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Abstract: To comply with the high demand for efficient and sustainable lubrications, carbon-based
tribofilms and/or nanomaterials have emerged as a potential solution that can resolve the current ma-
jor shortcomings of phosphorus- and sulphur-rich tribofilms and protective coatings. Although their
employment is still in the early stages of realization and research, these tribofilms receive significant
interest due to their capability to continuously and in situ repair/replenish themselves during sliding,
which has been an ultimate goal of all moving mechanical systems. Structurally, these tribofilms
are complex and predominantly amorphous or disordered with/without graphitic domains (e.g.,
graphene/graphite, onion-like carbon, etc.). Chemically, the compositions of these tribofilms vary
significantly with environments, conditions, and material precursors. Yet, the structural properties
of carbon-based tribofilms remain largely ambiguous, which precludes a full understanding of the
mechanisms underlying the formation and lubrication performance. This review will summarize the
current state-of-art research about the in situ carbon-based tribofilms that have been published since
the pioneering works. Particularly, this work will highlight the recent approaches to generate these
tribofilms, their associated lubrication performance, current understanding of the formation mechan-
ics, common analytical approaches for these tribofilms, and the compatibility of these tribofilms with
other additives. Together, the overall outlooks will be drawn, demonstrating the knowledge gaps
and proposing further investigation tactics to tackle these emerging issues.

Keywords: carbon-based tribofilms; sustainable lubrications; tribocatalysis; friction; wear

1. Introduction

The growth of transportation has caused significant concerns about environmental im-
pact and energy consumption. The total loss of energy in internal combustion engines (ICE)
results in 28% of the annual CO2 emissions around the world [1,2]. Recently, electric vehi-
cles (EV) and hybrid vehicles (HEV) have emerged as sustainable technologies to optimize
energy efficiency, which are predicted to halve the energy losses due to friction [3]. EV and
HEV technologies are still in the progress of development, and the design of electric motors,
batteries, transmission materials and fluids largely depends on the manufacturer. Despite
the ongoing progress of EVs and HEVs, the current road transport system, especially with
heavy-duty vehicles, is still based on ICE [4]. The recent development and employment of
heavy-duty vehicles with EV and HEV technologies have been proposed [2,5,6], but these
alternatives start from a very low base and still face significant barriers to complete their
unlimited expansion [7]. A total of 85–90% of road transport energy is still expected to
come from ICE-powered vehicles even by 2040 [7]. The impacts of tribological contacts in
ICE on the economy and environment are still an unabated issue for the next few decades.
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Improving the energy efficiency in conventional ICE vehicles is critical to reduce CO2
emissions and improve the economy. The energy losses and surface degradations in ICE
predominantly originate from the micro-asperity contacts between sliding surfaces. There
are two common strategies to overcome the adverse effects of these solid contacts, including
(i) optimizing the lubricant packages; and (ii) improving the contacting interface, by surface
texturing or by the deposition of functional lubricous coatings on selected component
surfaces [8–10]. Both approaches have their unique advantages and are often studied
complementarily to achieve synergistic lubrication effects. Sustainable lubrication should
reduce fuel consumption, curb carbon emissions, and deliver positive economic impacts.

Carbon-based material has been a long-standing research area in both approaches of
lubricating solid contacts. This is a sustainable class of materials that show outstanding
performance in controlling friction and wear in modern vehicles. On the lubricant side,
carbon-containing additives, such as carbon nanotubes, graphene, or amorphous carbon,
can be incorporated into lubricant packages to enhance their performance [11–16]. The
lubrication mechanisms of these additives mostly come from their high strength, high
hardness, easy shear property of layered structures, and/or incommensurate contact
among the inner graphitic units [17–21]. Meanwhile, carbon-based coatings, i.e., diamond-
like carbon (DLC) coatings, are commonly used to modify the contacting interface and
improve performance due to their hard and self-lubricating properties [22,23]. While
carbon-based solid lubricant additives often require complicated chemical synthesis and
surface modifications to incorporate into the lubricant packages [24], carbon-based coatings
face a major issue of limited thickness that results in eventual wear-out after a limited
time of operation [25]. Carbon-based materials have far-reaching implications in the future
lubrication but extensive research should be conducted to bring these materials to reach
the final practical applications.

Recently, the in situ creation of carbon-based materials, either as nanoparticles or
nanotribofilms, at the sliding interface is a subject of ongoing research and development
in tribological perspectives [26]. Based on this approach, nanocarbon materials can be
self-generated, meaning they can continuously form or repair themselves in response to
wear or damage, providing continuous protection to the metal surfaces. This approach
is a potential alternative for replacing the use of conventional extreme pressure (EP) an-
tiwear additives (e.g., zinc dialkyldithiophosphate—ZDDP) to adapt to new emissions
regulations [27–29] and a current trend of using a low-viscosity oil lubricant that weighs a
burden on the wear protection in engine and transmission parts [30,31]. It is expected that
tribochemical and/or mechanochemical reactions often take place between the lubricants
and sliding surfaces under subsequent tribological contact, where high frictional heating,
contact pressure, and stress-shearing occur. Carbon-based tribofilms can be formed from
a variety of carbon precursors under these events [26]. During the sliding process, the
presence of these carbon-rich layers on the contacting surfaces will minimize the contact
stresses between sliding asperity peaks [32]. This not only limits frictional issues but also
protects the solid surfaces against severe wear [33]. There are two current approaches
to create nanocarbon materials in situ on sliding surfaces, including the utilization of
carbon-precursor lubricants/additives [34,35] and the employment of catalytic materials to
promote tribocatalysis [26]. It has been demonstrated that the structures and properties
of nanocarbon materials vary widely depending on the conditions they are created [26].
The pioneering research of forming carbon-based materials in situ was conducted by
Erdemir et al. [36], where amorphous carbon and onion-like carbon were formed from the
polyalphaolefin oil by nanocrystalline catalytic coatings. In the following year, the use
of oil-soluble carbon-precursor additives, e.g., cyclopropanecarboxylic acid (CPCa), was
conducted to form polymeric amorphous carbon-based tribofilms [34,37–40]. Currently,
the use of catalytically active nanoparticles was also proposed to control the formation of
amorphous carbon-based tribofilms [41,42]. A number of studies regarding nanocarbon
tribofilms have significantly arisen since 2016 (Figure 1). However, rich literature has
largely relied on systematic studies on the tribological performance, while the structural
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and chemical properties of these tribofilms has not yet been well understood. It can be seen
that almost 70% of published works indicate the disordered/amorphous structures of the
nanocarbon tribofilms without any details on any turbostratic or parasitic characters in
the tribofilms.
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Figure 1. Progress on the research of carbon-based tribofilms formed at the sliding interface. The
data has been collected and summarized from Scopus Database—Elsevier from 2016 to 2022.

The majority of conclusions about the lubrication and formation mechanisms as well
as chemical structures of carbon-based tribofilms are often drawn from macroscopic ob-
servation of the wear surfaces, low-spatial-resolution analysis, and crystalline-dependent
diffraction analysis. Such information is still controversial in tribological research. Answer-
ing these bottlenecks can open a new pathway to optimize the stability and compatibility
of carbon tribofilms with other lubricant components, as well as controlling long-term
performance and durability under different operating conditions. In the following section,
we will review the state-of-the-art studies in controlling the formation of the carbon-based
tribofilms at the sliding interface in relation to the lubrication performance, as well as
discussing the up-to-date fundamental mechanisms that govern the formation of these
films. We will also review the current controversy in characterizing carbon-based tribofilms
and the compatibility of carbon tribofilms with other additives, before proposing our
perspectives in elevating this emerging field of research.

