. https://doi.org/10.3390/lubricants11080333 https://www.mdpi.com/journal/lubricants

https://doi.org/10.3390/lubricants11080333
https://doi.org/10.3390/lubricants11080333
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/lubricants
https://www.mdpi.com
https://doi.org/10.3390/lubricants11080333
https://www.mdpi.com/journal/lubricants
https://www.mdpi.com/article/10.3390/lubricants11080333?type=check_update&version=1


Lubricants 2023, 11, 333 2 of 13

one-dimensional Kelvin model in tangential direction and a modified Winkler model for
the normal contact. The distribution of stick and slip zones in the contact, as well as stresses
in the contacting bodies, was calculated and analyzed [18].

In ref [19], the possibility of modeling an elastohydrodynamic contact using a nonlinear
one-dimensional Kelvin−Voigt model was considered. The model was developed based on
an elastic one-dimensional model obtained in references [23–25] from the Navier-Cauchy
equation, assuming that the lubricant thickness is small. The model allows for consideration
of the local absence of lubrication; therefore, several contact conditions were considered
including mixed lubrication.

The rolling contact of a rigid sphere over an elastic half-space covered with a vis-
coelastic layer (simulating a lubricant layer) was studied in reference [21]. Two approaches
were proposed: a one-dimensional model of a standard viscoelastic body and a complete
model based on the Navier-Cauchy equations using Papkovich−Neiber potentials. It was
shown that for effective modeling of elastohydrodynamic contact, it is necessary to use
pressure-dependent viscoelastic models.

In this paper, we study the sliding contact of homogeneous and inhomogeneous
elastic bodies in the presence of a viscoelastic layer in the contact area. A one-dimensional
nonlinear Maxwell model is proposed, in which the layer compliance depends on the
local pressure. The aim of the study was to develop an adequate method for solving such
problems, as well as to analyze the influence of the nonlinearity factor on contact and
internal stresses, and on the friction force arising due to sliding resistance.

2. Problem Formulation

Let us consider the motion of a smooth slider of arbitrary shape over the boundary of
homogeneous or covered elastic half-space, on the surface of which there is a viscoelastic
layer of thickness h3 (Figure 1). A normal force, Q, acts on the slider. The layer simulates
an intermediate medium, which may consist of lubricant wear (or abrasive) particles. In
references [14,15], the mechanical properties of the layer are described using the viscoelastic
Maxwell model:

.
w3(x, y) = C

(
p(x, y)

T
+

.
p(x, y)

)
, (1)

where w3 are the normal displacements of the layer boundary, C is the constant compliance
of the layer, T is the relaxation time, and p(x, y) is the contact pressure.
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This model has unlimited creep, which in some cases describes well the properties of
the intermediate medium. At the same time, it is logical to assume that the compliance of
the layer should depend on the pressure, for example, due to the fact that the layer becomes
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thinner and, therefore, stiffer in the area of high pressures. In this regard, the following
modification of (1) is proposed:

.
w3(x, y) = C[p(x, y)]

(
p(x, y)

T
+

.
p(x, y)

)
, (2)

Here, the dependence of compliance on pressure is determined by the specific features
of the intermediate layer.

The sliding contact occurs at a constant velocity, V, so the problem is quasi-static. To
provide sliding at the constant velocity over the viscoelastic layer, an a priori unknown
constant tangential force, QT , is required, equal to the sliding resistance force due to
the rheological properties of the layer. Let us position the Cartesian coordinate system,
associated with the slider, in such a way that the XY plane coincides with the undeformed
upper surface of the viscoelastic layer and the Z axis is normal to the layer surface. In this
case, the contact condition will look like this:

w1(x, y) + w3(x, y) = f (x, y)− D (x, y) ∈ Ω
σz = 0 (x, y) /∈ Ω

τxz = 0, τyx = 0
(3)

Here, w1(x, y) are the vertical displacements of the upper surface of a homogeneous
or covered elastic half-space, f (x, y) is a function that describes the shape of the slider,
D is the penetration of the slider into the half-space, and Ω is the contact area. The
material properties of a homogeneous half-space are determined by Young’s modulus E2
and Poisson’s ratio ν2. In the case of coated half-space, we have Ei and νi, where i = 1, 2
corresponds to the coating and the half-space, respectively. In the “spring” model under
consideration, the normal stresses at the upper boundary of the layer (z = 0) and at the
boundary between the layer and the elastic half-space (z = h3) have the same values, since
the stresses do not change along the length of the spring.

