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Abstract: Reciprocating rod seals are widely used in hydraulic systems. Their useful life and reliability
affect that of the system. Degradation modeling is necessary to evaluate the useful life of the seal.
Seal wear is one of the important forms of hydraulic reciprocating rod seal degradation, yet it is
difficult to measure through direct methods. Because seal wear determines the leakage of the seal,
we therefore consider the seal leakage as the performance degradation index. Furthermore, the
degradation of the seal is always associated with random effects, which cannot be considered by
theoretical failure mechanism analysis. Hence, stochastic processes are applied to consider the
random effects. Considering the error between the measured value and its real degradation state
caused by the measurement environment or other factors, we introduce the measurement error term
into the Wiener process model and develop the corresponding Wiener process life prediction model.
Finally, the failure mechanism analysis and test measurement data are fused to predict the life cycle
of the hydraulic reciprocating rod seals. The effectiveness of the proposed method is verified by
comparing the predicted degradation and the experimental observations.

Keywords: hydraulic reciprocating rod seals; failure mechanism analysis; remaining life prediction;
data fusion; stochastic process

1. Introduction

In order to avoid the leakage of fluid and other substances from mechanical parts, as
well as to prevent the introduction of external dust and impurities into these parts, the
design of special structures in these parts is considered. The seals’ construction refers to
the structure of the bond between surfaces; such structures are called seals [1,2]. Moreover,
in hydraulic systems, the seal is a key component to ensure the safety of the system.

Due to frictional wear, the leakage of the seal gradually increases over time; when this
leakage exceeds a specified threshold, the seal is considered to have failed. Moreover, seal
failure often causes serious adverse consequences: the seal leakage of hydraulic oil and
other media will cause environmental pollution, equipment corrosion, and even economic
losses; in addition, seal leakage will cause system pressure loss that may lead the machine
to stop working, and even cause casualties and other major accidents. Therefore, making
an accurate assessment of the seal’s service life and performing scheduled preventive and
corrective maintenance would ensure the seal’s crucial reliable operation.

Moreover, based on some scholars’ experimental research about the mechanisms of
the performance degradation of lip seals, wear is a key factor in the failure of dynamic
seals [3–6]. However, due to the differences between elastic seal materials and metals,
ceramics in friction, wear, and lubrication mechanisms, especially their nonlinear char-
acteristics and their large deformation due to the applied force, it is difficult to establish
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a complete mathematical analytical model for friction and wear. Therefore, the Finite
Element Analysis (FEA) method and the simulation calculation have become the most
appropriate method for seal wear research. The main steps consist of the establishment
of the Finite Element Model (FEM) and the calculation of the contact pressure using the
finite element solution, as well as the calculation of the wear depth to update the seal
profile. For instance, Nándor et al. [7,8] used FEA to study the tribological behavior of
the reciprocating rod seal. The simulation of wear was performed mainly by removing
the mesh of the FEM; however, the disadvantage of this method was that the simulation
accuracy decreased when the wear depth did not match the size of the finite element
mesh. Moreover, Sui et al. [9] predicted the wear of Poly-Tetra-Fluoro-Ethylene (PTFE)
composite seals by FEA assuming that the wear depends only on the contact pressure, and
its process is mainly simulated by modifying the seal node coordinates. The advantage of
this method is its fast computational speed and high simulation accuracy, but it is difficult
to model the continuous wear process and the results are highly affected by the size of the
element [8,10]. Li et al. [11] proposed a structure–thermal coupled FEA wear simulation
model that considers the effect of temperature, and the authors numerically simulated
the wear process of the O-shaped and rectangular section seals. Angerhausen et al. [12]
simulated and analyzed seal wear behavior under lubrication conditions by combining the
elastohydrodynamic lubrication model, the normal contact model, and the Archard wear
model. In addition, Liu et al. [13] proposed the mixed elastohydrodynamic lubrication
model with non-Gaussian surfaces and analyzed the effects of sealed fluid pressure on the
seal performance. Furthermore, Pend et al. [14] proposed the mixed lubrication model,
based on a developed multiple-grid method, to investigate the combined seal at different
system pressures and overcome the problem of non-convergence in the mixed lubrication
modeling of reciprocating seals. Day [15] considered the viscosity–temperature equation,
and constructed the thermal elastohydrodynamic numerical model of the lip seal, studying
the coupling mechanism of fluid flow and heat. Guo analyzed the law of influence of the
storage process on the performance of lip seals by experiments [16]. Subsequently, the
effect of material aging on the degradation of lip seal performance during use was analyzed
by placing the lip seal in an oil fluid and controlling it at a constant temperature [17]; based
on these experiments, he analyzed the effect of wear on the degradation of the lip seal
performance [18]. Furthermore, Liu et al. [19] proposed a multi-scale simulation model
for rotating lip seal wear based on lubrication analysis. The hybrid thermoelastic flow
lubrication model was used to calculate the hydrodynamic and the rough contact loads,
and the Archard model was modified by introducing scaling factors. This methodology is
used to calculate the seal lip wear depth under lubrication conditions.