2. Carbon-Based Thin Films and Their Lubrication Performance

Carbon-based films are widely used in tribological systems to reduce friction and wear.
These films can be polymeric, graphitic, or diamond-like, which are commonly prepared
by chemical or physical methods. Publications about carbon-based films date back to the
1950s, when a diamond-like carbon (DLC) coating comprising an amorphous network was
first introduced by Schmellenmeier [43]. Since then, numerous kinds of DLC coatings with
numerous characteristics have been applied in various technical fields, such as hard disks,
space technology, biological applications, chemical pumps, and food processing [44]. The
structural characteristic of the DLC coatings can be flexibly tuned to produce graphite-
like coatings [45]. Apart from DLC and graphite-like coatings, some studies in the early
1960s also described the appearance of high-molecular-weight products, or carbon-based
friction polymers, formed in sliding metal systems lubricated by hydrocarbons [46]. In very
recent studies, some fundamental works have sought to explore the mechanisms of friction
polymers based on the context of mechanochemistry [47]. In general, carbon-based films
can take several forms, and their tribological performance in terms of friction and wear are
discussed and reviewed in the following parts.
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2.1. Diamond-Like Carbon Films

In automotive applications, the use of DLC has been popular since the 1990s. It began
with Volkswagen’s diesel injection system, and later spread wide to various components
like valve shafts, finger followers, piston skirts, tappets, piston rings, and piston pins [48,49].
Their properties are significantly attributed to their portions of carbon atoms’ sp2- (C=C)
and sp3- bonds (C–C and C–H). The DLC coatings with a high sp3- bonding portion (highly
diamond-like) structure will be harder and exhibit better wear resistance in the tribological
system [50]. Meanwhile, high sp2- bond portion DLC films as graphitic films will be softer,
and result in better antifriction performance compared to the high sp3- bond portion [51].
Moreover, the concentration of hydrogen content in these carbon-rich coatings can also
exert a certain effect on their tribological performances [52]. Two important groups of DLC
film structures comprise the nonhydrogenated networks with the amorphous (a-C) and
tetrahedral amorphous carbon (ta-C), and the hydrogenated one with the significantly
higher hydrogen content like a-C:H. Their sp2-, sp3-, and hydrogen (H) contents can be
described by the ternary phase diagram in Figure 2a. The “no film” area on the right-hand
side stands for the formation of polyacetylene (CH)n and/or polyethylene (CH2)n, where
only hydrocarbon molecules (instead of the carbon-based networks) are promoted [53].
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There are two mechanisms that are widely postulated as the main antifriction prop-
erty of DLC tribofilm, including the “friction-induced graphitization” mechanism and
passivation mechanism. Particularly, graphitization is the transformation process of the
carbon-based films from amorphous to graphitic ordered form, with a higher sp2 portion
in bonding configurations [57]. Then, the “friction-induced graphitization” mechanism is
defined as the process where the rise of the sp2-bond portion at the sliding interface due
to sliding friction [55] (Figure 2b) would result in a graphitized tribofilm with stable and
low induced friction corresponding to the lubricious nature of graphite. Meanwhile, the
passivation mechanism is the procedure where the majority of carbon with free dangling σ-
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bonds are passivated or saturated by hydrogen terminations as passivating species to form
a nonreactive surface (Figure 2c) [17]. The estimated content of hydrogen in DLC coating
that can protect the interface areas from adhesive interactions due to the reformations of
dangling carbon atoms is around 40 at% [52,58]. From the atomic-scale point of view, this
mechanism is attributed to the charge density redistribution and the positive hydrogen pro-
tons’ repulsive forces, which suppress the adhesion interactions and produce low-friction
outcomes [56]. It can be seen that the hydrogen atoms play a significant role in the DLC
passivation mechanism. Its presence in the matrix of amorphous carbon would soften the
structure by increasing the void density and/or releasing the intrinsic pressure [17].

Among the aforementioned film structures, the a-C:H coating has been highlighted
as the only DLC film that can achieve a lower than 0.01 friction outcome [56,59,60]. This
can be explained by its unique structure with sufficient sp2 and H contents, which can
effectively process both “friction-induced graphitization” and passivation mechanisms
during the sliding process [55]. In contrast, for a high sp3 portion and hydrogen-deficient
coating in ta-C or nanocrystalline diamond, the long continuous graphitization process
without a suitable saturation can easily result in a high-friction outcome and catastrophic
adhesive wear. Furthermore, another major issue with the sp3-rich DLC films that has
significantly restricted their wide employment is their low absorption strength to the
base substrate [61]. This can be explained by the association of the sp3 bonding with the
compressive stresses of the DLC film [61–64]. To reduce the residual stress and improve
the films’ desired mechanical properties, the introduction of functional metallic atoms as
doping elements and/or interlayers is recognized as one of the most effective approaches,
as demonstrated by numerous studies [22,23,65]. It has been widely acknowledged that
the graphitic degree of carbon-based tribofilms can be promoted by providing the carbon
matrix with such catalytic metals as Cu, Re, Pt, Pd, and Ni during the manufacturing
process [57,62]. Meanwhile, to increase the DLC coating’s sp3 bonding portion without
weakening its adhesion, the use of Cr or Al interlayers could be considered [62,66].

According to Zhou et al. [65], many techniques to deposit the DLC coating on a tar-
get substrate have been introduced, with plasma-enhanced chemical vapour deposition
(PECVD), physical vapour deposition (PVD), and chemical vapour deposition (CVD) cate-
gorized as the most common ones. Among these, magnetron sputtering as a PVD approach
has been widely employed in many industrial fields. This approach utilizes energetic ions
produced from the discharge plasma to bombard the target surface [22]. The popularity of
the magnetron sputtering method can be explained by the diversity of power supplies like
direct current, radiofrequency, etc., which can be monitored to tailor the desired carbon-
based tribofilm structures [65]. Moreover, it is clear from Al Mahmud et al. [22] that such
deposition techniques as plasma-activated chemical vapour deposition, plasma immersion
ion implantation and deposition, or ion beam deposition have also received much interest
due to their flexibility. In general, their working temperatures usually range between sub-
zero and 400 ◦C. Furthermore, etching time, bias voltage, and carbon-precursor gases (like
acetylene [65], methane [67], butane [68], etc.) are also important working parameters that
can be controlled in order to achieve the target carbon-based coatings. Detailed advantages
and disadvantages of each deposition approach can be found in the work performed by
Hainsworth et al. [69].

2.2. Carbon-Based Tribofilms Produced by Catalytic Coatings

Although DLC coatings have already proven their lubricating functions in
practice [48,49], their limitations come from the restricted deposition thicknesses and
easy-delamination characteristic that will require redeposition after a long time of opera-
tion [26]. To overcome these disadvantages, attention has been paid to trigger the in situ
formation of these carbon-based films via the tribological approach, which is based on
tribochemical and/or tribocatalytic reactions [70,71] to replenish the carbon-rich layers
from carbon-precursor sources [26]. In the pioneering work of Erdemir et al. [36], by
coating the AISI52100 steel surface with copper-rich clusters through sputtering MoNx-Cu
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nanocomposite, the 10 h ball-on-disc tribo-experiment under 1.3 GPa normal pressure at
room temperature results in a steady coefficient of friction (COF) of 0.08. This result is
lower than the uncoated substrates in fully formulated oil (containing ZDDP) with a COF of
about 0.1 (Figure 3a). In addition, the wear loss of the ball against the coated steel (with 7.35
× 10−15 m3) is also significantly lower than the ones against the uncoated steels (with 1.26
× 10−15 m3 and 1.34× 10−12 m3 in the sliding tests with fully formulated oil and pure PAO
10 oil, respectively). Along with the mechanical enhancement of the MoNx-Cu coating [9],
the outstanding tribological performance of this coating was explained by the formation
of carbon-based tribofilm from the PAO10 oil base. Its Raman spectrum was significantly
similar to the graphitic DLC coating with a high sp2 bonding portion. Moreover, this
was also verified via the analysis of the resultant wear debris using electron energy loss
spectroscopy (EELS), where graphite-like carbon nanocrystals (with 82% sp2-portion) were
detected. This study has paved a pathway to utilize active metallic atoms within hard
coatings to promote the formation of carbon-based tribolayers and further advance their
lubricating properties [72–74]. For example, using the same coating MoNx with Ag dopant,
Xu et al. [73] demonstrated the ability to form onion-like carbon tribofilms from different
hydrocarbon precursors. In this work, the rotation tribotests of 1-octadecene, octadecane,
and oleic acid lubricating mediums have been carried out under 0.57 GPa Hertzian pres-
sure at room temperature. According to the experimental outcomes (Figure 3b), the test
of MoN-Ag coating with octadecane resulted in the best tribological performances, with
just 0.62 × 10−6 mm3/Nm wear rate and 0.1 friction. The outstanding lubrication of this
medium was later explained by its saturated structure, enabling strong adsorption on the
active Ag cluster without the loss of amorphous carbon yield due to the CO2 formation
from the –COOH group.
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inspirited study by Xu et al. [73]. Reprinted with permission and Copyright from Elsevier 2023.
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Further works utilizing the same concepts of catalytic coatings were conducted with
pure catalytically active alloy films. In the studies of Curry et al. [75], Pt-Au alloy film
was introduced as a novel coating with an extraordinary antiwear property due to the
thermally stable nanocrystalline of the alloying characteristics. The film Pt0.9Au0.1 of 2µm
thickness deposited on 440PH stainless steel discs has a nanohardness of 7.1 ± 0.4 GPa.
It slid against Si3N4 balls and sapphire balls as harder counterparts (with 15 and 25 GPa
nanohardness, respectively) under 1.1 GPa maximum Hertzian pressure and 105 passes
of 1 mm/s sliding speed at 20 ◦C. The maximum result wear rate of the disc was just
3 × 10−9 ± 10−9 mm3/Nm, which can be classified as atomic attrition [76]. The resulting
friction was relatively high (ranging between 0.25 and 0.3), which can be explained by “third
body” sliding. It is concluded that the wear property depends on the bulk characteristic,
while the friction performance is attributed to the shear layer. To further investigate
the tribochemical potential of this coating, the authors conducted similar tribotests with
sapphire balls in a nitrogen-rich chamber containing ambient organics and adventitious
carbon [77] (Figure 4). In this work, the friction was surprisingly decreased to just about
0.01, where the formation of 50–200 nm thick carbon-based tribofilms, which the authors
claimed as hydrogenated-DLC-liked tribofilms, mixing with Pt-Au nanoparticles, was
found on the worn surface. The formation of the resultant carbon-based tribolayer was
attributed to the catalytic effect of both Pt and Au atoms on the organic species [78–80].
More importantly, its frictional outcome agrees well with the antifriction performance of
a-C:H film in dry N2 sliding conditions [32]. In addition, the structural similarity of the
resultant carbon-based tribolayer to the chemical vapour deposit (CVD) a-C:H coating (with
20% H content) was compared via Raman analysis. Combined with the work performed by
Erdemir et al. [36], it is clear that the structure of catalytic carbon-based tribolayer could
be tailored based on the employment of different active metals, hydrocarbon precursors,
and/or sliding conditions [81]. As a result, the later study by Shirani et al. [82] reported
the promotion of highly graphitic carbon-based tribofilm when the tribotest with Pt-Au
alloy was performed in ethanol ambient. Meanwhile, further research by DelRio et al. [83]
optimized the performance of this tribolayer by altering the Pt and Au contents within the
target coatings.
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2.3. Carbon-Based Tribofilms Produced by Organic Additives