It is assumed that the surface layer has the function of lubrication, so the friction force
is not taken into account in the formulation of the contact problem (3).

An equilibrium condition is also satisfied:

Q =
x

Ω

p(x, y)dxdy, (4)

Since we are considering a smooth slider, the zero-pressure condition must be satisfied
at the boundary of the contact area Ω.

In the presence of a coating of thickness h1, it is also necessary to formulate the
conditions at the interface between the coating and the half-space:

w(1) = w(2), u(1)
x = u(2)

x , u(1)
y = u(2)

y ,
σ
(1)
z = σ

(2)
z , τ

(1)
xz = τ

(2)
xz , τ

(1)
yz = τ

(2)
yz .

(5)

Here, σ
(i)
x , τ

(i)
xz , τ

(i)
yz are normal and tangential stresses; w(i), u(i)

x , u(i)
y are normal and

tangential displacements. Relations (5) correspond to the conditions of full adhesion at
the coating-substrate interface, when the continuity of normal and tangential stresses and
displacements takes place.

It is required that the contact area, the distribution of contact pressure and the slider
penetration are found.

3. Method of Solution

The solution was obtained using the boundary element method and an iterative
procedure. A rectangular area Ω∗ ⊃ Ω is selected, on which a mesh of n identical square
elements of size 2a× 2a is constructed. The shape of the slider is represented as a set of
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values fi (i = 1 . . . n) which are f (x, y) for the center of each square element; the resulting
pressure is obtained as a piecewise function pi (i = 1 . . . n). Knowing the dependences of
the vertical displacements of the layer boundary on the uniformly distributed pressure
inside a square element of the surface, we can transform Equations (3) and (4) into a system
of n + 1 linear algebraic equations:

A11 · · · A1n
...

. . .
...

An1 · · · Ann

 1
...
1(

4a2 · · · 4a2) 0

 ·


p1
...

pn
D

 =


f1
...
fn
Q

, (6)

The last equation here is the equilibrium condition (4) in terms of boundary elements:
A is a matrix of influence coefficients, which are boundary displacements related to con-
stant pressure inside each square element. They are obtained by superposition of the
displacements of a viscoelastic layer and a homogeneous (covered) half-space:

Aij = A(3)
ij + A(1)

ij , (7)

where A(3)
ij corresponds to the normal displacements of the viscoelastic layer, and A(1)

ij
corresponds to a homogeneous or covered half-space. Using direct integration of (2), and
taking into account that non-zero displacements are only on the part of the layer surface that
was or is under the influence of distributed pressure, we obtain the following expressions
for A(3)

ij :

A(3)
ij = 0,

(
xj − xi

)
> a,−a >

(
yj − yi

)
> a

A(3)
ij = −Ci

(
1 +

a−(xj−xi)
TV

)
,−a <

(
xj − xi

)
< a,−a <

(
yj − yi

)
< a

A(3)
ij = −Ci

(
2a
TV

)
,
(
xj − xi

)
< −a,−a <

(
yj − yi

)
< a

(8)

Here, Ci are determined by the form of the operator C for a point with (x, y) coordinates.
The matrix coefficients A(1)

ij are calculated using the relations for displacements of the
elastic half-space boundary [26]:

A(1)
ij = −

(
1− ν1

2)
πE1

x

Ωi

1√(
xj − ξ

)2
+
(
yj − η

)2
dξdη, (9)

For a two-layer elastic half-space, the matrix coefficients A(1)
ij are obtained using a

method based on double integral Fourier transforms [27]:

A(1)
ij = − a(1+ν1)

πE1

π/2∫
0

∞∫
0

∆(γ, ϕ, λ, E1, E2) cos
((

xi − xj
)
γ cos(ϕ)/a

)
cos
((

yi − yj
)
γ sin(ϕ)/a

)
dγdϕ

(10)

here γ, ϕ are coordinates in the space of double Fourier transforms; λ = h1/a, ∆(γ, ϕ, λ, E1, E2)
is an analytic function, which is obtained from boundary conditions (formulated for uni-
formly loaded surface elements) using the Fourier transforms.

