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Abstract: Wear is a tremendously important phenomenon, which takes place on the surfaces of two
solids in contact under cyclic loads and constitutes one of the most-significant ways of failure for
mechanical elements. However, it is not the only source of failure in contacting solids. The subsurface
stresses should also be considered, due to the fatigue and crack initiation problems. Nevertheless,
these stresses (i.e., their maximum values and distributions) evolve with the solids’ surface wear
(i.e., with the load cycles) and also depend on the friction intensity. Therefore, their evolution should
be properly computed to predict failures in mechanical elements under wear conditions. This work
focused on the study of the evolution of the surface wear and the subsurface stress distributions
generated—in an elastic half-space—by a cylindrical flat-ended punch, under cyclic indentation
loading (i.e., radial fretting wear conditions). Based on a numerical scheme recently presented by the
authors, this is the first time that, for this contact problem, the surface wear and subsurface stress
distribution (i.e., maximum value and its location)—and its evolution—were simultaneously analyzed
when orthotropic friction and fretting wear conditions were considered. The studies presented in this
work were developed for purely elastic contact assumptions.

Keywords: subsurface stress; wear; orthotropic friction; fretting wear; contact mechanics; cylindrical
flat punch; flat-ended contact; cyclic indentation

1. Introduction

Friction and wear are inherent phenomena in the mechanical contact between two
elastic bodies. Mechanical contact usually takes place in regions where forces are transmit-
ted between two machine—or structural—components, i.e., in regions of joints, in bearings,
in the contact region of a railway track and wheel, etc. Therefore, very high stresses appear
at the surface—and subsurface—contact regions of these mechanical components. It should
be noted that failure by induced subsurface stresses occurs when these stresses exceed
the elastic limits according to a given/pertinent failure criterion. The failure is usually
due to fatigue spalling/pitting [1], and that failure occurs when such limiting stresses
coincide with subsurface flaws created during manufacturing such as pores, inclusions,
cracks, etc. According to [2,3], the behavior of the subsurface stresses allows us to predict
cracks’ nucleation and expansion through the solid. However, that stress depends on the
friction intensity and, under dynamic or cyclic loading, evolves the surface wear (i.e., with
the load cycles).

The surface wear problem has been studied for more than seventy years (i.e., since
the pioneering works of Holm [4] and Archard [5]). Since then, many theoretical and
computing formulations have been proposed to predict surface wear under several contact
conditions. The theoretical works of Galin et al. [6,7], Kovalenko et al. [8,9], Kragelsky [10],
and Komogortsev [11] led to the fundamental works of Hills et al. [12,13] and Gory-
acheva et al. [14] in fretting wear problems. Olofsson et al. [15], Enblom and Berg [16],
Telliskivi [17], and Hegadekatte et al. [18] proposed different solutions for rolling contact
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problems (e.g., for pin-on-disc and twin-disc systems) under sliding wear conditions. More
recently, Argatov et al. [19–22] and Di Puccio and Mattei [23,24] presented additional ana-
lytical solutions for sliding wear contact problems and Popov [25] and Cubillas et al. [26]
for fretting wear.

Numerical solutions to compute surface wear have also been developed for the last
thirty years. The pioneering works of Johansson [27] and Strömberg et al. [28–30] made it
possible to solve contact problems under fretting wear or sliding wear conditions. These
formulations—based on the finite element method (FEM)—were extended to thermoelastic
contact problems in [31,32], to more realistic fretting wear problems in [33–36], and to study
sliding wear problems in [37]. Recent works in the finite element context have focused
on non-matching mesh schemes (see [38,39]). Numerical schemes based on the boundary
element method (BEM)—or on the influence coefficient method (ICM)—were also presented
to compute surface wear in contacting elements under: sliding wear [40–43], fretting
wear [44–48], or rolling contact [49,50] conditions. Moreover, the atomistic simulations
developed in the works of Aghababaei et al. [51,52] revealed how important the numerical
simulations and modeling are becoming to explore wear processes.

Regarding the evaluation of the subsurface stresses, several works have been carried
out since the pioneering works [53–56] or the monograph [57] were presented. Some of
these recent studies were focused on the elastic line contact problem under dry contact
conditions [58] for layered solids [59,60] or for an inhomogeneous elastic medium [61].
Subsurface stresses under lubricated elastic line contact conditions were analyzed in [62–64].
For point contact conditions, a comprehensive analysis of the subsurface stresses caused by
a Hertzian ellipsoidal pressure distribution was provided by Sackfield and Hills in [65,66]
and, more recently, by Greenwood [67]. The analysis of the subsurface stresses caused by
any arbitrary pressure distribution was presented by Johns-Rahnejat and Gohar in [68].
The interest in the subsurface stress distributions caused by contact and how they can
be affected by friction intensity [2,69,70] or wear [71] has drawn the attention of some
researchers in recent years.