All the above publications studied the failure mechanism and provided a basis for the
life prediction of fluid dynamic seals. Moreover, Shao and Kang [20] proposed a method
for life prediction of the O-ring based on failure mechanism analysis. By designing an
accelerated aging test and establishing a performance degradation model with a permanent
compression rate representing the seal degradation performance index, the failure threshold
was set to 50%; therefore, the life of the O-ring was evaluated to be 526 days. While the
seal degradation process is significantly stochastic due to the influence of the stochastic
working environment, it is difficult for the degradation model, based on failure physical
analysis, to determine the influence of such stochastic factors. Sun obtained the relationship
between fractal parameters and working time by regression using friction and wear test
data, obtained the relationship between leakage rate and working time based on the leakage
mechanism of mechanical seals, and predicted the wear performance of mechanical seals
and evaluated their wear failure life [21]. Zhou considered seal failure caused by wear, used
the leakage rate as a performance characterization quantity for mechanical seals, and used
the wear data obtained from tests to evaluate their wear life based on neural networks [22].
The stochastic process-based modeling needs to determine the degradation trajectory of
the product first, which is mainly obtained due to the failure of physical analysis or a
priori experience. When the a priori information regarding the degradation trajectory is
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not available, the degradation data are usually averaged to estimate the mean degradation
trajectory of the product. Obviously, this approach requires at least two sets of degradation
data, therefore limiting the use of stochastic process modeling methods. Moreover, Liu
et al. [23] obtained the degradation trajectory by analyzing the rotating lip seal wear, and
they established the stochastic process analysis model of the seal reliability by a set of
degradation data. The gamma process and the inverse Gaussian process were used as
candidate stochastic process models, and the model parameters and probabilities were
estimated by the Bayesian methods to comprehensively analyze the reliability of the rotating
lip seal. Furthermore, Zhang et al. [24] described the monotonic degradation process by
gamma process and introduced the reliability demonstration method. Peng constructed
the degradation model by an inverse normal-gamma mixture of an inverse Gaussian
process and improved the parameter estimation based on the EM-type algorithm [25]. Peng
described the time-varying degradation rate by inverse Gaussian process, highlighting
the physical meaning of the process parameters [26], and proposed a general Bayesian
framework to infer the process parameters [27]. Qin constructed a degradation model
based on the inverse Gaussian process and combined the inspection data with the prior
distributions to evaluate the parameters by Bayesian method [28].

The above studies concerning the stochastic processes have obvious advantages in life
prediction and reliability assessment. However, it is a pity that research related to the life
prediction of reciprocating seals based on stochastic processes is rarely found. Moreover,
the previously published research cannot utilize both the degradation mechanism and
testing data. Therefore, based on the previous analysis of reciprocating seal wear, we
propose a hydraulic reciprocating rod seal life prediction method that incorporates the
failure mechanism analysis along with the experimental observation data. The main
contributions of this research include the following: (1) establishment of the degradation
model of the reciprocating seal based on the failure analysis of the reciprocating seal and
the Wiener process; (2) consideration of the measurement error in the degradation model of
the reciprocating seal; (3) construction of the data fusing and parameter updating method
of the model based on Bayesian theory.

The structure of the paper is as follows: Section 2 presents the schematic description of
the presented system. Section 3 establishes the Wiener process degradation model with mea-
surement error to describe the degradation process of reciprocating seals. Section 4 gives a
method based on wear analysis to obtain the degradation mean function. Section 5 con-
structs a parameter update and life prediction method based on Bayesian theory. Section 6
shows the flowchart of the proposed method. Section 7 verifies the effectiveness of the
constructed life prediction method referring to a case study analysis. Finally, Section 8
gives a summary of the whole paper.

2. System Description

In this paper, a Wiener process-based degradation model is constructed to evaluate
the useful life and reliability of reciprocating rod seals by incorporating failure mechanism
analysis and test observation data. The schematic description of the presented system is
shown in Figure 1. The degradation process of the seal is described based on the Wiener
process, X(t), considering the random effects of the seal degradation.