Using an iterative procedure, at each step of which system (4) is solved for Aij = A(1)
ij

and the contact conditions (including zero pressure at the boundary of the contact zone) are
satisfied, the unknown contact area, pressure distribution, and penetration D are obtained
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for an elastic body without the viscoelastic layer. Next, an iterative procedure is carried out
in order to obtain a solution based on the following type of C[p(x, y)]:

C[p(x, y)] = C0

(
1 + δ− 2δ

1 + e−p/p0

)
, (11)

This type of operator is chosen from the following considerations. In the absence
of pressure (p = 0), the compliance of the layer is C0. The action of pressure leads to
a decrease in the thickness of the layer in the contact zone; it is assumed that the layer
thickness at infinite pressure tends towards a finite value (including zero). Thus, the
minimum compliance of the layer is defined as C0(1− δ), where δ is a dimensionless
parameter. The parameter p0 has the dimension in Pascal and determines the sensitivity of
the layer properties to changes in the contact pressure. Figure 2 illustrates the model for
different values of p0 and δ.
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The calculated contact pressure was used to find internal stresses in the coated elas-
tic half-space. The method for calculating stresses in a two-layered elastic half-space is
based on double integral Fourier transforms [10]. The expressions for such calculations
were obtained for layered elastic half-space in reference [28] and used, for example, in
reference [10].

The method was used to calculate tensile-compressive (σx) stresses in the coated
half-space.

The method for calculating stresses in a two-layered elastic half-space is based on
double integral Fourier transforms. In the case of homogeneous half-space, the Love
solution [29] was used for the constant pressure distributed inside a surface element.

The resulting stresses (both for the coated and the homogeneous half-space) are
obtained by superposition.

4. Results and Discussion

The following dimensionless parameters are used to analyze the results for a spherical
slider with radius R:

(x′, y′, z′) = (x, y, z)/R, C′ = C0 · E2/R, Q′ = Q/
(

R2E2
)
,

p′(x′, y′) = p(x′, y′)/E2, V′ = VT/R, E′1 = E1/E2, p0
′ = p0/E2,

σ′x,y,z = σx,y,z/E2, τ′1 = τ1/E2.
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Let us present the results obtained for an elastic half-space with a layer for which the
properties are described by relation (11). Here, and further, the sliding direction is positive
(along the 0x′ axis). The sliding velocity was chosen for reasons of visual demonstration of
the influence of viscoelastic properties on the characteristics of the contact. Figure 3 shows
the distribution of the contact pressure and the compliance of the layer in the contact area.
The contact pressure distribution is asymmetric, which is typical for the sliding contact of
materials with rheological properties. The contact spot has a shape close to a semicircle.
The compliance of the layer near the center of the contact area is close to minimal value.

Lubricants 2023, 11, x FOR PEER REVIEW 6 of 13 
 

 

The resulting stresses (both for the coated and the homogeneous half-space) are ob-
tained by superposition. 

4. Results and Discussion 
The following dimensionless parameters are used to analyze the results for a spheri-

cal slider with radius R: 

( ) ( ) ( )
( ) ( )

2
0 2 2

2 1 1 2 0 0 2

2 1 1 2, , , ,

', ', ' , , ,  ,  = ,

', ' ', ' ,  ,  , ' ,
,  .x y z x y z

x y z x y z R С С E R Q Q R E

p x y p x y E V VT R E E E p p E
E Eσ σ τ τ

′ ′= = ⋅

′ ′ ′= = = =
′ ′= =

,  

Let us present the results obtained for an elastic half-space with a layer for which the 
properties are described by relation (11). Here, and further, the sliding direction is positive 
(along the 0 'x  axis). The sliding velocity was chosen for reasons of visual demonstration 
of the influence of viscoelastic properties on the characteristics of the contact. Figure 3 
shows the distribution of the contact pressure and the compliance of the layer in the con-
tact area. The contact pressure distribution is asymmetric, which is typical for the sliding 
contact of materials with rheological properties. The contact spot has a shape close to a 
semicircle. The compliance of the layer near the center of the contact area is close to mini-
mal value. 