In this context, this work studied the evolution of the surface wear and the subsurface
stress distributions generated—in an elastic half-space—by a vertically loaded cylindrical
flat-ended punch under cyclic normal indentation loading (i.e., conformal contact and
radial fretting wear conditions). This problem has been studied for many years, since it
is widely present in many mechanical components. The stress distribution caused by a
cylindrical flat-ended punch was tackled by Sneddon et al. [72,73] and later by Barquins
and Maugis [74], who observed a stress singularity at the edge of the contact region.
Later on, these solutions were collected in the fundamental books of Fischer-Cripps [75]
and Popov et al. [76], together with the contact pressure distribution. However, to the
best of the authors’ knowledge, the surface wear and the subsurface stress distribution
(i.e., maximum value and its location)—and their evolution—have not been simultaneously
computed and analyzed for this problem. Therefore, this work analyzes—for the first
time—the simultaneous evolution of the surface wear and the subsurface stress distribution
caused by the indentation of a flat-ended cylindrical punch over an elastic half-space under
orthotropic friction and radial fretting wear conditions. Moreover, this is the first time that
the BEM was applied to analyze this indentation problem under these tribological contact
conditions. For this purpose, the computing framework presented in [71] was extended to
analyze the indentation of a flat-ended cylindrical punch over an elastic half-space. That
computational scheme was based on the BEM (or ICM) [77–79] to obtain the influence
coefficients of the contacting solids. The frictional contact problem was solved using an
augmented Lagrangian formulation (see [80–82]). Then, the subsurface stresses in the
contacting solids were computed according to Liu and Wang [83]. This scheme allowed
us to study several numerical examples, where the influence of—orthotropic—wear and
friction conditions were analyzed. All these numerical studies were developed under
purely elastic contact assumptions.
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Finally, the structure of this manuscript is organized as follows. After the Introduction,
Section 2 presents the kinematic equations for the frictional contact problem including
wear. Section 3 focuses on the BEM approximation, which makes it possible to obtain the
relations between the surface displacements and the contact tractions. Section 4 defines
the contact and wear—orthotropic—laws, and Section 5 presents the equations to compute
the subsurface stress distributions. The numerical solution is briefly presented in Section 6.
Then, Section 7 presents the analyses, and finally, the concluding remarks are compiled
in Section 8.

2. Frictional Contact Kinematics Including Wear

The kinematic description of two elastic bodies (Ωα, α = A, B) contacting in common
area Γc needs to define the position x of each solid particle of these two bodies relative
to a coordinate system Oxyz. In that system, z points are normally oriented and {x, y}
are tangentially directed (see Figure 1). Then, the normal gap between these two solids’
surfaces can be defined as

gn(x, τ) = gg − gn,o(τ) + ω(x, τ) + un(x, τ), (1)

where gg is the geometric gap, gn,o(τ) is the rigid body approach at a certain pseudo-time

instant (τ) and un is the relative surface normal displacement: un(x, τ) = u(A)
z (x, τ) −

u(B)
z (x, τ).

The tangential slip displacements are defined as

gt(x, τ) = gt,o(τ) + ut(x, τ), (2)

where gt,o(τ) is the rigid body tangential slip displacements and ut(x, τ) = u(A)
t (x, τ)−

u(B)
t (x, τ) = [ux(x, τ) uy(x, τ)]T is defined as the relative surface tangential displacement.

A detailed explanation and a schematic representation of the (relative) surface normal
and tangential displacements (u =

[
ut(x, τ)T un(x, τ)

]T) at point x can be found in Kalker’s
book [84].

Figure 1. An elastic half-space (ΩA) and a cylindrical flat-ended punch (ΩB) come into contact under
vertical loading and unloading cycles (P).

3. Boundary Element Approximation

The displacement difference u(x, τ) can be computed similarly to [77,85,86], which ig-
nores the inertia effects (i.e., considers a quasi-static description). Under these assumptions,
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the relation between the deformation u = [ut(x, τ)T un(x, τ)]T at point x and the contact
traction p = [pt(x, τ)T pn(x, τ)]T on points x′ ∈ Γc can be expressed as

u(x, τ) =
∫ ∫

Γc(τ)
A(x, x′) p(x′, τ) dx′dy′. (3)

In Equation (3), A(x, x′) is the kernel function matrix, which quantifies the surface
displacement components at x induced by one of the traction components of unit magnitude
acting at x′. It can be written as

A(x, x′) =

Axx(x, x′) Axy(x, x′) Axz(x, x′)
Ayx(x, x′) Ayy(x, x′) Ayz(x, x′)
Azx(x, x′) Azy(x, x′) Azz(x, x′)

, (4)

where

Axx(x, x′) =
1

πG

(
1− ν

s
+

ν(x′ − x)2

s3

)
, Axy(x, x′) =

ν

πG

(
(x′ − x)(y′ − y)

s3

)
,

Ayy(x, x′) =
1

πG

(
1− ν

s
+

ν(y′ − y)2

s3

)
, Ayz(x, x′) =

K
πG

(
y′ − y

s2

)
,

Azz(x, x′) =
1

πG

(
1− ν

s

)
, Axz(x, x′) =

K
πG

(
x′ − x

s2

)
,

Ayx(x, x′) = Axy(x, x′), Azx(x, x′) = −Axz(x, x′), Azy(x, x′) = −Ayz(x, x′),

(5)

where s =
√
(x′ − x)2 + (y′ − y)2 and G, ν, and K are the material parameters, defined as

1
G

=
1
2

(
1

G(A)
+

1
G(B)

)
,

ν

G
=

1
2

(
ν(A)

G(A)
+

ν(B)

G(B)

)
, K =

G
4

(
1− 2ν(A)

G(A)
− 1− 2ν(B)

G(B)

)
. (6)

The terms of Equation (4) can also be expressed as: A(x, x′) = A(x′− x), i.e., indicating
that the influence coefficients depend on the relative positions of the two surface points x
and x′.