In general, two factors need to be determined when using the Wiener process in relia-
bility and life estimation. The degradation mean function, Λ(t), indicates the degradation
trajectory and only depends on the failure mechanism of the products. Hence, we obtain
the degradation mean function based on the theoretical degradation trajectory by failure
mechanism analysis and simulation. The other factor is the model parameters, which
include the diffusion coefficient, β, and the drift coefficient, λ. The diffusion coefficient
reflects the inherent discreteness of the degradation. The drift coefficient reflects the degra-
dation changing rate of the specific product and is assumed to follow Gaussian distribution,
N
(
µλ, σ2

λ

)
, considering individual difference. Furthermore, the measurement error is also

considered by introducing the measurement error coefficient ε, which is described as Gaus-
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sian distribution with zero mean, as ε ∼ N(0, σ2). All the above parameters, [β, µλ, σλ, σ],
need to be inferred based on the measured degradation dataset.
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As discussed above, the constructed Wiener process-based degradation model pro-
vides a foundation for evaluating the hydraulic reciprocating rod seal’s life by making full
use of failure mechanism analysis and test observation data, resulting in the improvement
of the evaluation accuracy.

3. Wiener Process-Based Degradation Model with Measurement Error
3.1. Wiener Process Degradation Model

The Wiener process is a probabilistic statistical model based on Brownian motion. It is
widely used to describe the cumulative degradation failure process of mechanical products.
Let {X(t), t ≥ 0} be the cumulative degradation of the seals at time t; if it obeys the Wiener
process, the performance index X(t) can be then expressed as follows:

X(t) = X(0) + λt + βB(t) (1)

where X(0) means the initial performance index of the products; λ is the drift coefficient,
which represents the rate of the product performance degradation; β > 0 is the diffusion
coefficient, which represents the time-varying uncertainty of the degradation process; and
B(•) is the standard Brownian that is used to characterize the time-varying uncertainty of
the performance degradation process itself. To describe the variability of the degradation
process among different seals, λ can be usually regarded as a random variable obeying a
normal distribution. It is therefore expressed as follows: λ ∼ N

(
µλ, σ2

λ

)
.

In general, the initial degradation of the seals X(0) can be assumed to be 0 or to change
to 0 by transformation, so that the Wiener process is expressed as follows:

X(t) = λt + βB(t) (2)

Through the application of Wiener process, the performance index X(t) has the follow-
ing characteristics:

(1) X(t) has independent increments, when t4 > t3 > t2 > t1, X(t4) − X(t3) and X(t2) − X(t1)
are independent from each other;
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(2) The independent increment ∆X(t) obeys the normal distribution, ∆X(t) ∼ N(λ∆t, β2∆t),
where ∆X(t) = X(t + ∆t)− X(t).

When the product degradation process shows nonlinear characteristics, it needs to
be described by a nonlinear Wiener process degradation model. Therefore, the amount of
product degradation is expressed as follows:

X(t) = λΛ(t) + βB(t) (3)

where Λ(t) is a continuous nondecreasing function concerning time t and is called the
degradation mean function here. Furthermore, the degradation mean function reflects the
theoretical degradation trajectory without considering random effects and measurement
errors. Namely, it is determined by degradation mechanism only. Naturally, we determine
the degradation mean function of the seal by wear simulation based on the failure analysis
in Section 4.

3.2. Measurement Error Analysis

The seals’ degradation data is an important factor for life evaluation based on the
Wiener process model. However, due to uncertainties, such as the accuracy of sensor equip-
ment and environmental influences, the measured seals’ degradation data will inevitably
have errors. Such measurement inaccuracies cannot be completely removed, and they
also have an impact on how accurately products degrade, which reduces the precision
of predicting how long something will last. Therefore, to consider the influence of the
measurement error on seals’ reliability analysis, this paper introduces the variable ε to
represent the measurement error in the Wiener process degradation model, and the real
and the observed degradation amounts of the seals have the following relationship:

Y(t) = X(t) + ε (4)

where Y(t) means the observed degradation index. X(t) means the true degradation.
Due to the influence of various uncertainties, the measurement error of the degraded

data is not fixed but it obeys a certain statistical distribution. Usually, it can be assumed
that the measurement error of the product obeys a normal distribution that is defined as
ε ∼ N(0, σ2), and its probability density function is the following:

f (ε) =
1√
2πσ

exp
(
− ε2

2σ2

)
(5)

4. Degradation Mean Function for Reciprocating Rod Seal

Usually, the performance index of the product has a stable change trend, such as
monotonically rising or monotonically falling, which reflects the irreversibility of the
product degradation process. This changing trend represents the performance degradation
trajectory of the product. According to the different degradation rates, the degradation
trajectory of the product can be divided into three categories: constant rate degradation
trajectory, monotonic rate degradation trajectory, and S-type rate degradation trajectory [29].
The degradation rate function is expressed as follows:

r(t) =
dΛ(t)

dt
(6)

where t denotes the time, Λ(t) represents the degradation mean function, and r(t) denotes
the degradation rate function.