The employment of functional organic carbon-precursor additives, of which cy-
cloalkane moieties are highly strained, has also been recognized as a distinctive way
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to form the in situ carbon-based tribofilm between two sliding surfaces [37]. Compared
to the hard catalytic coating approach, the deposition of these carbon-based tribolayers
is much more convenient, since it does not require any pretreatment before the sliding
process. Noticeably, in 2018, Johnson et al. [34] introduced cyclopropanecarboxylic acid
(CPCa) as a promising sulphur-free and phosphorus-free additive for automotive engine
oil. By dissolving 2.5 wt% CPCa in PAO4 oil, remarkable tribological performances can be
clearly observed with an average 93% wear rate reduction and 18% friction reduction at
room temperature, 0.05–0.2 m/s sliding speeds, and 10–20 N normal loads (Figure 5). From
the Raman analysis of the CPCa samples’ wear tracks, a similar configuration between the
obtained carbon-based films and the commercial hydrogenated DLC coating was detected.
Because the triboexperiments were carried out without any added catalysts, it is clear that
CPCa performed as a carbon-precursor additive. Particularly, the cycloalkane fragmen-
tation was confirmed to be triggered under high contact pressure and flash temperature,
and eventually promoted the carbon-rich film. Further computational outcomes detected
the polymerization process from CPCa fragmentation to promote hydrocarbons with high
molecular weight [40]. These processes were later found to be associated with the strong
absorption of the carboxyl group (–COOH) on the steel substrates [37,39,84].
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Figure 5. Friction (a) and wear (b) outcomes of PAO4 + CPCa compared to PAO4 under different
sliding conditions at room temperature, and a FIB milling sample confirming the formation of
dark carbonaceous tribofilm at the sliding surface of PAO4+CPCa tribotest (c) [34]. Reprinted with
permission and Copyright from Springer Nature 2017.

Besides the cyclopropane moiety, such carbon-precursor additives with the cyclobu-
tane group as cyclobutanecarboxylic acid (CBCa) are also found to promote polymeric
carbon-based tribolayers under severe sliding conditions. However, according to
Ma et al. [37], this moiety exhibits a much more stable characteristic, which dissociates and
polymerizes much more slowly, resulting in inferior tribological performances compared
to the cyclopropane one’s tribotest under the same testing conditions (Figure 6a). Also, in



Lubricants 2023, 11, 327 9 of 33

this work, cyclopropane-1,1-dicarboxylic acid (CPDCa) additive containing two carboxyl
groups exhibited the best antiwear and antifriction properties in trimethylolpropane tri-
oleate (TMPTO) base lubricant. By employing the molecular dynamics (MD) simulation,
the superior performance of dicarboxylic acid additives was explained by their stronger
binding strength on the sliding substrates than the monocarboxylic ones, resulting in neg-
ligible wear outcomes (Figure 6b). Finally, apart from the aforementioned additives, the
polymeric carbon-based tribofilms activated from other organic molecules like n-butyl
acrylate [85], α-pinene [86,87], allyl alcohol [47], etc., are also investigated prior to the
practical applications.
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Along with the functional additives, the chemical nature of the base lubricants can also
exert dominant influences on the structures of in situ carbon-based tribolayers [88,89]. This
has been highlighted in the current study by Rouhani et al. [35]. In his work, the four-ball
tribo-experiments were carried out to evaluate the boundary lubrication performance of in
situ carbon-based tribofilms generated from pure palm oil (PO), palm oil formulation (POF),
mineral oil (MO), and mineral oil formulation (MOF), in which PO is Triacylglyceride (TAG)-
based, which has received a lot of interest due to its ecologically friendly characteristics [90].
According to the four-ball tests (Figure 7), PO performs worse than MO in terms of seizure
resistance at higher loads due to its reactive allylic protons. POF and MOF performed better;
however, POF shows higher resistance to seizures than MOF at severe loading conditions.
The authors believe that the antioxidants in the POF gave sufficient chemical protection to
the TAG molecules, while surfactants enhanced the wettability of the steel, and viscosity
modifiers optimized fluid properties. The Raman analysis of the resultant tribofilms from
the POF oil compared to the one from MOF is demonstrated in Figure 7. Accordingly, at
low experimental loadings, both POF and MOF produced carbon-based tribofilms that
exhibited the resultant structure similar to a-C:H. Once the testing load increased, leading to
an increase in seizure, the transformation from a-C:H to a-C, and eventually nanocrystalline-
graphite-like structure (ncG), occurred [91], before the oil-based lubricants failed at the
highest 400 kg load. The authors concluded from the Raman analysis that MOF oil is found
to graphitize much easier than POF oil due to the appearance of aliphatic chains within the
MOF oil base. These chains can promote kerogen formation [91–93], thus accelerating the
graphitic transformation of resultant carbon-based tribofilms when the experimental load
goes up. Combined with the corresponding tribological outcomes, the study concluded
that the rapid graphitization of the polymeric carbon products can easily lead to early oil
failure due to the failure in establishing the a-C tribofilms.
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2.4. Carbon-Based Tribofilms Produced by Catalyst Additives