4. Contact and Wear Laws
4.1. Normal Contact Restrictions

Signorini’s unilateral contact conditions for the normal gap gn(x, τ) and the normal
contact pressure pn = pz(x, τ) can be expressed, according to Alart and Curnier [87], as

pn − PR+(p∗n) = 0, (7)

where PR+(•) = max(0, •) is the normal projection function and p∗n = pn + rngn is the
augmented normal traction—rn being the normal penalty parameter (rn ∈ R+).

4.2. Tangential Contact Restrictions

Similarly, the frictional contact constraints can also be formulated, according to [88], as

pt − PEρ
(p∗t ) = 0, (8)

where p∗t = pt − rtM2ġt is the augmented tangential traction (where M = diag(µ1, µ2) and
rt ∈ R+) and PEρ

(•) : R2 −→ R2 is the tangential projection function:

PEρ
(p∗t ) =

{
p∗t if ||p∗t ||µ < ρ,

ρ p∗t /||p∗t ||µ if ||p∗t ||µ ≥ ρ.
(9)
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In the expression above, ρ = |PR+(p∗n)| and the elliptic norm || • ||µ is defined, so that

||pt||µ =
√
(pe1 /µ1)

2 + (pe2 /µ2)
2, (10)

where µ1 and µ2 are the principal friction coefficients in the directions {e1, e2}. Moreover,
the tangential contact tractions’ components—and the tangential slip velocity components—
can be expressed in the tribological axes {e1, e2} as[

pe1

pe2

]
=

[
cos β sin β
− sin β cos β

][
px
py

]
, (11)

where the angle β is defined in [71] as the tribological axes’ angle orientation. In the
expression above, the tangential slip velocity ġt can be expressed at time τk as follows:
ġt ≈ ∆gt/∆τ (see [88–90]), where ∆gt = gt(τk)− gt(τk−1) and ∆τ = τk − τk−1.

4.3. Wear Law

This work assumed a Holm–Archard wear law [91], which, for an infinitesimally small
apparent contact area, can be expressed in terms of the wear rate [33,43,47,49,50,92–95], as:
ω̇ = iw |pn| ||ġt||, iw being the wear coefficient.

Since orthotropic tribological properties were considered in this work, an orthotropic
wear law [50,96,97] should be assumed. Therefore, the wear law should be rewritten as

ω̇ = |pn| ||ġt||i, (12)

where
||ġt||i =

√
(i1 ġe1)

2 + (i2 ġe2)
2, (13)

where i1 and i2 are the principal intensity wear coefficients.
The derivatives can be expressed—under quasi-static wear and contact conditions as

ω̇ ' ∆ω = ω(τk)−ω(τk−1) and ġt ' ∆gt = gt(τk)− gt(τk−1) . Therefore, the wear depth
at the instant τk can be computed as

ω(τk) = ω(τk−1) + pn(τk) || gt(τk)− gt(τk−1)||i. (14)

5. Subsurface Stresses

Finally, the subsurface stresses at point x ∈ Ω(α) (α = A, B)—caused by a surface
contact pressure at x′ ∈ Γc (see Figure 2a)—can be computed as

σ(x, τ) =
∫ ∫

Γc(τ)
T(x, x′) p(x′, τ) dx′dy′, (15)

where the influence coefficients of the kernel function T(x, x′) depend on the relative
positions of the two surface points x and x′; therefore, T(x, x′) = T(x′ − x).

For the sake of clarity, the expression above is rewritten as

σij(x, τ) =
∫ ∫

Γc(τ)
TSx

ij (x′ − x) px(x′, τ) + TSy
ij (x′ − x) py(x′, τ) +

TN
ij (x

′ − x) pn(x′, τ) dx′dy′. (16)

The explicit expressions of TN
ij (x, y, z), TSx

ij (x, y, z) and TSy
ij (x, y, z) can be found in [71].
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(a)

(b)

Figure 2. (a) Half-space scheme where surface tractions on a point x′ ∈ Γc cause subsurface stresses
at point x ∈ Ω(α) (α = A, B). (b) A mesh scheme considered for the potential contact zone.

6. Solution Scheme

The nonlinear equations’ set Equations (1)–(3), (7), (8), (14) and (16) was discretized
and solved by using the numerical scheme presented by the authors in [71]. This allowed
us to compute the contact conditions and the subsurface stresses’ evolution caused by
the contact—under wear conditions—on every loading and unloading cycle (k). For the
numerical simulation, a rectangular potential contact zone was considered and discretized
by a regular mesh with Ne = Nx × Ny elements of size ∆x × ∆y (see Figure 2b), whose
coordinates were the center of each element. Subsurface stresses for a set of interior points
can be computed from the discrete expression of Equation (16).