There are two main methods to obtain the seal degradation mean function: the first
one is through seal failure mechanism analysis that generates the seal degradation mean
function, whereas the second one consists of obtaining the seal degradation trajectory based
on past information of product degradation [30]. At present, there is a lack of sufficient
research on the life prediction of hydraulic reciprocating rod seals. Therefore, it is difficult
to obtain their degradation mean function using known information. According to the
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analysis in the previous research, the hydraulic reciprocating rod seals’ degradation mean
function can be obtained through failure mechanism analysis. Moreover, according to
the positive correlation between the seal leakage rate and the seal wear degradation, the
leakage rate is used as the seal degradation index.

Seal wear can be simulated and calculated by building a wear model under mixed
lubrication conditions [31]. When the seal wear state is predicted, the seal leakage rate,
under different wear states, is calculated by the leakage model as a reflection of the seal
wear’s degradation state. The wear degradation simulation of the hydraulic reciprocating
rod seals is shown in Figure 2. The degradation simulation model used in this case is an
adaptation of our previously published research [30]. It mainly includes three steps: first,
the initial seal leakage rate and the microscopic rough contact pressure are calculated by
the multi-field coupled seal mechanism model based on the elastic flow lubrication; second,
the seal lip wear depth is determined using the modified Archard wear model according to
the microscopic contact pressure, and it updates the seal lip profile to obtain a new seal
shape; third, under the new seal shape, the new macroscopic contact pressure is generated
by FEA; then it returns to the first step to calculate the seal leakage rate and the surface
roughness contact pressure under the new profile, which enters the next simulation cycle.
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By simulating the wear of the hydraulic reciprocating rod seals, the variation at the
level of the seal leakage rate is calculated as shown in Figure 3. Before the wear degradation
occurs, the initial leakage rate of the seal is not zero; we converted it to zero by using the
leakage rate after the degradation minus the initial leakage rate. By fitting the predicted
values of the leakage q(t), the fitted curve is obtained as shown in Figure 3, and the
corresponding fitting function is represented as follows:

q(t) = 2.2661 ln
(

t + 254.2
253.7

)
(7)
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One of the most important things in building a life prediction model for stochastic
processes based on the degradation data is to obtain the degradation trajectory of the seals.
However, their real degradation trajectory is usually difficult to obtain due to measurement
error and the difficulty of obtaining such data. Therefore, through the failure mechanism
analysis, the degradation trajectory of the seals can be generated based on the combination
with the degradation data obtained from the measurements, and the stochastic process
model can be used to build this seal model and then realize its life prediction.

Through the above analysis, the leakage is used as the degradation index and the
related degradation mean function of the seal is as follows:

Λ(t) = 2.2661 ln
(

t + 254.2
253.7

)
(8)

5. Remaining Life Prediction
5.1. Parameter Estimation

For the hydraulic reciprocating rod seals whose degradation process obeys the Wiener
process, the measured amount of degradation at time ti is denoted as Yi, and the cor-
responding true amount of degradation is Xi, which is known from the description of
the measurement error where Yi = Xi + εi, and εi ∼ N(0, σ2)(as previously defined).
When i = 1, 2, 3, . . ., m, let ∆Yi = Yi − Yi−1, ∆Λi = Λi − Λi−1, ∆ti = ti − ti−1, then
∆Y = {∆Y1, ∆Y2, · · · , ∆Ym}T obeys the multivariate normal distribution ∆Y ∼ N(λ∆Λ, Σ),
and its joint probability density function is written as follows:

P∆Y|λ(∆Y|λ) = (2π)−
m
2 |∑ |−

1
2 exp

[
−1

2
(∆Y− λ∆Λ)T ∑−1

(∆Y− λ∆Λ)

]
(9)

where ∆Λ = {∆Λ1, ∆Λ2, · · · , ∆Λm}T , and the covariance matrix ∑ is a positive definite
tridiagonal matrix represented as follows:

∑i,j = cov
(
∆Yi, ∆Yj|λ

)
=


β2∆ti + σ2, i = j = 1
β2∆ti + 2σ2, i = j > 1
−σ2, i = j + 1 or i = j− 1
0, otherwise

(10)

Considering λ ∼ N
(
µλ, σ2

λ

)
, ∆Y obeys a multivariate normal distribution with a mean

value µλ∆Λ and a covariance ∑+σ2
λ∆Λ∆ΛT [32]. Therefore, it is defined as follows:

∆Y ∼ N(µλ∆Λ, ∑+σ2
λ∆Λ∆ΛT) (11)
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To facilitate the derivation, define the parameters ∑ = ∑ /σ2
λ, β

2
= β2/σ2

λ, and
σ2 = σ2/σ2

λ. Supposing that there are N seals for the degradation measurement and the
observed value of the degradation of the n-th seal is Yn = {Y0,n,Y1,n,. . .,Ym,n}. Further
calculations are needed to obtain the increment of the degradation of the n-th seal ∆Yn,
which represents the unknown parameters in the model as θ = [µλ, σλ, β, σ], and where the
log-likelihood function is represented as follows:

g(θ) = − ln(2π)

2
− mN

2
ln σ2

λ −
N
2

ln |∑ + ∆Λ∆ΛT | − 1
2σ2

λ

N

∑
n=1

(∆Yn − µλ∆Λ)T
(
∑ + ∆Λ∆ΛT

)−1
(∆Yn − µλ∆Λ) (12)

Taking the partial derivatives of g(θ) with respect to µλ and σλ, respectively, one can
obtain the following:

∂g(θ)
∂µλ

=
1

σ2
λ

∆ΛT
(
∑ + ∆Λ∆ΛT

)−1 N

∑
n=1

(∆Yn − µλ∆Λ) (13)

∂g(θ)
∂σ2

λ

= −mN
2σ2

λ

+
1

2σ4
λ

N

∑
n=1

(∆Yn − µλ∆Λ)T
(
∑ + ∆Λ∆ΛT

)−1
(∆Yn − µλ∆Λ) (14)

Let the partial derivatives respective to µλ and σλ be equal to 0, and we can obtain the
maximum likelihood estimates for µλ and σλ as follows:

µ̂λ =
1
N

∆ΛT(∑ + ∆Λ∆ΛT)−1 N
∑

n=1
∆Yn

∆ΛT
(
∑ + ∆Λ∆ΛT

)−1∆Λ
(15)

σ̂2
λ =

1
Nm

N

∑
n=1

(∆Yn − µ̂λ∆Λ)T
(
∑ + ∆Λ∆ΛT

)−1
(∆Yn − µ̂λ∆Λ) (16)

Substituting the above two formulas into the likelihood function, we obtain the contour
likelihood functions of β and σ as follows:

g(β, σ) = −Nm
2

ln(2π)− Nm
2
− Nm

2
ln σ̂2

λ −
N
2

ln |∑ + ∆Λ∆ΛT | (17)

The maximum likelihood estimates of β and σ can be obtained by maximizing
the contour likelihood function. Therefore, in this paper, using the Genetic Algorithm
(GA) to search the estimates of β and σ, the estimates of β and σ are then brought into
Equations (15) and (16) to obtain the estimates of µλ and σλ, and then the estimates β, σ.

5.2. Random Parameter Update

Based on the above parameter estimation method, the initial estimate of λ can be ob-
tained. Namely, the initial estimate is as follows: λ ∼ N

(
µ̂λ, σ̂2

λ

)
, where the corresponding

distribution parameters are estimated based on Equations (15) and (16). However, due to
the influence of random factors, different individual performance degradation data show
variability and randomness. To reduce the estimation uncertainty, the random parameter λ
should be updated according to the seals’ degradation data to upgrade the prediction of
the remaining life. With the initial estimated distribution of λ already obtained, this paper
uses a Bayesian approach to update this random parameter (e.g., λ).

When given the degenerate quantity observation vector Y0:k = {y0,y1,. . .,yk} for the
seals from instants t0 to tk, and assuming that the prior estimate of λ is λ ∼ N

(
µ̂λ, σ̂2

λ

)
, its

posterior distribution according to Bayesian theory is defined as follows [32]:

p(λ|Y0:k) ∝ p(Y0:k|λ)π(λ) ∝ exp
[
−1

2
(∆yk − λ∆Λk)

T ∑−1
k (∆yk − λ∆Λk)

]
exp

(
− (λ− µ̂λ)

2

2σ̂2
λ

)
(18)
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where π(λ) means the prior estimate of λ, ∆yk = {y1 − y0, y2 − y1, · · · , yk − yk−1} and
∆Λk = {Λ1 −Λ0, Λ2 −Λ1, · · · , Λk −Λk−1}. Therefore, λ|Y0:k obeys the normal distribu-
tion as shown below:

λ|Y0:k ∼ N(µλ,k, σ2
λ,k) (19)

where
µλ,k =

∆Λk
T∑−1

k ∆Ykσ̂2
λ + µ̂λ

∆Λk
T∑−1

k ∆Λkσ̂2
λ + 1

(20)

σ2
λ,k =

σ̂2
λ

∆Λk
T ∑−1

k ∆Λkσ̂2
λ + 1

(21)

5.3. Lifetime Prediction

Given the failure threshold w, when the degradation of the seals exceeds the failure
threshold for the first time, the corresponding lifetime TL is defined as the first reach-time
and it can be expressed as follows:

TL = inf{t|X(t) ≥ w} (22)

For the nonlinear Wiener process shown in Equation (8), its first reach-time approxi-
mation obeys the inverse Gaussian distribution, and it is expressed as follows:

f (t) ≈ 1√
2πβ2t3

[
w− λ

(
Λ(t)− tΛ′(t)

)]
exp

[
− (w− λΛ(t))2

2β2t

]
(23)

Let the remaining lifetime of the seals at tk be lk, so that lk = t − tk. When the drift
coefficient and the degradation at tk are known, the probability density function of Lk can
be approximated as follows:

fLk |λk ,Xk
(lk|λk, Xk) ≈

1√
2πβ2l3

k

[
w− xk − λk(Λ(lk + tk)−Λ(tk)− lkΛ′(lk + tk))

]
exp

[
− (w− xk − λk(Λ(lk + tk)−Λ(tk)))

2

2β2lk

]
(24)

Furthermore, according to Ref. [21]: If Z1 ∼ N
(
µ1, σ2

1
)
, Z2 ∼ N

(
µ2, σ2

2
)
, ω, A, B∈R

and C ∈R+, then [32]:

EZ1{EZ2 [(ω− Z1 − AZ2)]} =
√

C
B2σ2

2 + σ2
1 + C

exp

[
− (ω− µ1 − Bµ2)

2

2
(

B2σ2
2 + σ2

1 + C
) ](ω− µ1 − Aµ2 −

ω− µ1 − Bµ2

B2σ2
2 + σ2

1 + C

(
σ2

1 + ABσ2
2

))
(25)

Based on Equations (24) and (25), an approximate expression for the probability
density function of the remaining life of the seals based on Y0:k can be derived as follows:

fLk |Y1:k
(lk|Y0:k) ≈ 1√

2πl2
k F2

exp
[
− F1

2

2F2

][
F1 + µλ,klkΛ′(lk + tk)− F1

F2
×
(

σ2
λ,k(Λ(lk + tk)−Λ(tk)) + σ2

)]
,

where

{
F1 = w− yk − µλ,k(Λ(lk + tk)−Λ(tk))

F2 = σ2
λ,k(Λ(lk + tk)−Λ(tk))

2 + β2lk + σ2

(26)

When the probability density function of the remaining life of the product is obtained,
its expectation is calculated as follows:

E(Lk|Y0:k) =
∫ ∞

0
lk fLk |Y0:k

(lk|Y0:k)dlk (27)

6. The Proposed Framework

Figure 4 shows the flowchart of the proposed method. There are three steps that
need to be performed when using the proposed model. First, the degradation mean
function is obtained based on the theoretical degradation trajectory by failure mechanism
analysis and simulation; see Section 4. At step one, the log-likelihood function of the
model to the degradation dataset is constructed, as shown in Equation (12). At step two,
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the maximum likelihood estimation of the hyper-parameters µλ and σλ are obtained by
calculating Equations (15) and (16), which are utilized to set the prior distribution of the
drift coefficient when updating the drift coefficient by Bayesian inference at step three.
Then, the maximum likelihood estimations of parameters β and σ are also estimated by
handling Equation (17) based on genetic algorithm. At step three, the drift coefficient
is updated with the accumulation of the collected degradation data based on Bayesian
inference, Equation (19), where the prior distribution of the drift coefficient is as Equation
(18). Finally, the distribution and expectation of the useful life can be given by calculating
Equations (26) and (27).
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7. Experimental Study
7.1. Experimental Approach