  
(a) (b) 

Figure 3. Distribution of the contact pressure and the corresponding distribution of the layer com-
pliance (substrate−half-space). Calculation parameters: 6' 5 10Q −= ⋅  ; −=' 10V 3  ; ν = .2 0 3  ; 

=' 0.02C ; δ = .50 , ′ = .p0 0 0 0 1 . (a)—distribution of contact pressure. (b)—distribution of compli-
ance. 

The parameters 0p , δ  describing the effect of local pressure on the properties of the 
layer in (11) also significantly affect the contact pressure distribution. The influence of 0p  
is illustrated by the curves in Figure 4. Solid curves of contact pressure distribution lie 
between two dashed curves relating to linear models with the maximum and minimum 
compliance allowed by the non-linear model (11). The smaller the value of 0p , the greater 
the maximum contact pressure and the smaller the size of the contact area becomes. 

Figure 3. Distribution of the contact pressure and the corresponding distribution of the layer compli-
ance (substrate−half-space). Calculation parameters: Q′ = 5× 10−6; V′ = 10−3; ν2 = 0.3; C′ = 0.02;
δ = 0.5, p′0 = 0.001. (a)—distribution of contact pressure. (b)—distribution of compliance.

The parameters p0, δ describing the effect of local pressure on the properties of the
layer in (11) also significantly affect the contact pressure distribution. The influence of p0
is illustrated by the curves in Figure 4. Solid curves of contact pressure distribution lie
between two dashed curves relating to linear models with the maximum and minimum
compliance allowed by the non-linear model (11). The smaller the value of p0, the greater
the maximum contact pressure and the smaller the size of the contact area becomes.
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A similar analysis was made for the parameter δ (Figure 5). The fact that the contact
pressure increases with the increase in δ is predictable. Interestingly, the blue curve,
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calculated for the complete absence of the layer in the limiting case of infinite pressure, is
more symmetric, i.e., the influence of the rheological properties of the layer decreases with
increasing δ.
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The sliding resistance is directly related to the asymmetry of the contact pressure. The
moment of forces and the coefficient associated of which are defined as:

M =
x

Ω

x · p(x, y)dxdy, µ =

s

Ω
x · p(x, y)dxdy

RQ
, QT = −µQ, (12)

Since the layer has lubricating properties, the sliding resistance due to viscosity can
make a significant contribution to the total frictional force. Below is an analysis of the
influence of the input parameters of the model on the value of µ.

Figure 6 shows curves illustrating the influence of the relative compliance of the layer
on the value. In this case, a decrease in the relative compliance of the layer is provided
by increasing the rigidity of the half-space at a fixed load. The greater the rigidity of
the half-space, the more significant the effect of the layer on the contact conditions. This
explains the increase in the value of µ, in which the asymptote probably tends to the value
typical for the case of contact between the slider and the layer on a rigid base. It should be
noted that the curves obtained for the linear and non-linear models are similar in shape and
slope at each point, especially for relatively large values of C′. The same can be said about
the curves illustrating the effect of the thickness of relatively rigid coatings on µ (Figure 7),
since an increase in thickness leads to an increase in the integral rigidity of a two-layered
elastic body.

It is interesting to analyze the effect of the non-linearity factor on the friction coefficient
as a function of sliding velocity (Figure 8). For a 3D model of the viscoelastic layer [10],
as well as for the standard viscoelastic body model [20], this dependence usually is non-
monotonic. For the Maxwell model the friction coefficient decreases with the velocity
increase. Generally, for the non-linear model the friction coefficient is smaller than for linear
one. The effect depends on the model parameters and the sliding velocity. The difference
between µ(V) dependences for the linear and non-linear models of the layer (Figure 8b)
demonstrates maximum at a fixed value of velocity. The value depends on the model
parameters. The coefficient of friction here is significantly higher than for the results from
the previous figures, since in this case a larger load value, Q′, was used for calculations.