7. Numerical Analysis

This work analyzed the influence of friction and wear on the surface and subsurface
contact stresses generated—in an elastic half-space—by the cylindrical flat-ended punch,
under normal cyclic indentation loading. Moreover, orthotropic tribological laws were
also considered in the analysis. For this purpose, we considered a cylindrical punch,
whose radius was ao = 1.8 mm. Both domains were constituted by linear and elastic
materials with the same Poisson’s ratios ν(A) = ν(B) = 0.3 and different Young’s modulus,
i.e., E(B)/E(A) = 100, where E(A) = 200× 103 MPa. Therefore, the punch can be considered
as rigid compared to the half-space.

This section is divided into three blocks. Firstly, in Section 7.1, we validate the com-
putational framework by solving a benchmark frictionless indentation problem—under
static normal load (P)—whose theoretical surface contact tractions and subsurface stress
distributions can be found in the literature [76,98]. In this context, the influence of friction
was also studied. Therefore, considering several values of the friction coefficient (µ), we
can study its influence on the contact tractions and the subsurface stresses. Secondly,
in Section 7.2, the cylindrical flat-punch is subjected to a cyclic normal load—loading and
unloading cycles—which induces wear on the solids’ surfaces, i.e., fretting wear conditions.
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Therefore, this section studies the influence of both friction and wear on the evolution of
the surface contact tractions and subsurface contact stresses, assuming isotropic friction
and wear laws. Finally, Section 7.3 studies the cylindrical flat-punch under cyclic normal
load conditions and orthotropic tribological laws.

7.1. Cylindrical Flat-Punch under Static Normal Load Conditions

First, we validated the accuracy of the proposed formulation to solve this problem by
solving the static indentation under frictionless contact conditions (µ = 0). The theoretical
solution of this benchmark problem can be found in [76] or [98]. For the normal contact
pressure, it can be presented as a function of the radial distance (r =

√
x2 + y2) as

pn =
P

2πao
√

a2
o − r2

(r ≤ ao), (17)

where P is the centrally applied vertical force. This resulting normal load (P) and the
average contact pressure (po) in the contact zone can be written, respectively, as a function
of the normal indentation (go) as

P = 2E∗aogn,o, (18)

and
po =

P
πa2

o
=

2E∗gn,o

πao
, (19)

where E∗ =
(
(1− ν(A) 2)/E(A) + (1− ν(B) 2)/E(B)

)−1
.

A comparison between the theoretical normal contact pressure distribution, for P = 714 N
(gn,o = 9113.4 µm), and the numerical results is presented in Figure 3a. In this figure, all the
variables are presented in a non-dimensional form. The x-axis coordinates are expressed
relative to ao, and the normal contact pressure is presented relative to po. This value can
be related to the average pressure in the contact (po). An excellent agreement between the
numerical results—square markers—and the theoretical solution—continuous line—can be
observed in Figure 3a, the maximum values of the normal contact pressure (pn,max) being
located at the contact zone limits, i.e., at x/ao ≈ 1.0.

Now, we can study the influence of friction on the surface contact tractions.
The normal contact of a rigid flat-ended cylindrical punch with an elastic half-space

under complete stick conditions was initially solved by Mossakovskii [99]. This work
provided us the contact stiffness (kn := P/gn,o), i.e., the ratio between the load on the punch
(P) and the indentation (gn,o), for the mentioned tangential stick conditions. Therefore, this
contact stiffness can be related to the contact stiffness for the frictionless case, presented in
Equation (18). The resulting relation between the contact stiffness for the complete stick
and for frictionless contact can be expressed as

kn|adhesion/kn|frictionless = (1− ν) ln (3− 4ν)/(1− 2ν). (20)

Figure 3b shows the relation between the computed contact stiffness for frictional and
for frictionless contact (kn|µ/kn|frictionless) as a function of the friction coefficient (µ) and the
material parameter ν. Moreover, the relation between the contact stiffness for the complete
stick and for frictionless contact (kn|adhesion/kn|frictionless)—presented by Mossakovskii [99]—
is also included. We can observe how the computed kn|µ tends to the contact stiffness
for the complete stick case (kn|adhesion) when high values for the friction coefficient are
considered. In particular, for the material properties considered (ν = 0.3), the contact
stiffness value reached the adhesion case values (kn|µ ≈ kn|adhesion) when µ ≥ 0.4.
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(a) (b)

Figure 3. (a) Theoretical—continuous blue line—and numerical—square markers—results of the
comparison between the theoretical normal contact pressure distribution—continuous line—and
the numerical—square markers—for a frictionless contact indentation. (b) Relation between the
computed contact stiffness for frictional and for frictionless contact (kn|µ/kn|frictionless) as a function of
the friction coefficient (µ) and the material parameter (ν). Moreover, the relation between the contact
stiffness for the complete stick and for frictionless contact (kn|adhesion/kn|frictionless)—presented by
Mossakovskii [99]—is also included.