To verify the proposed method, a hydraulic reciprocating rod seals test platform was
designed, and the principle of the test platform is shown in Figure 5. The test platform is
mainly composed of two major parts: the driving part and the testing part, including the
driving cylinder and the test cylinder. The whole test system is mounted vertically on the
test stand with the drive cylinder at the upper end and the test cylinder at the lower end.
Among them, the test cylinder is mounted on the sliding guide where one end of the test
seal is installed and connected to the piston rod, and the other end is closed and connected
to the drive cylinder. The role of the drive cylinder is to test the reciprocating movement of
the cylinder up and down while the piston rod remains unmoved. The driving cylinder
is fixed to the test stand by a flange connection, and its internal displacement sensor is
installed to measure the actuator stroke and to control the change direction. Moreover,
the test cylinder is connected to the hydraulic oil source through a hose connection. The
hydraulic oil enters the test cylinder from the inlet port, flows through the valve seat from
the return port, and the pressure and temperature of the hydraulic oil are measured using
the pressure and temperature sensors, respectively, and then the oil returns to the hydraulic
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oil source. In addition, the tension sensor is installed at the lower end of the piston rod
to measure the friction force on the seal. Furthermore, the physical diagram of the test
platform is shown in Figure 6.
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A test was conducted on a certain type of rod seal, and the seal leakage was collected
on the air side of the seal to measure its degradation status performance. The seal leakage
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was measured every ten hours by an electronic balance. The electronic balance can measure
from 0 to 100 g and the accuracy is 0.001 g. We used the average leakage rate during the
measurement interval (ten hours) to indicate the seal degradation test observation. Obser-
vations were made at ten-hour intervals and the seal leakage was recorded accordingly. The
test was stopped after 300 h, and the seal degradation data were obtained and displayed in
Table 1. As shown in Figure 7, the circles mean the observation data every ten hours. It can
be seen that the degradation test observation is exponential, so the theoretical degradation
mean function is suitable and effective.

Table 1. Hydraulic reciprocating rod seal’s degradation test observation data.

Time (hours) 10 20 30 40 50

Observation (g/h) 0.183 0.292 0.351 0.453 0.548

Time (hours) 60 70 80 90 100

Observation (g/h) 0.592 0.701 0.760 0.869 1.059

Time (hours) 110 120 130 140 150

Observation (g/h) 1.089 1.251 1.292 1.403 1.427

Time (hours) 160 170 180 190 200

Observation (g/h) 1.431 1.490 1.563 1.578 1.621

Time (hours) 210 220 230 240 250

Observation (g/h) 1.665 1.746 1.833 1.950 2.001

Time (hours) 260 270 280 290 300

Observation (g/h) 2.052 2.111 2.205 2.271 2.315
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7.2. Discussions

To illustrate the effectiveness of the method proposed in this paper, we made a com-
parative study with the method proposed by Si et al. [33] that does not consider the
measurement error. As shown in Table 2, the model in this paper is denoted as M0 whereas
the nonlinear degenerate model without considering measurement error is denoted as M1.
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Table 2. The candidate models.

Candidate Models Measurement Error

M0
√

M1 x

The parameters in the models are estimated separately, and the maximum log-likelihood
function values, corresponding to the two models, are calculated, as well as the Akaike
Information Criterion (AIC) values. The AIC consists of two parts where the first part is the
log-extreme likelihood function, which responds to how well the sample information re-
flects the overall information, and the second part represents the penalty for the complexity
of the model. Its calculation formula is as follows:

AIC = −2× [max(g)] + 2p (28)

where p denotes the number of parameters to be estimated in the model.
The calculation results are shown in Table 3. The estimated log-likelihood function of

model M0 is slightly larger than the output of model M1, indicating that the first model is
better fitted. However, the model M0 has one more parameter than the model M1, which
means the complexity of the model M0 is higher. Finally, the AIC of the calculated model
M0 is larger than the model M1.

Table 3. Estimated values of initial parameters.

Parameters µλ σ2
λ β2 σ2 g AIC

M0 1.3126 1.5435 × 10−4 1.5420 × 10−4 1.2017 × 10−4 51.0560 −94.1120
M1 1.3125 1.7801 × 10−4 1.7798 × 10−4 - 50.9767 −95.9534

It should be noted that when using only the above degradation test data, we cannot
predict the remaining life due to the lack of failure data. Furthermore, it is also difficult
to predict or estimate the remaining life of the seal by failure analysis alone, because the
failure mechanism cannot be perfect enough.

In this paper, the degradation observed at 300 h is taken as the failure threshold with
a value of 2.312 g/h. The probability density functions of the remaining life given by
the models M0 and M1 are calculated, respectively, at 250 h, and the results are shown in
Figure 8. Moreover, the probability density functions of the remaining life given by the
models M0 and M1 are basically the same, and the real remaining life of the seal lies within
the range of the probability density functions of the two models; however, the probability
density function of M0 has a sharper angle, which indicates that the model M0 has a higher
prediction accuracy when the measurement error is considered. In general, the proposed
methods in this paper are accurate enough to predict the remaining life of the seal.