Lubricants 2023, 11, 333 8 of 13

Lubricants 2023, 11, x FOR PEER REVIEW 8 of 13 
 

 

the increase in the value of μ , in which the asymptote probably tends to the value typical 
for the case of contact between the slider and the layer on a rigid base. It should be noted 
that the curves obtained for the linear and non-linear models are similar in shape and 
slope at each point, especially for relatively large values of ′С  . The same can be said 
about the curves illustrating the effect of the thickness of relatively rigid coatings on μ  
(Figure 7), since an increase in thickness leads to an increase in the integral rigidity of a 
two-layered elastic body. 

 
Figure 6. The dependence of the coefficient μ  on the relative compliance of the layer. Calculation 
parameters: −= ⋅' 5 10Q 6  ; −=' 10V 3  ; ν = .2 0 3  ; =' 0.02C  . Linear compliance—red curve; 

′ = .p0 0 0 0 5 , δ = .0 5 —blue curve. 

 
Figure 7. Dependence of the friction coefficient on the thickness of rigid coating ( =/E E1 3 3 ). Cal-

culation parameters: −= ⋅' 5 10Q 6  ; −=' 10V 3  ; ν = .1 0 3  ; ν = .2 0 3  ; δ = .0 5  ; linear compliance—
red curve; ′ = .p0 0 0 0 5 —blue curve. 

It is interesting to analyze the effect of the non-linearity factor on the friction coeffi-
cient as a function of sliding velocity (Figure 8). For a 3D model of the viscoelastic layer 
[10], as well as for the standard viscoelastic body model [20], this dependence usually is 
non-monotonic. For the Maxwell model the friction coefficient decreases with the velocity 
increase. Generally, for the non-linear model the friction coefficient is smaller than for 
linear one. The effect depends on the model parameters and the sliding velocity. The dif-
ference between ( )Vμ   dependences for the linear and non-linear models of the layer 
(Figure 8b) demonstrates maximum at a fixed value of velocity. The value depends on the 

Figure 6. The dependence of the coefficient µ on the relative compliance of the layer. Calculation
parameters: Q′ = 5 × 10−6; V′ = 10−3; ν2 = 0.3; C′ = 0.02. Linear compliance—red curve;
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Figure 7. Dependence of the friction coefficient on the thickness of rigid coating (E1/E3 = 3).
Calculation parameters: Q′ = 5 · 10−6; V′ = 10−3; ν1 = 0.3; ν2 = 0.3; δ = 0.5; linear compliance—red
curve; p′0 = 0.005 —blue curve.
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Figure 8. (a) Dependence of the friction coefficient on sliding velocity (viscoelastic layer on the
homogeneous elastic half-space). (b) Difference of the friction coefficient between linear and non-
linear models depending on sliding velocity. Calculation parameters: Q′ = 25× 10−6; ν2 = 0.3;
C′ = 0.02; δ = 0.5; p′0 = 0.0025 (blue curves), p′0 = 0.005 (green curves), p′0 = 0.0075 (red curves);
linear model—black curve.
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Further analysis concerns the stresses that arise in an elastic half-space during sliding.
The tensile and principal shear stresses used in most strength criteria were considered.
Figure 9 shows the distributions of tensile-compressive stresses on the surface of an elastic
half-space in the presence of a viscoelastic layer characterized by different values of δ. For
a homogeneous half-space, this component of the stress tensor has maximum value on
the surface. The compressive stresses in this case are negative, and the tensile stresses
are positive. The tension maximum takes place at the boundary of the contact spot. As δ
increases, the maximum values of both tensile and compressive stresses increase. It should
be noted that, in contrast to the case of a viscoelastic half-space [30], the presence of a layer
does not lead to an instantaneous change in the stress sign at the edge of the contact area,
although the gradient of the curves near the frontal part of the contact area is quite large.
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Figure 9. Distribution of the σx stress along the X-axis. Calculation parameters: Q′ = 5× 10−6;
V′ = 10−3; ν2 = 0.3; C′ = 0.02; p′0 = 0.005; δ = 0.01 (red curve), δ = 1 (blue curve).