Beyond the novel hard coating developments, interest in the catalyst agents has also
spread to the lubricating nanomaterial investigation. For instance, Hu et al. [41] demon-
strated the carbon-based tribofilm structure, which was formed via the catalytic effect of Ni
nanoparticles under extreme-pressure conditions. It should be noted that nanoparticles
have also been considered as another modern extreme pressure additive. They enter the
microroughness to polish the interfacing surfaces during the sliding process, of which
the four tribological mechanisms that allow for “smooth” contact from nanoparticles in
oil lubrication are rolling, protective film, mending, and polishing effects [94,95]. Among
them, the nickel nanoparticle emerges as one of the softest nanoparticles, with the low-
est melting temperature, which is more beneficial for promoting a compact protective
film on the contacting area via the nanoparticles’ sintering by flash temperature [96]. In
this example, cubic Ni nanoparticles with a 21.3 nm average size were synthesized from
nickel formate and oleylamine in order to enhance their dispersion in the PAO6 oil base.
Their test concentration in base oil was 1 wt%. The ball-on-disc tribotests were carried
with 0.05 m/s sliding speed and 1800 s duration under the 100 N normal load. The
experimental disc was made of 304 stainless steel, while the ball’s material was GCr15
steel. From the experimental results (Figure 8), cubic Ni nanoparticles exhibited a re-
markable tribological performance under extreme-pressure conditions. By employing the
nanoadditive, the friction was dramatically reduced from 0.4 to around 0.1 (Figure 8a).
Meanwhile, the average disc wear rate of the PAO oil containing Ni nanoparticles was just
0.89 × 10−6 mm3/Nm, which was ~92% lower than the pure oil test (11 × 10−6 mm3/Nm)
((Figure 8b). Further analysis of the Ni test at 100 N demonstrated a compact film formation
on the wear tracks that contained a high amount of nickel, carbon, and oxygen elements.
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This indicated that during the sliding process, Ni nanoparticles had entered the interfacing
area. Then, these particles oxidized partially and created an iron–nickel oxide layer with
high binding energy. After that, the embedded Ni nanocrystals further promoted the
carbonizing process of based oil to create a DLC-based layer with a high graphitization
degree, resulting in low-friction outcomes (Figure 8c).
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On the other hand, the concept of utilizing active elements in promoting and/or
controlling in situ carbon-based material has also been applied in current research of 2D
nanomaterials like layered double hydroxides (LDHs). It should be noted that LDH has
already emerged as a “green” additive [97] that can achieve superlubricity performance
in lubricant research [98] thanks to their manageable structures [99,100] as well as the
outstanding shearing capability [101,102]. These nanomaterials are also famous for their
catalytic applications, where many of which are well known as functional catalytic agents to
promote the formation of helical carbon nanotubes, carbon nanofibres, and CNT/graphene
hybrids from carbon-precursor gases [103–106]. Therefore, by utilizing both lubrication
and catalytic functions of NiAl-CO3 LDH [107,108], we have successfully advanced the
tribological performances of CPCa under severe sliding conditions at different tempera-
tures [109]. In this work, extreme boundary rotation tribotests, of which the lambda value
was just 0.09, have been carried out under 25 ◦C, 50 ◦C and 100 ◦C. It is clear from the
tribotest outcomes (Figure 9) that the combination of 2.5 wt% CPCa and 0.1 wt% NiAl-CO3
LDH in PAO4 ambient (CPCa + 0.1%LDH) results in the best tribological performances
at all experimental temperatures. At room-temperature tests, the superior lubricating
property of CPCa + 0.1%LDH was dominantly attributed to the easy exfoliation of the
2D nanomaterial’s layered structure [110]. Once the testing temperature increased, the
formation of hierarchical tribofilms was observed, where the Ni-based phases within pro-
tective interlayers from LDH were found to exert the catalytic effect, replenishing the upper
carbon-based tribolayers. These unique multilayer tribofilm promotions not only stabi-
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lized the performance of soft and low-absorption-strength carbon-based tribolayers from
CPCa under high-temperature tribotests, but also exhibited better antiwear and antifriction
properties than the conventional ZDDP tribofilm under similar sliding conditions.
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CO3 LDH (CPCa + 0.1%LDH) compared to other benchmark lubricants under 100 mm/s sliding
speed and 10 N normal at 25 ◦C (a,b), 50 ◦C (c,d), and 100 ◦C (e,f) [109].

3. Tribochemistry and Mechanistic of the Formation of Carbon-Based Tribofilms

Based on the previous section, the contribution of flash temperature and the shear
stress at rubbing contacts have been highlighted as the key factors for the formation nature
of in situ carbon-based tribofilms. According to the recent review of Berman et al. [26],
the mechanism underlying the carbon tribofilms’ formation is the tribocatalysis process
induced by the catalytic metal surface. There are two major steps involved in the formation
of carbon tribofilms: (i) the dissociation of the C–H bonding and the scissoring of the C–C
backbone to form active radical carbon fragments (Figure 10a); and (ii) the polymerization
and reconstruction of the fragments into solid carbon films (Figure 10b). In the very recent
study of Rouhani et al. [35], Raman analysis was used to track the chemical structure of
the thermal products from ancient oils on a wear track at different temperatures, which
qualitatively confirms these two steps’ formation of the carbon tribofilms. Qi et al. [80] used
density functional theory simulation to suggest that the formation of the carbon tribofilms
starts near the active metal surface where the energy barrier for the reaction step (ii) is
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reduced. Meanwhile, cyclic deformations due to subsequent shear stress produce energy
accumulation at metal surfaces, which also accounts for the scissoring and dissociation
of the hydrocarbon precursors during sliding in step (i). According to Wu et al. [40],
the rate-limiting step in carbon tribofilm formation is the fragmentation of hydrocarbon
precursors (e.g., CPCa), thus highlighting the important role of energy generated at the
sliding interface.
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Various studies have suggested several factors driving the increase in energy at the
rubbing surfaces, including flash temperature rise, pressure, triboemission, and shear-
stress-promoted thermal rise. Among these, flash temperature rise is the most common
factor believed by various researchers in the field. Flash temperature is defined as heat
generated when solid surfaces are rubbed together, which causes a local and transient
temperature rise at the contacting interface. Jaeger et al. [111] developed the moving heat
source theory to calculate the magnitude of this temperature rise, which shows a strong
dependence of flash temperature rise on the rate of heat generation, the speed of the moving
surfaces with respect to the steady contact, the thermal properties of the solid surfaces, and
the contact dimensions. The estimated flash temperature rise at the interface between the
ball and the disc for the Hertzian circular contact can be derived as:

θ =

.
Qin
r.K

0.5895√
J + 2.471

(1)

where K is the thermal conductivity,
.

Qin is the heat dissipation rate or total rate of heat
generation, J is a dimensionless speed of the particular surface relative to the contact, and r
can be treated as the Hertzian contact radius. According to the theory, the flash temperature
rise is substantial at high sliding speeds and can be used to explain the formation of
tribofilms with fast-moving contact systems. However, it fails to explain the formation of
the tribofilms at sliding speeds below 0.1 m/s where the boundary lubrication conditions
are often tested. In our current work [109], the estimated flash temperature rises at different
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testing temperatures are small, and they cannot be used solely to explain the formation of
the continuous carbon tribofilms as well as tribo-oxide layers. It should be noted that the
theory used to calculate flash temperature rises is based on the assumption of a Boltzmann
energy distribution at the macroscale, and it may not be true when accounting for the
very intense energy dissipation at individual asperity conjunctions. Indeed, the molecular
dynamic simulation conducted by Wu et al. [40] suggested an interfacial temperature rise
from 300 to 730 K at individual asperity contacts, which is sufficiently high to fragment the
hydrocarbon precursors, step (i); and trigger the polymerization and reconstruction of the
solid carbon films (ii).

In the theoretical work of Kajdas et al. [112], a new concept on the mechanism of tribo-
catalytic reactions was introduced, taking into account the important role of mechanical
forces on the chemical reactivity of the molecules. According to the authors, mechanical
energy is transformed into a flux of electrons/photons, termed as triboemission, in the
tribocatalysis process, which provides additional amounts of energy to the lubricating
systems. This triboemission may be responsible for tribochemical reactions between con-
tacting solids and lubricant molecules which can explain the formation of the carbon-based
tribofilms. The relationship between the modified coefficient of reagent (i.e., hydrocarbon
molecules in lubricant) reactivity αi and the mechanical energy acting on a tribological
system can be expressed as:

αi =
L− L0

Ae−
Ea

RT+ε
[(e0cos (k2L + k3)]t (2)

where (L − L0) describes a difference between the mechanical work performed, necessary
to reach the critical condition, between the observed tribological system and the reference
tribological system. Both L and L0 are a function of the applied load, sliding speed, and
rubbing time (t). T is the temperature of the boundary lubricant layer; ε is the energy taken
in any form other than heat introduced into the reaction space; e0 is a flux of energy emitted
by the surface of the solid as electrons or photons; k2, k3 and A are the constant values,
where k2 and k3 depend on the surface properties of the solid contacting elements. It can
be noticed from Equation (2) that part of the reactivity of the molecules depends on the
energy generated from the mechanical work performed, L, which is transported from the
external part of the solid elements to the contacting surfaces, i.e., the reaction systems.
This mechanical energy is responsible for a change (i.e., an increase) in the internal energy
of the reaction media which is expressed as C and is a multiplication between a ratio of
the trigonometric part and Arrhenius part and the time (t) of equation (2). It is believed
that the change in the internal energy is distributed into a liquid/fluid phase, which leads
to an increase in temperature in the lubricant. Meanwhile, the energy (ε) accumulated
at solid surfaces undergoes triboemission, in the form of electron or photon flux, to the
triboreaction space. These emissions can be absorbed by lubricants/additive molecules,
providing sufficient energy to the molecules to overcome the reaction barriers Ea. Thus,
conclusions in the new theory of Kajdas et al. [112] can be used to explain the ability of the
catalysis reactions in the tribological systems to proceed at temperatures much lower than
for static contact or traditional catalytic systems.