After updating the estimation of the stochastic parameters by the historical degra-
dation data of the hydraulic reciprocating rod seals, the probability density function of
the remaining life can be calculated for each instant. The probability density function
of the remaining life of the seal was calculated for 300 h, 250 h, 200 h, 150 h, and 100 h,
respectively. The results are shown in Figure 9. Furthermore, the actual lifetimes of the
seals all lie within the range of the probability seal function for the remaining life estimates
of the corresponding observation times. As the seal degradation intensifies, the calculated
probability density function of the remaining life gradually becomes narrower when more
degradation data are obtained, indicating that the predicted remaining life of the seal is
much more certain.
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Moreover, Table 4 shows the expected and actual remaining life of the seal at different
observation times. It is clear that the prediction model proposed in this paper can predict
the remaining life of the seal relatively well. At 200 h, the error between the remaining life
expectation and the actual life is the largest, reaching 16.2%, whereas at 250 h, the error
between both values is the smallest, being equal to 6.4%.

Table 4. Residual life prediction error.

Observation Time Remaining Life
Expectation

Actual Remaining
Life Error

300 h 0.2 h 0 h -
250 h 53.2 h 50 h 6.4%
200 h 116.2 h 100 h 16.2%
150 h 137.8 h 150 h 8.1%
100 h 180.4 h 200 h 9.8%

As discussed above, the proposed method can provide high enough accuracy on the
remaining life prediction even under small degradation data and incomplete mechanism
conditions.

8. Conclusions

In this paper, we studied the problem of the hydraulic reciprocating rod seal’s life
evaluation. Considering the uncertainty of the seal degradation process, a hydraulic
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reciprocating rod seal’s life prediction method was proposed based on a stochastic process
model incorporating failure mechanism analysis and experimental observation data.

First, a Wiener process-based degradation model is constructed and provides a foun-
dation for evaluating the hydraulic reciprocating rod seal’s life by making full use of failure
mechanism analysis and test observation data. The degradation mean function of the seal
is predicted through the rod seal failure mechanism analysis. Considering the problem
that the wear of the seal lip is difficult to measure, the leakage rate is taken as the observed
quantity of the seal wear degradation. The degradation failure process of the rod seal
is described by Wiener process. Moreover, we propose the life prediction model of the
Wiener process including the measurement error considering the influence of the mea-
surement error. Considering the variability and randomness of different individual items
of performance degradation data, the drift parameters are assumed to obey the normal
distribution.

Second, based on Bayesian theory, a data fusing and parameter updating method
is constructed for applying the Wiener process-based degradation model in engineering
practice. The initial values of the fixed and drift parameters in the model are estimated
by searching the contour likelihood function through the genetic algorithm, and they are
updated referring to the drift parameters by Bayesian theory to update the prediction of
the remaining service life.

Finally, the effectiveness of the proposed method is verified by comparing the pre-
dicted degradation and experimental observations. The remaining life prediction results of
the hydraulic reciprocating rod seals are simulated and calculated by a set of experimental
observation data and seal failure mechanism analysis data. Comparing the prediction
results of the two models considering the presence and the absence of the measurement
error, the proposed methods are accurate enough to predict the remaining life of the seal,
and the model considering measurement error has better prediction certainty.

The method in this paper can realize seal life prediction under the condition of a
small sample of observation data, and it provides the basis for the reliability design of
hydraulic reciprocating rod seals. Future works will focus on how to improve the useful
life, reliability, and seal wear by texturing the rod surface.
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Abbreviations

Abbreviation Definition
AIC Akaike Information Criterion
B(•) standard Brownian
FEA Finite Element Analysis
FEM Finite Element Model
GA Genetic Algorithm
M0 The model proposed in this paper
M1 The nonlinear degenerate model without considering measurement error
N The number of seals for degradation measurement
N(•) Normal distribution
PDF Probability density function
PI Performance Index
PTFE Poly-Tetra-Fluoro-Ethylene
TL First reach-time
X(t) True degradation process
Xi True amount of degradation at ti
∆X(t) Degradation increment of a degradation process X(t)
Y(t) Observed degradation process
Y0,k The degenerate quantity observation vector for the seals from instants t0 to tk
Yi The measured amount of degradation at ti
Yn The vector of observed value of the degradation of the n-th seal
∆Y The vector of observed degradation increment
∆Yi The observed degradation increment of i-th sample
f (ε) Probability density function of ε

p The number of parameters to be estimated in the model
r(t) The degradation rate
t Time
ti Degradation time
w The failure threshold
Λ(t) The degradation trajectory
Γ(•) Gamma function
β Diffusion coefficient
ε Measurement error
λ Drift coefficient
θ Parameter vector
g(θ) The log-likelihood function
∑ Positive definite tridiagonal matrix
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