The principal shear stresses are calculated for a plane parallel to the sliding direction
and passing through the point of initial contact (Figure 10). The shape of isolines is typical
for frictional contact. An increase in the value of δ, which characterizes the degree of
nonlinearity of the layer properties, from 0.1 to 1.0 leads to an increase in the maximum
stress values of almost 35 percent.
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Figure 10. Distribution of maximum shear stresses in the XZ plane. Calculation parameters:
Q′ = 5× 10−6; V′ = 10−3; ν2 = 0.3; C′ = 0.02; p′0 = 0.005; (a) δ = 0.01, (b) δ = 1;
(a) τmax

1 /E2 = −0.000982; (b) τmax
1 /E2 = −0.00132.
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In the presence of coatings, it is important to evaluate the stresses not only at the
surface but also at the interface, which often has poor strength properties. Distributions
of tensile-compressive stresses were obtained for a plane parallel to the sliding direction
and passing through the point of initial contact (Figure 11) for the coatings with different
thickness (using parameters identical to those in the non-linear model). The non-linearity
of the layer properties is manifested in an increase in the maximum contact pressure: for a
thinner coating by 12, and for a thicker one by 16 percent. The left picture illustrates the case
of relatively thin coating, in which the thickness is almost 40 times less than characteristic
size of contact zone in 0x′ direction. The stresses inside the coating are almost the same
as at the surface. For the case of the thicker coating (Figure 11b), the coating bend with
compression at the surface and tension at the coating-substrate interface occurs. Figure 12
shows the distributions of tensile-compressive stresses for coatings of different thicknesses
on the surface and at the interface. Since there is a jump of stresses at the interface, two
curves are obtained for it (for coating and for substrate materials). The dotted lines are
the distributions obtained for the linear model of the viscoelastic layer, and the solid lines
are for the nonlinear model. The non-linearity factor significantly affects the distribution
of surface stresses for the thicker coating but has almost no effect on the stresses at the
interface. In the case of thin coating, the influence of this factor is approximately the
same for the surface and the interface in percentage terms. For the relatively thick coating,
maximal tension occurs at the coating-substrate interface under the contact spot. It means
that brittle cracks can be initiated at the interface. For the case of relatively thin coatings,
the maximal tension is at the surface. It should also be noted that for thin coatings there is
a sharp change in tension-compression, which can be dangerous in terms of the formation
of vertical cracks coming from the surface.
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Figure 11. Distribution of tensile-compressive stresses in the half space and the intermediate layer.
Calculation parameters: (a) Q′ = 5× 10−6; V′ = 10−3; ν1 = 0.3; ν2 = 0.3; C′ = 0.02; h′1 = 0.001,
h′1 = 0.02; (b) linear compliance.
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5. Conclusions

The developed model makes it possible to estimate the influence of the nonlinear-
ity factor, which manifests itself in the dependence of the compliance of the viscoelastic
Maxwell layer on pressure on the quasi-static sliding of a smooth indenter over the vis-
coelastic layer lying on a homogeneous or two-layered elastic body. A numerical-analytical
method for solving the problem has been developed, which can be used for various types
of operators relating compliance to local contact pressure. The results obtained for the
selected operator, corresponding to the physical decrease in the layer thickness under the
action of pressure, were analyzed. It is shown that in this case the nonlinearity factor leads
to an increase in the maximum values of the contact pressure and some decrease in the size
of the contact area. The study of the influence of the input parameters of the model on the
coefficient of friction due to the resistance to sliding by the viscoelastic material showed
that for the non-linear model this coefficient is smaller, with all other parameters being
equal. The difference between the coefficient for linear and non-linear models depends
on sliding velocity non-monotonically. The more rigid (relative to the viscoelastic layer)
a homogeneous or two-layer half-space is, the greater the value of the coefficient. An
analysis of the stresses in the elastic half-space under the layer showed an increase in their
maximum values when the nonlinearity of the viscoelastic layer was taken into account.
For bodies with rigid coatings, it is shown that the nonlinearity factor significantly affects
surface stresses, and for relatively thin coatings, it also affects stresses at the interface.
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Nomenclature