Apart from triboemission, additional energy responsible for tribochemical/tribocatalytic
reactions at the sliding interfaces may also come from the shear stress presented during
rubbing. The concept of physical and chemical reactions induced by applied shear stress
has been proposed since the last century, and the most used models to relate the chemical
reactions and the mechanical forces are the Eyring model [113] and the stress-assisted ther-
mal activation model of Arrhenius [114]. These models, in particular, are the foundations of
the development of the emerging field of mechanochemistry, which is devoted to studying
the influence of applied shear stress on the chemical reactions between different materials.
In tribological systems, mechanical forces are always presented in the form of shear stresses;
thus, these models are particularly relevant to explain the tribochemical reaction kinetics.
While the Eyring model uses a thermally activated cage model to explain the tribofilm
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formation from liquid lubricants, this model is limited in quantitatively analysing the
growth rate of tribofilms. On the other hand, the Arrhenius model provides a detailed
description of the influence of temperature and applied shear stress on the probability of
molecules undergoing physical and chemical processes, which can be further scaled up into
the rate constant of the tribofilm formation [114]. The simplest expression of the Arrhenius
model that describes the growth rate, k, is presented as:

k = k0 e−
E0−σ∆v

kBT (3)

where k0 is the pre-exponential factor, E0 is the activation energy or energy barrier for
chemical processes without applied shear stress, σ is the mean value of the applied shear
stress, ∆v is the activation volume, kB is the Boltzmann constant, and T is the absolute
temperature. According to Equation (3), the growth rate of the tribofilms is increased
due to the applied shear stress by a factor of eσ∆v/kBT. On the other words, the applied
shear stress reduces the activation energy or energy barrier for chemical processes to occur.
Figure 11a clearly depicts the influence of applied force (i.e., shear stress) on the activation
energy profile of a chemical reaction [115]. The solid line represents the energy path that
the chemical reaction follows over the potential energy plane from reactant to product
with no applied shear stress, where R is the reactant, TS is the transition state, and P is
the product configuration. Meanwhile, the dashed line shows how the energy profile
plummets with the applied mechanical force (i.e., shear stress). This model has been suc-
cessfully used to study the growth rate and kinetics of the ZDDP tribofilm formation under
boundary [116] (Figure 11b) and elastohydrodynamic (EHD) lubricated conditions [117].
Recently, in the study by Johnson et al. [34], this model was used successfully to qualita-
tively construct the activation energy plot for carbon tribofilm formation from CPCa versus
shear stress (Figure 11c), with an assumption that the carbon friction products accumulate
inside roughness grooves of the surfaces during contact, while friction is continually re-
duced until reaching a steady-state value, where the roughness grooves are filled with the
carbon tribofilms.
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formation from CPCa versus shear stress [34]. Reprinted with permission and Copyright from
American Chemical Society 2012, Science 2015, and Springer Nature 2017, respectively.
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4. Characterizations of Carbon-Based Tribofilms by Analytical Techniques

Along with the recent breakthrough achievements in carbon-based tribofilm investiga-
tion, the suitability of the analytical technique is also highly focused to solely characterize
the nature of the resultant tribolayer. This section will provide basic information of the
most common analytical tools and their employments in this research field.

4.1. Raman Spectroscopy

Raman is considered a useful technique that has been widely utilized in the majority
of studies requiring the characterization of the carbon materials’ bonding states [65]. The
popularity of this technique comes from its nondestructive characteristics and availability,
which allows for the direct analysis of the experimented surfaces [69]. The common carbon
materials’ Raman signals are illustrated in Figure 12a, in which the G band (~1560 cm−1)
is associated with the stretching of the carbon signal with the sp2 bond in the structure of
crystalline graphite, while the D band (~1360 cm−1) corresponds to the edges’ vibrations,
which are associated with the noncrystalline and/or the disordered characteristic within
the carbon matrix [30,118]. It should be noted that the Raman spectra of the carbon-based
materials with higher crystal degrees will appear with the sharper D peak and G peak [119].
Furthermore, the obtained ID/IG fraction from Raman outcomes has been evaluated as
useful data to estimate the carbon matrix’s sp2/sp3 ratio, where ID and IG are amplitudes
of D and G peaks, respectively [69].
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Figure 12. (a) Typical Raman signal of the common carbon materials [53]. (b) Raman signals of
CPCa’s experimental products compared to H-DLC at room temperature and 3500C and (c) Raman
signals of friction product after being rinsed by hexane and CH2Cl2 DCM and H-DLC layer before
and after immersion in DCM for 20 h [40]. Reprinted with permission and Copyright from Elsevier
2002, and American Chemical Society 2019, respectively.

Despite its convenience, the use of the Raman technique alone is not the sole approach
to fully characterize the nature of carbon-based tribofilm. This had been indicated in
the CPCa’s tribofilm-forming mechanism study by Wu et al. [40]. In this work, a similar
triboexperimental material and experimental duration (30 min) were carried out at 10 N
and 0.2 m/s sliding speed under the boundary lubrication regime. As expected, CPCa
effectively improved the tribological performance of PAO oil. The formed dark-coloured
deposit as the frictional product was collected by cleaning the wear track with hexane.
Its measured thickness was around 2.60 ± 0.08 µm. Meanwhile, the thermal deposition’s
carbon material was produced by mixing 0.3 g CPCa with 0.1 g Fe3O4 as the typical oxide
phase of the steel surface [120] at 200 ◦C for three hours. Moreover, H-DLC as standard
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DLC film with a 40% hydrogen portion, which was deposited on the silicon substrate
via chemical vapour deposition from a gas mixture of 25% methane and 75% hydrogen,
was also compared with the friction and thermal products. After that, Dichloromethane
(CH2Cl2) was used to dissolve the obtained residual product before being filtered and dried.
According to the Raman analysis (Figure 12b), the thermal product and friction product
produced the same Raman peaks as H-DLC at room temperature. However, their resultant
peaks had been removed when the temperature was elevated to 350 ◦C.

Moreover, the friction product was detected to be dissolved by CH2Cl2 (DCM), while
the H-DLC’s Raman signal remained intact after 20 h immersion in CH2Cl2 solution. There-
fore, it is clear that the in situ carbon-based tribofilm from CPCa had a similar configuration
to the thermal product, and they are not similar to DLC film. Further computational out-
comes using reactive force field (ReaxFF) and MD simulations detected the polymerization
process from CPCa fragmentation to promote hydrocarbons with high molecular weight.
As a result, it can be concluded that the Raman analysis alone may not be enough to
conclude the carbon-based tribofilm nature and/or structure, especially the one from the
oil-soluble additive where the oil decomposed product and/or surface’s oxide particles can
exert certain effects on the obtained spectra [121,122]. Similar concerns on characterizing
carbon-based tribofilms using Raman were also raised in a very recent study [123], in
which experimental evidence demonstrates that the D- and G-band features in Raman
spectra of carbon-based tribofilms may originate from the photochemical degradation of
carbonaceous organic matters induced by the Raman laser. Thus, the observation of the
D- and G-band features in Raman spectra is not sufficient to confirm that DLC, a-C, or
graphitic species are produced via tribochemical reactions assisted by interfacial friction or
shear of organic molecules.