In Figure 4, we present the normal and tangential contact tractions’ distributions
under isotropic frictional contact conditions, i.e., µ1 = µ2 = µ = {0.1, 0.15, 0.2, 0.25, 0.3, 0.4}.
The results showed how the stick (or adhesion) region in the contact zone (i.e., where
|px| < µpo), increased with the value of the friction coefficient (µ) until a threshold value
is reached (i.e., µ ≈ 0.4 in our analysis). Then, all the points of the contact area reached
a contact–stick state, and additional increments on µ did not cause an increment on the
tangential contact tractions.

(a) (b)

Figure 4. Cont.
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(c) (d)

(e) (f)

Figure 4. Normal and tangential contact pressure distributions under isotropic frictional contact
conditions: µ1 = µ2 = µ = {0.1, 0.15, 0.2, 0.25, 0.3, 0.4} (a–f), respectively.

To validate the subsurface stress components’ computational framework, Figure 5a,b
presents, respectively, the theoretical and numerical von Mises equivalent stress distri-
butions in the x-z-plane of the elastic half-space, normalized by po. We can observe an
excellent agreement between the theoretical von Mises stress distribution—presented in Fig-
ure 5a—and the numerical solution for the frictionless case: µ1 = µ2 = µ = 0; see Figure 5b.
The theoretical von Mises equivalent stress presented in Figure 5a can be obtained from

σVM =

√
1
2
(
(σrr − σφφ)2 + (σφφ − σzz)2 + (σzz − σrr)2 + 6τ2

rz
)
, (21)

where the expressions of the cylindrical stress components are presented in Appendix A.
We can see in Figure 5a how a stress singularity exists at the edge of the contact circle
(r = ao).

It should be noted that we considered the von Mises failure criterion since ductile
contacting bodies—under elastic half-space assumptions—were considered in the anal-
yses. This criterion would not be valid for hardened surfaces or hard wear-resistant
coatings such as ceramics. For layered surfaces, the readers should refer to the work of
Teodorescu et al. [60].

Once the subsurface stresses were validated, we studied the influence of friction
on the subsurface von Mises stress distribution in Figure 5b–f. For the frictionless case,
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the maximum values of the normalized von Mises stress distribution (σVM/po) were
located at x/ao = 1.0 and z/ao = 0.0. We also can distinguish a subsurface region, where
σVM/po ≥ 1 (marked with black lines in the figures). Moreover, when we increased the
friction intensity, i.e., µ1 = µ2 = µ = {0.1, 0.2, 0.3, 0.4}, the normalized von Mises stress
distributions presented in Figure 5c–f increased the size of the region with σVM/po ≥ 1
and, additionally, created a new stress gradient around the z-axis. However, when the
friction intensity reached the mentioned threshold value, no more changes were observed
in the normalized von Mises stress distribution.

(a) (b)

(c) (d)

(e) (f)

Figure 5. (a) Theoretical von Mises equivalent stress distribution in the half-space—caused by a
cylindrical flat-punch indentation—which is normalized by the average pressure (po). (b) Normalized—
computed—von Mises equivalent stress in the half-space caused by a cylindrical flat-punch indentation
(µ1 = µ2 = µ = 0). (c–f) Normalized von Mises equivalent stress distributions computed in the elastic
half-space under isotropic frictional contact conditions: µ1 = µ2 = µ = {0.1, 0.2, 0.3, 0.4}, respectively.
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7.2. Cyclic Normal Load Conditions and Isotropic Tribological Laws

This section studies the influence of the friction intensity on the evolution of the
surface tractions and subsurface stresses when the solids are subjected to—isotropic—
fretting wear conditions. In this case, the cylindrical flat-ended punch was subjected to
normal indentation loading and unloading cycles over the elastic half-space (see Figure 1),
the maximum load value being P = 750 N. The analyses were developed considering
different values of the friction coefficients, i.e., µ1 = µ2 = µ (where µ = {0.1, 0.2, 0.4}),
and the wear coefficients values: i1 = i2 = iω (where iω = 1.33× 10−7 MPa−1).

The influence of the friction intensity is clearly observed in Figure 6. We can see in
Figure 6a the computed maximum wear depth evolution as a function of the number of
load cycles (N), for several values of the friction coefficient: µ = {0.1, 0.2, 0.4}. Figure 6b
shows the wear volume evolution with the number of load cycles and the same values
of the friction coefficient. In both figures, we can observe how the smaller the friction
coefficient value was, the greater the wear damage (i.e., maximum wear depth or wear
volume) obtained. This was due to the fact that the smaller the friction coefficient value
was, the bigger the annular sliding contact zone obtained (see Figure 4a,f).

(a) (b)

(c) (d) (e)

Figure 6. (a) Computed maximum wear depth evolution as a function of the number of load cycles
(N), for several values of the friction coefficient: µ = {0.1, 0.2, 0.4}. (b) Wear volume evolution
with the number of load cycles and different values of the friction coefficient. (c–e) Normal contact
pressure distributions after 103, 104, and 105 load cycles, respectively, and several friction values of
the friction coefficient: µ = {0.1, 0.2, 0.4}.