x, y, z coordinates in the Cartesian coordinate system;
Q normal load applied to the slider;
QT tangential force applied to the slider;
V sliding velocity;
D penetration of the slider
f (x,y) shape of the slider;
R radius of the slider;
P contact pressure;
Ω contact area;
A half size of the mesh element;
wi, i = 1; 3 vertical displacement of the upper layer (i = 3 ) and the intermediate layer (i = 1 );
hi, i = 1; 3 layer thickness : (i = 1 )—coating, (i = 3 )—viscoelastic layer;
Ei, i = 1; 2 Young modulus of the half-space (i = 2 ) and the intermediate layer (i = 1 );
νi, i = 1; 2 Poisson ratio of the half-space (i = 2 ) and the intermediate layer (i = 1 );
C compliance of the viscoelastic layer;
T relaxation time;
p0, δ parameters of nonlinear compliance;
σx,y,z, τxy,xz,yz normal and tangential stresses;
τ1 principal shear stress;
M moment acting on the slider;
µ coefficient of sliding resistance (friction);

w(i), u(i)
x , u(i)

y normal and tan gential displacements at the intermediate layer (i = 1 )—half space
(i = 1, 2) (i = 2 ) interface.

References
1. Argatov, I.; Chai, Y.S. An analytical approach to the third body modelling in fretting wear contact: A minireview. Facta Univ. Ser.

Mech. Eng. 2021, 19, 125–131. [CrossRef]
2. Johnson, K.L.; Tevaarwerk, J.L. Shear behaviour of elastohydrodynamic oil films. Proc. R. Soc. Lond. A 1977, 356, 215–236.
3. Bair, S.; Winer, W.O. A rheological model of EHD contacts based on primary laboratory data. J. Lubr. Technol. 1979, 101, 258–264.

[CrossRef]
4. Johnson, K.L.; Cameron, R. Fourth paper: Shear behaviour of elastohydrodynamic oil films at high rolling contact pressures. Proc.

Inst. Mech. Eng. 1967, 182, 307–330. [CrossRef]
5. Johnson, K.L.; Roberts, A.D. Observations of viscoelastic behaviour of an elastohydrodynamic lubricant film. Proc. R. Soc. Lond. A

1974, 337, 217–242.
6. Barlow, A.J.; Harrison, G.; Irving, J.B.; Kim, M.G.; Lamb, J.; Pursley, W.C. The effect of pressure on the viscoelastic properties of

liquids. Proc. R. Soc. Lond. A 1972, 327, 403–412.
7. Alsaad, M.; Bair, S.; Sanborn, D.M.; Winer, W.O. Glass transitions in lubricants: Its relation to elastohydrodynamic lubrication

(EHD). J. Lubr. Technol. 1978, 100, 404–416. [CrossRef]
8. Bair, S. The viscosity at the glass transition of a liquid lubricant. Friction 2018, 7, 86–91. [CrossRef]
9. Barlow, A.J.; Lamb, J.; Matheson, A.J. Viscous behaviour of supercooled liquids. Proc. R. Soc. Lond. A 1966, 292, 322–342.
10. Torskaya, E.V.; Stepanov, F.I. Effect of surface layers in sliding contact of viscoelastic solids (3-d model of material). Front. Mech.

Eng. 2019, 5, 26. [CrossRef]
11. Menga, N.; Afferrante, L.; Carbone, G. Effect of thickness and boundary conditions on the behavior of viscoelastic layers in

sliding contact with wavy profiles. J. Mech. Phys. Solids 2016, 95, 517–529. [CrossRef]
12. Putignano, C.; Carbone, G.; Dini, D. Mechanics of rough contacts in elastic and viscoelastic thin layers. Int. J. Solids Struct. 2015,

69–70, 507–517. [CrossRef]
13. Zhang, X.; Wang, Q.J.; He, T. Transient and steady-state viscoelastic contact responses of layer-substrate systems with interfacial

imperfections. J. Mech. Phys. Solids 2020, 145, 104170. [CrossRef]
14. Goryacheva, I.G.; Zakharov, S.M.; Torskaya, E.V. The effect of relative slippage and properties of the surface layer on the

stress-strain state of elastic bodies in rolling friction. J. Frict. Wear 2003, 24, 5–15.
15. Goryacheva, I.G. Contact Mechanics in Tribology; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998.
16. Miftakhova, A.R. Contact problems for rolling with slip for viscoelastic solids. J. Frict. Wear 2018, 39, 55–61. [CrossRef]
17. Goryacheva, I.G.; Miftakhova, A.R. Modelling of the viscoelastic layer effect in rolling contact. Wear 2019, 430–431, 256–262.