4.2. X-ray Photoelectron Spectroscopy (XPS)

Besides Raman spectroscopy, the use of X-ray photoelectron spectroscopy (XPS) as
a surface-sensitive analysis is also very common in characterizing carbon-based films.
The function of this technique is to qualify the elemental states as well as their chemical
composition, using the photoelectric effect to define the elemental formation and their
bonding network. Therefore, compared to Raman, the XPS technique can provide more
details relating to the bonding configuration, because it indicates the specific carbon atom’s
chemical bonding in the C 1 s core-level spectrum [124]. Accordingly, the sp2/sp3 ratio
of the carbon-rich films could be obtained via such deconvoluted peaks as C–C sp3 and
C–C sp2, centring at 285.2 eV and 284.3 eV binding energy, respectively [125,126]. This
technique has been used predominantly to characterize carbon-based films, assuming that
the carbon-based tribofilms have chemical compositions like DLC films. From that, the
hydrogen content of the carbon-based films can be estimated via the following equation:

sp2/sp3 =
8− 13[H]

6[H]− 1
(4)

where [H] denotes the total hydrogen content of the coatings/films. The correlation
between the ID/IG fraction of Raman outcomes and the sp2/sp3 ratio collected from the
XPS technique has been demonstrated in the work performed by Wei et al. [66]. In this
study, the influence of Al and Cr as two metallic interlayers on the sputtered DLC films
via the plasma-enhanced chemical vapour deposition (PECVD) approach on the SUS304
steel and silicon substrates was investigated. Two different interlayer thicknesses, namely,
20 nm and 40 nm, were analysed. Detailed calculated thermal stress via the finite element
analysis of all DLC films can be found in Table 1. Moreover, the bonding structure of these
resultant DLC films was also demonstrated. Particularly, the ID/IG was collected by using
Raman spectroscopy outcomes. XPS was employed to measure the hydrogen, sp2, and sp3

contents in the DLC layers. In short, the hydrogen and sp3 contents inside the DLC films
on steel substrates increase with an increase in metallic interlayer thickness. In contrast,
these contents inside DLC layers on silicon substrates decrease with the higher metallic
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interlayer thickness. It should be noted that the higher the sp3 content, the higher the
hardness of DLC film would be [50]. In addition, the increase in sp3 content also results
in the increase in ID/IG ratio, indicating lower graphitic carbon-rich layer formation with
lower sp2 content. As a result, it is considered to employ the XPS technique to detect the
exact bonding ingredient within the carbon-rich matrix.

Table 1. Obtained bonding data of all resultant DLC layers [66]. Reprinted with permission and
Copyright from Elsevier 2009.

Coating Systems ID/IG sp2/sp3 sp3/(sp2 +sp3)
(%) [H]total (%) Thermal

Stress (MPa)

DLC-Si 0.712 0.95 51.2 48.0 16.87

DLC-(20 nm Cr)-Si 0.669 1.64 37.9 42.2 36.50

DLC-(20 nm Al)-Si 0.673 2.01 33.2 40.0 55.30

DLC-(40 nm Cr)-Si 0.664 2.17 31.5 39.1 48.64

DLC-(40 nm Al)-Si 0.296 2.65 27.4 36.9 75.95

DLC-Steel 0.939 1.07 48.3 46.7 179.70

DLC-(20 nm Cr)-Steel 1.553 0.50 66.6 53.1 178.10

DLC-(20 nm Al)-Steel 1.361 0.80 55.6 49.5 115.00

DLC-(40 nm Cr)-Steel 1.488 0.48 67.6 56.0 177.10

DLC-(40 nm Al)-Steel 1.604 0.64 61.0 51.3 111.30

Also, the study by Wei et al. [66] successfully highlighted the usefulness of metallic
interlayers in advancing the adhesion of carbon-based coating on the steel substrate. From
the collected atomic force microscopy (AFM) outcomes, describing the morphology of
DLC films under peeling conditions, these metallic layers have successfully enhanced the
DLC film’s adhesion to the steel substrates. In contrast, both Cr and Al interlayers failed
to support the DLC film on the silicon bases. This discrepancy can be explained by the
difference in the coefficient of thermal expansion (CTE) between the DLC and the silicon
substrates [64]. The metallic interlayers would have a beneficial effect on the DLC film’s
adhesion with a small CTE deviation between the DLC film and the steel surface, resulting
in lower thermal stress. Meanwhile, in the case of a high CTE difference, like the one with
the silicon surface, the introduction of these metallic layers would increase the thermal
stress that negatively affected the absorption of the DLC layer.

4.3. Scanning/Transmission Electron Microscope (S/TEM) and Electron Energy Loss Spectroscopy
(EELS) Combination

Along with the analysis tools like Raman and XPS, electron energy loss spectroscopy
(EELS) has also been recognized as one of the most typical techniques that can be employed
to analyse the chemical structure of the resultant tribofilm, especially carbon-based tri-
bofilm. This technique obtains the energy loss of the electron that undergoes the inelastic
scattering, including plasmon excitations, Cherenkov radiation, inner shell ionizations,
intra- and intertransitions, and phonon excitations, in which, it is useful to detect a mate-
rial’s elemental components via inner-shell ionizations. For instance, the needed energy
amount for an inner-shell electron removal of the carbon atom is about 285 eV. If the col-
lected energy is 285 eV lower than the input one, the appearance of carbon in the specimen
can be confirmed. Moreover, based on the obtained energy loss range, the atom types
will also be determined. When EELS is combined with TEM, it can provide information
relating to the chemical or structural characteristics of a solid at the atomic scale [127]. This
combination has been considered a useful approach to analyse the resultant tribofilm with
the hierarchical structure.

A typical instance of how the EELS technique can be employed to analyse the carbon-
based layers in the hierarchical tribofilm is the work conducted by Pham et al. [119]. In
this work, EELS analysis was conducted on the tribofilms at identified areas to obtain the
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orientation of graphite crystal in the resultant tribofilm structure. The integration window
approach was applied to obtain the sp2 hybridization semiquantification, in which the C-K
edge spectrum’s Iπ*

Iπ*+Iσ*
ratio was determined by employing the window energy of 15 eV

and 8 eV for the Iπ* + Iσ* and Iπ* features, respectively. From that, the fraction of sp2-C can
be estimated via the following equation:

sp2

sp2 + sp3 =

Is
π*

Is
π*+Is

σ*
Ir
π*

Ir
π*+Ir

σ*

(5)

where IS is the integrated intensities of the resultant tribofilm, while Ir represents the
reference value of pyrolytic graphite with a 100% sp2 bonding fraction. The calculated

Ir
π*

Ir
π*+Ir

σ*
ratio as the reference value based on the EELS spectrum of pyrolytic graphite was

0.288. In the case of the resultant tribofilm from the triboexperiment with the graphene-
free oil sample, the determined sp2 fraction in the carbon matrix was just 32%. This
indicated the formation of the amorphous carbon-rich layer with a dominant sp3 fraction
originating from oil decomposition within the polyphosphate matrix of the ZDDP film [128].
Meanwhile, the tribotests with GNPs resulted in tribofilms with hierarchical structures. It is
clear from their collected STEM-EELS analysed images (Figure 13a) that the sp2 fraction of
the resultant carbon-rich layers varied within their thickness. It should be noted that these
collected spectrums are always the intermediate value between the added graphene and
the amorphous carbon from the oil base. Due to the appearance of GNP, the sp2 fraction
of these layers was more than double compared to the graphene-free sample. Moreover,
the significant high sp2 fraction that can be detected near the steel substrates is attributed
to the mechanical reinforcement effects of added graphene nanoplates (GNP). They have
been exfoliated or deformed into fewer-layered graphene and compacted into the oxide
layer of the steel substrates, increasing the interfacing areas’ hardness (as verified by the
supporting nanoindentation tests). In the case of the oil sample with 0.5 wt% graphene
(Figure 13b), the formation of the large graphene clusters within the carbon-based films
near the steel substrates can be further verified alongside the low-thickness ZDDP film
promotion. Such clusters can be easily identified due to their parallel orientation to the
beam, resulting in strong scattering.
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Figure 13. STEM-EELS line analysis of the resulted tribofilms from the tribotest with formulated oil
containing (a) 0.05 wt% GNP and (b) 0.5 wt% GNP [119]. Reprinted with permission and Copyright
from John Wiley and Sons 2019.
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Another noticeable example that utilizes the EELS technique to distinguish different
types of carbon-based nanostructure is the work by Ramirez et al. [129]. In this work,
the Ni-VN coating (deposited on AISI 52100 steel substrate) was applied to promote the
formation of carbon-based tribofilm with numerous nanostructures from methane gas (CH4)
as the carbon-rich fluid. From the experimental outcomes, the coated contacting surfaces
exhibited a better tribological performance compared to the uncoated ones with around
50% lower friction and more than two orders of wear reduction. The superior lubricity
of this coating can be explained by its ability to promote the tribochemical reaction that
dissociatively extracts the methane gas to create carbon-based tribofilm on the Interfacing
surfaces [36,130]. The generated blackish wear particles around the contacting areas were
also collected and analysed using the EELS technique combined with HR-TEM. It is clear
from the characterized outcomes that there were main types of wear particles, including
the hollow-centred carbon onion with 5–10 nm diameter mixing with the 1- to 10-layered
graphene (Figure 14B,C), and disordered graphitic structures wrapping agglomerated
debris (Figure 14D,E). Further analysis by EDS detected a small amount of V and Ni inside
the nano-onion, verifying the catalytic effect of these elements (Figure 13f). It should be
noted that the d-orbital of the Ni element with the partially filled atomic structure can
adsorb the hydrocarbon molecules, activate the dehydrogenation process, and create planar
sheets of graphene [131], while VN protects the film from thermal degradations [132]. On
the other hand, the detected agglomerated debris comprises oxide compounds, including
NiO2, V2O3, and α-Fe2O3 nanoparticles. The defect of their surrounding graphite structure
compared to the carbon onion and graphene is illustrated in Figure 14G with the sp2 portion
of 58 ± 2%.
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4.4. Mechanical Analysis