The influence of the friction intensity in the evolution of the normal contact pressure
distribution is presented in Figure 6c–e. They present the normal contact pressure distri-
butions after 103, 104, and 105 load cycles, respectively, and several friction values of the
friction coefficient: µ = {0.1, 0.2, 0.4}. We can observe in Figure 6e the tremendous differ-



Lubricants 2023, 11, 265 12 of 22

ence between the normal contact pressure distribution obtained—after 105 load cycles—for
µ = 0.1 and µ = 0.4, respectively.

These differences can also be observed in Figure 7a–f for the computed wear depth
distributions and normal contact pressure distribution, respectively. These surface distribu-
tions are presented in the x-y-plane, after N = 105 cycles, for the friction coefficient values:
µ = {0.1, 0.2, 0.4}. Due to the isotropic friction and wear laws considered, the distributions
presented a z-axis symmetry.

(a) (b) (c)

(d) (e) (f)

Figure 7. (a–c) Computed wear depth distribution after N = 105 cycles, for several values of
the friction coefficient: µ = {0.1, 0.2, 0.4}, respectively. (d–f) Resulting normal contact pressure
distribution after N = 105 cycles, for µ = {0.1, 0.2, 0.4}, respectively.

Finally, Figure 8 presents the subsurface von Mises stress distributions in the half-
space after N = 103 cycles (see Figure 8a) and N = 105 cycles (see Figure 8b), for
µ = {0.1, 0.2, 0.4}, respectively. The stress distributions are presented in the x-z-plane,
all the variables being non-dimensional. All the subsurface stress distributions obtained
for µ = {0.1, 0.2, 0.4} after a low number of cycles (N = 103)—see Figure 8a—presented a
maximum stress value at the edge of the contact circle, its radius being slightly reduced
from ao due to wear. However, after a big number of load cycles (i.e., N = 105), the friction
intensity had a big influence not only on the resulting values of the von Mises stress,
but also on the location of the maximum stress value—see Figure 8b. On the one hand,
since low friction values (i.e., µ = 0.1) caused important wear damage on the solid surfaces,
this also led to a stress distribution where the maximum value of the subsurface von Mises
stress was located at r = 0 and z/ao ≈ 0.7. On the other hand, when high friction values
were considered (i.e., µ = 0.4), low wear damage was produced on the solid surfaces,
and therefore, the stress distribution presented its maximum value located on the surface
z/ao ≈ 0 and at the edge of the contact circle (r/ao ≈ 0.9).



Lubricants 2023, 11, 265 13 of 22

(a) (b)

Figure 8. von Mises equivalent stress distributions in the half-space after: (a) N = 103 cycles and
(b) N = 105 cycles, for µ = {0.1, 0.2, 0.4}, respectively. The stress distributions are presented in the
x-z-plane.

7.3. Cyclic Normal Load Conditions and Orthotropic Tribological Laws

This section studies the influence of orthotropic friction and wear laws (i.e, under
µ1 6= µ2 and i1 6= i2) on the evolution of the surface tractions and the subsurface stresses
when fretting wear conditions are considered. Similar to the previous section, the cylindrical
flat-ended punch was subjected to normal indentation loading and unloading cycles over
the elastic half-space, the maximum load value being P = 750 N. However, in this case, we
considered the following values for the friction coefficients: µ1 = 0.1 and µ2 = 0.4, and the
wear coefficients: i1 = 1.33× 10−7 MPa−1 and i2 = i1µ2/µ1 (in order to maintain that the
wear rate is proportional to the friction dissipation energy).

To validate this study, we present in Figure 9a,b the computed maximum wear depth
evolution and the total wear volume, respectively, as a function of the number of load cycles (N),
for several values of the orientation of the tribological axes’ angles: β = {0◦, 45◦, 90◦}. In both
figures, we can observe how these magnitudes were invariant with the angle β. Additionally, it
can be observed that the maximum wear depth evolution for the orthotropic case was similar
to the average evolution between the isotropic fretting wear cases presented in Figure 6 for
µ = 0.1 and µ = 0.4. However, the wear volume evolution did not follow that pattern.

Figure 10a–c present the computed wear depth distribution after N = 105 cycles,
for the following values of the tribological axes’ angle orientation: β = {0◦, 45◦, 90◦},
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respectively. The resulting normal contact pressure distributions—after N = 105 cycles—
are presented in Figure 10d–f, for β = {0◦, 45◦, 90◦}, respectively. Contrary to what
Figure 7 showed for the wear depth and the normal contact pressure distributions under
isotropic fretting wear conditions, the distributions in Figure 10 for orthotropic fretting
wear conditions did not present z-axis symmetry. The maximum value of the normal
contact pressure distributions was located where the wear depth distributions presented
the greatest gradient values. This region was located at the intersection of the edge of the
contact circle and the direction of the tribological principal axis with the greatest friction
coefficient (i.e., e2-axis in this case, since µ2 > µ1).

(a) (b)

Figure 9. (a) Computed maximum wear depth evolution as a function of the number of load cycles
(N), for the following values of the tribological axes’ angle orientation: β = {0◦, 45◦, 90◦}. (b) Wear
volume evolution with the number of load cycles and different values of β.