[CrossRef]
18. Meshcheryakova, A.R.; Goryacheva, I.G. Stress state of elastic bodies with an intermediate layer in rolling contact with slip. Phys.

Mesomech. 2021, 24, 441–450. [CrossRef]

https://doi.org/10.22190/FUME210103018A
https://doi.org/10.1115/1.3453342
https://doi.org/10.1243/PIME_PROC_1967_182_029_02
https://doi.org/10.1115/1.3453197
https://doi.org/10.1007/s40544-018-0210-1
https://doi.org/10.3389/fmech.2019.00026
https://doi.org/10.1016/j.jmps.2016.06.009
https://doi.org/10.1016/j.ijsolstr.2015.04.034
https://doi.org/10.1016/j.jmps.2020.104170
https://doi.org/10.3103/S1068366618010105
https://doi.org/10.1016/j.wear.2019.05.021
https://doi.org/10.1134/S1029959921040081


Lubricants 2023, 11, 333 13 of 13

19. van Emden, E.; Venner, C.H.; Morales-Espejel, G.E. Investigation into the viscoelastic behaviour of a thin lubricant layer in an
EHL contact. Tribol. Int. 2017, 111, 197–210. [CrossRef]

20. Morozov, A.V.; Makhovskaya, Y.U. Theoretical-experimental assessment of deformational component of friction coefficient.
J. Frict. Wear 2007, 28, 335–344. [CrossRef]

21. Zhao, Y.; Liu, H.C.; Morales-Espejel, G.E.; Venner, C.H. Response of elastic/viscoelastic layers on an elastic half-space in rolling
contacts: Towards a new modeling approach for elastohydrodynamic lubrication. Tribol. Int. 2023, 186, 108545. [CrossRef]

22. Wang, D.; de Boer, G.; Neville, A.; Ghanbarzadeh, A. A Review on modelling of viscoelastic contact problems. Lubricants 2022,
10, 358. [CrossRef]

23. Trifa, M. Nanorheologie du Contact Sphere-Plan Avec Couch Mince Interfaciale. Ph.D. Thesis, L’ecole Centrale de Lyon, Lyon,
France, 1998; p. 111.

24. Auslender, F.; Trifa, M.; Sidoroff, F. Material compressibility effects for the squeeze of very thin films. Eur. J. Mech. A Solids 1999,
18, 499–515. [CrossRef]

25. Trifa, M.; Sidoroff, F.; Georges, J.M. Elastohydrodynamic squeeze of thin films for the sphere-plane contact. Lubr. Front. 1999,
36, 523–533.

26. Johnson, K.L. Contact Mechanics; Cambridge University Press: Cambridge, UK, 1985.
27. Stepanov, F.I.; Torskaya, E.V. Modeling of indentation of hard coatings by an arbitrarily shaped indenter. J. Frict. Wear 2019,

40, 326–331. [CrossRef]
28. Nikishin, V.S.; Shapiro, G.S. Space Problems of Elasticity Theory for Multilayered Media, Vych. Tsentr Akad. Nauk SSSR 1929, 228,

258. (In Russian)
29. Love, A.E.H. The stress produced in a semi-infinite solid by pressure on part of the boundary. Philos. Trans. R. Soc. A 1929,

228, 377–420.
30. Stepanov, F.I.; Torskaya, E.V. Study of stress state of viscoelastic half-space in sliding contact with smooth indenter. J. Frict. Wear

2016, 37, 101–106. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.triboint.2017.03.014
https://doi.org/10.3103/S1068366607040010
https://doi.org/10.1016/j.triboint.2023.108545
https://doi.org/10.3390/lubricants10120358
https://doi.org/10.1016/S0997-7538(99)00111-4
https://doi.org/10.3103/S1068366619040147
https://doi.org/10.3103/S1068366616020173

	Introduction 
	Problem Formulation 
	Method of Solution 
	Results and Discussion 
	Conclusions 
	References