To examine the mechanical properties of the tribofilms or deposited thin coatings,
nanoindentation and nanoscratching can be considered as the most typical approaches.
In particular, the nanoindentation experiment is conducted by applying the normal force
through an indenter on the investigated specimens [133]. From that, the elastic (or Young’s)
modulus (E) and hardness (H) of the tribolayer and/or deposited coating can be obtained.
Meanwhile, the nanoscratch one is carried out where the indented punch is laterally plough-
ing across the experimental surface [134]. Accordingly, the adhesion and/or interfacial
characteristics of the studied sample can be evaluated. One of the DLC film’s problems
comes from its internal residual stresses, which result in the easy-delamination character-
istic (or the low adhesion strength) [64,66,135]. Particularly, it has been detected that this
coating’s adhesion strength is inversely proportional to the residual stress magnitude [136].
It is clear from Donnet et al. [48] that internal compressive stress is generated during
the deposition processes. Its magnitude is attributed to the kinetic energy of sputtered
species interacting within the film. There are three residual stress contributions: intrinsic
stress, extrinsic stress, and thermal stress. Among these, intrinsic stress is usually high-
lighted as the main contributor promoting the overall residual pressure. It directly relates
to the films’ morphology and depends on the deposition parameters, which determine
the striking particles’ kinetic energy within the film during the sputtering process. The
physical basis that can quantify the intrinsic stress can be found in the works performed by
Windischmann et al. [137] and Davis et al. [138]. Meanwhile, such external impurity atoms
as oxygen and hydrogen also exert considerable influences on the microstructure of the
resultant films. They promote lattice distortions that can decrease grain energy, resulting
in volume expansion and allowing for the development of internal compressive stress in
terms of extrinsic contributors [139]. To determine the overall residual stress magnitude of
the deposited DLC, the methods based on the measurement of film-substrate structures’
deformation have been indicated as the most conventional approaches. Their basis is
significantly related to the fundament of beam theory [140]. In particular, the deviation of
the X-ray diffraction (XRD) peak will be utilized to calculate the residual stress (σ) of the
deposited film on such crystal substrate as a silicon wafer by the following equation:

σ = −
(

ES

1− υS

)(
d− d0

d0

)
(6)

where d and d0 represent the crystal planes’ interplanar distances with and without the
presence of stress, respectively, while υs and Es are the substrate’s Poisson’s ratio and
Young’s modulus, respectively. Besides the peak shift in XRD spectra, the change in G-peak
location in the Raman signal can also be used to determine the residual stress of DLC
coating based on the following formula:

σ = 2Gf

(
1 + υf
1− υf

)
∆ω
ω0

=
Ef

1− υf

∆ω
ω0

(7)

where υf, Gf, and Ef are the film’s Poisson’s ratio, shear modulus, and Young’s modulus,
respectively. Meanwhile, ∆ω =ωf − ω0 represents the shift of the G peak in the resultant
DLC film compared to the reference valueω0 = 1580 cm−1.

For instance, the chromium (Cr) layer as a metallic intermediate, which is well-known
for its ability to improve the DLC film absorption [66], was investigated by
Shahsavari et al. [141]. In this work, different Cr interlayer thicknesses, including 10
nm, 20 nm, 40 nm, and 80 nm, were predeposited to the p-silicon via the direct current
sputtering method (denoted as Cr1, Cr2, Cr3, and Cr4, respectively), before being coated
by the DLC layers from CH4 gas using the PECVD approach. The mechanical properties
of the DLC films were examined by the nanoscratch and nanoindentation experiments
using the Berkovich indenter in the Hysitron Nanomechanical instrument. The applied
normal load in the nanoscratch tests was controlled to go up to 3000 µN within a 30 s
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duration and a 4 µm scratching distance. The outcomes of the scratching experiment can
be demonstrated in Figure 15. Accordingly, the plastic deformations of the DLC layers
on Cr3 and Cr4 samples were detected as shown by the blister formations that indicate
a low adhesion strength. Their friction coefficients were 0.15 and 0.12, respectively. In
contrast, outstanding elastic behaviours can be observed on Cr1 and Cr2 intermediate,
where no delamination owing to tip penetration was found. Their calculated H/E ratios
(from the 500-µN max load nanoindentation test) were 0.10 and 0.11, respectively, which
dedicates a slightly more elastic property of DLC film on Cr2 compared to the one on
Cr1. This was further confirmed by their determined residual stress using equation (7),
in which the magnitude of Cr2′s film with 213 GPa Young’s modulus and 1589 cm−1 G
peak shift was just 1.37 GPa. Meanwhile, the value of Cr1′s film with 166 GPa Young’s
modulus and 1593 cm−1 G peak shift was 1.59 GPa. Combined with prior surface analysis,
these results successfully highlighted the influences of Cr interlayer roughness, as well
as its nanoparticle distribution on the resultant mechanical behaviours of deposited DLC
coating. Particularly, sputtering on the Cr2 interlayer, which has the lowest roughness and
a superior homogeneity, resulted in the most durable DLC structure.
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permission and Copyright from Elsevier 2016.

It should be noted that mechanical analysis of the in situ carbon-based tribofilms by
nanoindentation is much more challenging than the deposited coatings, as the majority



Lubricants 2023, 11, 327 23 of 33

of the tribofilms are nanometre-thin, which may cause an influence of the substrate on
the obtained results. Thin tribofilms require careful investigation and examination of
the penetration depth as well as peak load to avoid indenting more than 10% of the
tribofilm thickness [142,143]. Despite this difficulty, few recent studies have implemented
nanoindentation in the context of nanoscratch or nanofriction to qualitatively examine
the nanoscale mechanical properties of the surface carbon-based tribofilms [35,109]. In
the study by Rouhani et al. [35], a long-shaft Berkovich three-sided pyramid diamond
indenter specially designed for the xSol stage was used for nanoscratch studies with a
ramping load function from 0 to 500 µN at different temperatures. The scratch test at
250 ◦C showed the self-healing of the surface films, and the authors believe that it was due
to rapid in-filling by newly formed a-C:H from palm oils. The hardness of the tribofilms
was also measured with a similar tip, using a single-indentation quasi-static load function;
however, the obtained hardness is similar to steel, which indicates the significant effect of
the substrate on the results. In a later study by Huynh et al. [109], nanofriction was used to
examine the surface tribofilms using the 150 nm diameter Berkovich diamond tip under
constant load scratching mode at 250 µN and a sliding speed of 0.67 µm/s. The nanofriction
curves obtained in this study show a distinct discrepancy between the areas containing
carbon-based tribofilms and the bare steel areas. In addition, the higher graphitic degree of
the carbon-based tribofilms in the system containing catalytic oxide tribolayers was also
recognized by lower-friction behaviour at high temperatures.

5. Compatibility of Carbon Tribofilms with Other Lubricant Additives

Progress in the research of carbon-based tribofilm formation at the interface has
raised the question about their compatibility with other additives, as formulated lubricants
often comprise multiple additives for multiple purposes apart from friction and wear
protection. During the development progress of DLC films for engine oil systems, there
have been several studies focusing on the compatibility between these carbon-containing
hard coatings and the additives within the commercial oils [144–149]. Since carbon-based
tribofilms comprise predominantly carbon and hydrogen, it is expected that their behaviour
will be similar to DLC films.