(a) (b) (c)

(d) (e) (f)

Figure 10. (a–c) Computed wear depth distribution after N = 105 cycles, for the following values
of the tribological axes’ angle orientation: β = {0◦, 45◦, 90◦}, respectively. (d–f) Resulting normal
contact pressure distribution after N = 105 cycles, for β = {0◦, 45◦, 90◦}, respectively.
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Finally, Figure 11 presents the subsurface von Mises stress distributions in the half-
space after N = 103 cycles (see Figure 11a) and N = 105 cycles (see Figure 11b), for
β = {0◦, 45◦, 90◦}, respectively. Again, the stress distributions are presented in the x-z-
plane, all the variables being non-dimensional: the x and z coordinates are expressed
relative to ao, and the von Mises equivalent stress is presented relative to po. All the
subsurface stress distributions obtained for β = {0◦, 45◦, 90◦} after a low number of cycles
(N = 103 cycles)—see Figure 11a—presented a stress maximum value at the edge of the
contact circle, which, due to wear, was slightly less than ao. The same location of the
maximum stress value (i.e., the subsurface region in the edge of the contact circle) was
observed after N = 105 cycles—see Figure 11b. These discrepancies between the stress
distributions obtained under isotropic and orthotropic fretting wear conditions can be
explained due to the lack of z-axis symmetry in the wear depth distribution obtained under
orthotropic fretting wear conditions.

(a) (b)

Figure 11. von Mises equivalent stress distributions in the half-space after: (a) N = 103 cycles and
(b) N = 105 cycles, for β = {0◦, 45◦, 90◦}, respectively.
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8. Summary and Conclusions

This work analyzed the influence of friction and wear on the surface and subsurface
contact stresses generated—in an elastic half-space—by a cylindrical flat-ended punch,
under cyclic indentation loading. For this purpose, the computational framework presented
by the authors [71] was extended to study this fretting wear contact problem.

This numerical scheme allowed us to study simultaneously the evolution of the surface
wear and the subsurface stress distributions (i.e., maximum value and its location) under
orthotropic friction and wear conditions. This allowed us to evaluate the stress distributions
in a wide range of engineering components, i.e., especially in those whose surfaces present
some particular striation patterns (e.g., caused by machining operations), and highs and
hollows were clearly oriented on the surface. For such cases, a specific orthotropic friction
and wear law should be considered. However, the formulation presented some limitations.
It should be applied to those domains where elastic half-space assumptions can be assumed;
therefore, it is not valid for soft surfaces, where small strains cannot be assumed.

After the validation of this computational scheme, several numerical studies were
developed to obtain the following conclusions:

• For the static normally loaded cylindrical flat-punch (see Section 7.1), the stick re-
gion in the contact zone increased with the value of the friction coefficient until a
threshold value was reached (i.e., µ ≈ 0.4 in our analysis). Then, all the points of the
contact area reached a contact–stick state. Additionally, on the subsurface von Mises
stress distributions (see Figure 5b–f), we observed that the size of the region with
σVM/po ≥ 1 increased with the friction coefficient value—and new stress gradient
around the z-axis appeared—until the threshold value was reached. However, when
the friction intensity reached the mentioned threshold value, no more changes were
observed in the normalized von Mises stress distribution.

• Regarding the response under isotropic fretting wear conditions caused by the normal
cyclic loading conditions (i.e., radial fretting wear), we observed how the smaller
the friction coefficient value was, the greater the wear damage (i.e., maximum wear
depth or wear volume) obtained. This was due to the fact that the smaller the friction
coefficient value was, the bigger the annular sliding contact zone obtained.

• The influence of friction intensity can be observed—after a big number of load cycles
(i.e., N ≈ 105)—on the resulting surface wear depth, the normal tractions, and the
subsurface von Mises stress values. Due to the fact that isotropic friction and wear
laws were considered, their distributions presented a z-axis symmetry. In particular,
with regard to the location of the maximum stress value, the low friction values
(i.e., µ = 0.1) caused important wear damage on the solid surfaces. Moreover, this
also led to a stress distribution where the maximum value of the subsurface von Mises
stress was located at r = 0 and z/ao ≈ 0.7. On the other hand, when high friction
values were considered (i.e., µ = 0.4), low wear damage was produced on the solid
surfaces, and therefore, the stress distribution presented its maximum value located
on the surface z/ao ≈ 0 and at the edge of the contact circle (r/ao ≈ 0.9).

• Finally, the response under orthotropic fretting wear conditions caused by the normal
cyclic loading conditions did not present a z-axis symmetry. The maximum value of the
normal contact pressure distributions was located where the wear depth distributions
presented the greatest gradient values. This region was located at the intersection of
the edge of the contact circle and the direction of the tribological principal axis with
the greatest friction coefficient. Moreover, contrary to what was observed for isotropic
fretting wear conditions, the location of the maximum values of the subsurface stress
after a high number of cycles (N = 105 cycles) remained at the edge of the contact
circle, which, due to wear, was slightly less than ao.