The interaction with the resultant ZDDP tribolayer [150–156] is usually interesting
since this is a conventional antiwear additive that has been employed in the majority
of practical engine lubricants [27]. In particular, the ZDDP-derived film may interact
well with lower than 20% H content DLC coatings, and/or the ones containing such
functional dopants as W and Si. For instance, Ren et al. [157] indicated a synergistic
effect between a-C:WC coating and ZDDP tribofilm in the reciprocating tribotest at 180 ◦C.
Meanwhile, Ruiz et al. [158] probed the performance of the resultant ZDDP tribolayer on
the ta-C surface by tailoring the mechanical properties of the deposited coating. Despite
the potential combination with DLC tribolayers, our current studies have reported the
competitive effects between ZDDP and carbon-containing additives. In the work performed
by Pham et al. [119], GNP as a modern friction modifier with the 2D layered structure [20]
was blended with Amour 10W-30 commercial engine oil to investigate its interaction
with existing ZDDP. The tribological results indicated that low-concentration graphene
(0.05 wt% or lower) lubricants will enhance wear alleviation, but friction will be increased.
In contrast, a concentration of graphene higher than 0.05 wt% will promote the tendency
of stacked GNP in the tribofilm, which improves the friction reduction, but the wear will
increase remarkably because of massive fine GNP particle aggregation, which destabilizes
the tribofilm integrity. Additionally, the tribolayer of GNP was found to inhibit the full
development of ZDDP film, evidenced by two separated regions of resultant tribofilms
and the reduction in ZDDP layer thickness in the carbon-rich area (Figure 16). A similar
issue was also detected when ZDDP and CPCa were blended together in the PAO4 oil
lubricant [122]. Particularly, the ZDDP tribolayer produced from this combination exhibited
a more discrete formation compared to the one of ZDDP alone. Along with the severe
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removal of carbon-based tribofilm from CPCa, the tribotest of this combination resulted in
a continuous increase in the frictional outcome and an unstable antiwear performance.
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Figure 16. Schematic of hierarchical tribofilm structures showing the competitive effect of graphite
nanoplates on the formation of the ZDDP tribofilms [119]. Reprinted with permission and Copyright
from John Wiley and Sons 2019.

Adapting to the modern trends of low-viscosity lubricant development where the
phosphorus and sulphur compounds are minimized [29], the DLC coatings were been
studied to optimize their interactions with other “green” additives like Glycerol Mono-
Oleate [159–161], fatty acid [162–165], etc. Noticeably, ultralow-friction outcomes origi-
nating from organic molecules and DLC coating interaction can be achieved by probing
their hydroxyl-terminated tribolayers [166,167]. For example, Long et al. [168] reported
a superlubricity friction outcome (0.004) along with a negligible wear rate by sliding an
AISI52100-steel ball against the ta-C coating in the glycerol medium. In this work, the
reciprocating tribotest was carried out under 386 MPa Hertz pressure at 50 ◦C. Based on
the analysis results using XPS and MD simulation, the ultralow frictional outcome was
attributed to the formation of a one-nanometre-thick film where the formation of iron
oxy-hydroxide (FeOOH) termination was found on both contacting surfaces. These termi-
nations are found to combine with water, glycerol, and/or decomposed glycerol molecules
to promote a functional fluid film, guaranteeing elastohydrodynamic lubrication during
the sliding process. A schematic demonstration of this fluid film can be found in Figure 17.

At the same time, inspired by the work performed by Erdemir et al. [36], the employ-
ment of lubricating nanomaterials containing active elements in promoting and managing
the performances of in situ carbon-based tribolayers is showing promise. Similar to Ni, Cu
nanoparticles are already famous for their outstanding lubricating properties [169]. It is
worth noticing that these nanoparticles have been found to exhibit a better synergistic effect
on the DLC coatings compared to those derived from ZDDP [170]. Especially, superior
catalytic and tribological properties of Cu to Ni were reported when these metallic particles
were blended with CPCa in the PAO4 oil lubricant [42]. Apart from our LDH work [109],
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the interest in active metallic particles also spread to the research of other lubricating 2D
additives. This can be evidenced by the work performed by Tang et al. [171], where the
catalytic Ag was dotted on the surfaces of black phosphorus to improve the performance of
this additive in PAO6 oil [172,173]. Meanwhile, besides the aforementioned combination,
the carbon-based tribolayer dissociated from CPCa was also found to be compatible with
the TiN coating, resulting in superlubricity outcomes [38].
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In general, it is clear that the employment of active agents has played a key role in the
interaction management between carbon-based tribofilm and other additives. Each agent
has exerted a unique influence on the resultant performance of the experimental carbon-
based tribolayer. As a result, to employ the lubricating property of carbon-based tribofilm in
practical applications, future research should focus on developing new additive packages,
where such phosphorus- and/or sulphur-based additives as ZDDP are completely removed.
However, with the emergence of new lubricant additives, complex interactions may occur,
leading to a larger number of additives being added when formulating new additive
packages. Larger additives are often required when the antagonistic effect happens between
the lubricant additives to compensate for the deficiencies of new base fluid alternatives.
Thus, studies on controlling interactions among additives are expected to become even
more challenging. This is where the prospect of developing multifunctional additives
comes as a game-changer. Advances in multifunctional lubricant additives are progressing,
which are driven not only by new materials/molecules [174] and improved properties of
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existing materials by functionalization [175], but also by new approaches to combine the
functional materials [176].

6. Outlooks

Several studies in recent years have demonstrated success in controlling the formation
of carbon-containing tribofilms by either chemical/physical vapour deposition or tribo-
chemical reactions. Due to its high potential for sustainable lubrication, it is expected that
studies in carbon-based tribofilms will flourish in the next few years. While optimizing
and controlling the formation of carbon-containing tribofilms by different approaches will
be still the main focus, the promise of a self-replenishing capability utilizing different
hydrocarbon sources will open a new pathway to utilize these carbon-based tribofilms in
different lubrication conditions. In a very recent review, Berman et al. [26] outlined the
potential applications of carbon tribofilms formed by tribocatalysis in different fields. It
should be noted that the properties of the resultant carbon-based tribofilms vary greatly
depending on the lubricant formulations, hydrocarbon base, and lubricating conditions.
These parameters affect the chemical structures at the nanoscale of the carbon-based tri-
bofilms, which can have a strong positive or negative effect on the performances, as also
claimed by Berman et al. [26]. Yet, the nanoscale tribochemistry of such carbon-based
tribofilms in relation to their mechanical properties and macroscale performances remains
largely “terra incognita”.

A rich literature has been devoted to understanding the chemical structures and lubri-
cation mechanism of DLC films, but this is still a remaining question with the in situ formed
carbon-based tribofilms since these films are distinctively different in their physicochemical
nature [40]. Most conclusions about the structural characteristics and lubrication mecha-
nisms of the carbon-based tribofilms are often drawn from macroscopic observation of the
wear surfaces as well as a combination of analytical techniques, including Raman, micro-
Fourier transform infrared spectroscopy (micro-FTIR), nuclear magnetic resonance (NMR)
and mass spectrometry (MS), diffraction analysis, and reactive MD simulations. However,
they can only provide limited information on the chemical and crystalline structures. The
natural questions to ask are whether these carbon-based tribofilms can be ascribed to be
graphitic, diamond-like, polymeric, or something else (e.g., paracrystalline or turbostratic
carbons), and how these tribofilms locally bind on different substrates. Local and interfacial
structures at the nanoscale are often a minor component of the ensemble but are locally the
major phase, which require spatially resolved analytical techniques to uniquely address
these questions. Electron microscopy can provide this unique capability to address these
questions; however, the dose–damage constraint is still a big issue in preserving the local
structures of these carbon-based materials. To have far-reaching implications of carbon-
based tribofilms in practice, it is essential to understand their intrinsic structure–property
relationship as well as the growth rate kinetics of these films under different conditions.
This information has not yet been clearly answered up to now, and it is expected that more
fundamental studies will be established in the near future.

7. Conclusions

This study has reviewed some of the current state-of-the-art research dealing with in
situ-generated carbon-based tribofilms at sliding surfaces. Particularly, we have briefly
described the formation approaches as well as the performance of current carbon-based
tribofilms, highlighted the key differences and/or advantages of each, and provided key
insights into the current understanding of the underlying formation mechanisms as well as
the most common analysis techniques alongside the potential interactions of the Carbon-
based tribofilms with other additives. It is clear that in situ carbon-based tribolayers are
exhibiting great potential in terms of lubrication performance and sustainability, where
a lot of their benefits could be brought to develop a strategy for sustainable lubrications.
However, it is necessary to consider the arising issues related to their compatibility with
conventional lubricating oil packages, as well as their adaptability to different working
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environments and conditions. More importantly, there are still a lot of questions and
controversies about the chemical and structural properties that require advances in new
analytical techniques to resolve adequately. As a result, further investigations on analysis
approaches along with the formation and optimization of carbon-based tribofilms, are
highly recommended to harness the full potential of such sustainable tribofilms in practical
applications toward net zero emissions targets.
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