These conclusions revealed the following two main findings. First was the importance
of the friction intensity in the evolution of the subsurface stress distributions (i.e., maximum
value and its location) when a flat-ended cylindrical punch over an elastic half-space was



Lubricants 2023, 11, 265 17 of 22

subjected to radial fretting wear conditions. Second was the significance of considering
orthotropic friction and wear conditions in the evolution of the surface and the subsurface
stress distributions for this problem.
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Nomenclature
Roman symbols:

ao Cylindrical punch radius
Aij(x, x′) Displacement kernel function to take into account the contribution of the surface

j-component contact traction on the relative i-component displacement on the
solid surface

A(x, x′) Displacement kernel function matrix
{e1, e2} Tribological axes
E Young’s modulus
E∗ Reduced or effective elastic modulus
|| • ||µ Elliptic norm based on the friction intensity coefficient
gg Geometrical gap
ġe1 Tangential slip velocity (e1-component)
ġe2 Tangential slip velocity (e2-component)
gn Normal gap
gn,o Rigid body normal approach
gt,o Rigid body tangential slip
gt Tangential slip vector
ġt Tangential slip velocity vector
G Shear modulus
iw Wear coefficient
i1 Principal wear coefficient in the e1-direction
i2 Principal wear coefficient in the e2-direction
kn Contact stiffness
N Number of load cycles
Ne Number of mesh elements
Nx Number of mesh divisions in the x-direction
Ny Number of mesh divisions in the y-direction
P Static normal load
pe1 Tangential contact traction (e1-component) expressed in {e1, e2}
pe2 Tangential contact traction (e2-component) expressed in {e1, e2}
po Average contact pressure
pn Normal contact pressure
p∗n Augmented normal contact traction
px Tangential contact traction (x-component)
py Tangential contact traction (y-component)
pz Normal contact traction
p Contact traction vector
pt Tangential contact traction vector
p∗t Augmented tangential contact traction vector
PR+ (•) Normal projection function
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PEρ
(•) Tangential projection function

r Radial–cylindrical coordinate
rn Normal penalty parameter
rt Tangential penalty parameter
TN

ij (x, x′) Stress kernel function to take into account the contribution of the normal contact traction
on the tress tensor ij-component in the solid

TSx
ij (x, x′) Stress kernel function to take into account the contribution of the x-component

tangential contact traction on the tress tensor ij-component in the solid

TSy

ij (x, x′) Stress kernel function to take into account the contribution of the y-component
tangential contact traction on the tress tensor ij-component in the solid

T(x, x′) Stress kernel function matrix
un Surface relative normal displacement
ux Surface relative displacement (x-component)
uy Surface relative displacement (y-component)
uz Surface relative displacement (z-component)
ut Surface relative tangential displacement vector
{x, y, z} Cartesian coordinate system
x Position vector of a solid interior point
x′ Position vector of a solid surface point

Greek symbols:

β Tribological axes’ angle orientation
Γc Contact zone
∆gt Tangential slip increment
∆x Element size in the x-direction
∆y Element size in the y-direction
∆τ Pseudo-time increment
∆ω Wear depth increment
µ Friction intensity coefficient
µ1 Principal friction coefficient in the e1-direction
µ2 Principal friction coefficient in the e1-direction
ν Poisson’s ratio
σij Stress tensor ij-component
σrr Radial stress
σφφ Circumferential stress
σVM von Mises stress
σzz Normal stress
τ Pseudo-time
τk Pseudo-time k-instant
τrz Shear stress
ω Wear depth
ω̇ Wear rate
Ω Solid domain

Appendix A

The stress components of an isotropic half-space in frictionless contact with a centrally
loaded cylindrical flat punch can be expressed, in cylindrical coordinates—adapted from
Kachanov et al. [98]—as a function of the radial distance (r =

√
x2 + y2) as

σrr =
1
2
(σ1 + σ2), σφφ =

1
2
(σ1 − σ2) (A1)

σzz =
P

2πao

−
√

a2
o − l2

1

l2
2 − l2

1
+

z2( l4
1 + a2

o
(
r2 − 2a2

o − 2z2) )√
a2

o − l2
1
(
l2
2 − l2

1
)3

, (A2)
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and

τrz = −
P

2πao

zr
√

a2
o − l2

1
(
3l2

2 + l2
1 − 4a2

o
)

(
l2
2 − l2

1
)3 . (A3)

In the expressions above, ao is the punch radius, P is the centrally applied vertical force,

σ1 = − P
2πao

(1 + 2ν)

√
a2

o − l2
1

l2
2 − l2

1
+

z2( l4
1 − a2

o
(
2a2

o − r2 + 2z2) )√
a2

o − l2
1
(
l2
2 − l2

1
)3

, (A4)

σ2 = − P
2πao

 (1− 2ν)
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1

l2
2 − l2

1
−

2
(

ao −
√

a2
o − l2

1

)
r2


+

aoz
√

l2
2 − a2

o
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1 + 3l2
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) )

l2
2
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l2
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,

(A5)

l1 =
1
2

(√
(r + ao)

2 + z2 −
√
(r− ao)

2 + z2
)

, (A6)

and

l2 =
1
2

(√
(r + ao)

2 + z2 +

√
(r− ao)

2 + z2
)

. (A7)
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