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Abstract: Gear wear is unavoidable and results in vibrations and decreased performance in a plan-
etary gear system. In this work, the wear phenomenon of the gear teeth surface and the dynamic
responses of the planetary gear mechanism are investigated through a computational methodology.
Dynamic responses are presented by considering the dynamic wear effects. First, the model of the
planetary gear mechanism dynamics is established by considering the nonlinear stiffness and friction
of gear surfaces. The dynamic wear model of the gear is then established based on Archard’s wear
model. Further, the coupling between the dynamics and wear characteristics of the planetary gear
mechanism is presented by considering the dynamic wear effects. Finally, a numerical investigation
is conducted. The simulation results reveal severe wear between the sun and planet gears. The wear
depth and meshing vibration responses exhibit prominent nonlinear characteristics. The low-order
resonance of the meshing frequency becomes more marked as the mesh times and wear increase.

Keywords: planetary gear mechanism; wear; nonlinear mesh stiffness; friction; dynamic responses

1. Introduction

Planetary gear transmission, one of the most popular types of mechanical transmission,
is usually used in various kinds of mechanisms. It benefits from its small size, high
transmission ratio, and high load capacity. It is inevitable that wear exists in the gear
transmission system. Consequently, the vibration of the planetary transmission system
will be aggravated, and the transmission accuracy will decrease as a result of the coupling
between gear wear and the dynamics of planetary transmission. In order to predict the
performances of the planetary transmission gears, it is crucial to thoroughly investigate the
wear characteristics of planetary transmission gears as well as the dynamic performances
of planetary transmission.

Many studies have been conducted on the dynamic characteristics of the gear trans-
mission system. Kahraman et al. [1–4] established the dynamic model of planetary gear
clearance, considered the factors of gear-meshing error, tooth side clearance, mesh stiff-
ness, and bearing clearance, and summarized the influence of different types of clearances
on gear dynamic characteristics, which laid a foundation for the study of planetary gear
clearance dynamics. Parker [5,6] analyzed the relationship between planet phasing and
the planetary gear vibration, and the method simulating the vibration of the planetary
gear. Ambarisha et al. [7] analyzed the nonlinear dynamic characteristics of the planetary
gear. Huang [8] proposed a mathematical model to simulate the vibration of the plan-
etary gear. Considering the influence of gear backlash, Wang [9,10] established a gear
dynamics model considering torsional vibration to study the gear-meshing dynamics. It
was proposed that the introduction of tooth side clearance would enhance the nonlinear
characteristics of the gear, which was verified by experiments. Nevzat and Houser [11]
summarized the gear-meshing dynamics model, which laid a theoretical foundation for
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analyzing the influence of tooth backlash on gear nonlinear dynamics. In the work of
Shi et al. [12], the separation of tooth surface caused by the nonlinear change of tooth
clearance was analyzed. A variety of meshing conditions such as tooth back meshing were
established under the conditions of tooth surface separation, active tooth meshing, and
tooth back meshing. Al-Shyyab [13] established the nonlinear model for planetary gears
and studied the key parameters of the nonlinear dynamic responses of these gears. Lin and
Parker [14,15] considered the gyro effect of gears. By analyzing the sensitivity of different
parameters through modal energy distribution, the sensitivity of natural frequency to
working speed is obtained, and the influence of the gyro effect is analyzed. Xiang [16]
proposed a nonlinear planetary gear dynamic model that considers the comprehensive
gear error and time-varying mesh stiffness. The results showed nonlinear characteristics at
different frequencies. Ligata [17,18] conducted an experimental study to analyze the effect
of manufacturing errors on planetary gear stresses and planet load-sharing. He et al. [19]
comprehensively considered the influence of tooth surface friction and lubrication, estab-
lished the gear-friction dynamic equation, and predicted the gear tooth surface-friction
force. Dong and Yuan [20,21] calculated the meshing characteristics of cylindrical gears
under elastohydrodynamic lubrication and analyzed the effects of different operating pa-
rameters on friction and mesh force. Zhang et al. [22] proposed a method to predict the
friction coefficient and wear of spiral bevel gears that considers the effect of the mixed
lubrication condition. Chen [23,24] combined tooth backlash and tooth surface friction and
analyzed the nonlinear rotation dynamic characteristics of gears. Additionally, Guo [25–27],
Kim [28], Ma [29], Sánchez [30,31], Chen [32], Sun [33], and Tsai [34] have presented a large
number of research studies on planetary gear dynamics.

The wear of gear exists during the working of a transmission system and the dynamic
responses of gear changes with gear-wear development. Flodin and Sndersson [35–38]
proposed a wear discretization model and applied it to the calculation of gear wear.
Shen et al. [39,40] proposed a pure torsion dynamic model of planetary gear that takes
into consideration gear wear. Archard’s model is used to calculate gear wear, and time-
varying mesh stiffness, no-load static transmission error, and tooth backlash are introduced
into the dynamic model. Guerin et al. [41] considered that the tooth surface-friction coeffi-
cient cannot be accurately estimated when the gear is running, so the polynomial chaotic
projection method was used to study the dynamic response of the spur gear system, taking
into consideration the uncertain tooth surface-friction coefficient. Straffelini et al. [42] hy-
pothesized that gear wear could change the gear tooth clearance and thus change the gear
dynamic characteristics, and the calculated results of wear distribution using the Archard
wear model were in good agreement with the actual observed results. Li et al. [43,44]
proposed a dynamic model to simulate the contact fatigue and surface wear of spur gear,
in which the effect of input torque, roughness of gear teeth, and lubricant are involved.
Yan et al. [45,46] presented a model of a spur gear considering the coupling of the effect
between surface wear and fatigue, and the effects of gear teeth surface wear on the service
life were analyzed. Bajpai [47] proposed a surface-wear prediction methodology based
on finite elements for spur and helical gears. Yuksel [48] analyzed the influence of gear
wear on the planetary gear dynamic tooth loads. The gear wear has a significant influence
on off-resonance speed ranges. Ding [49] established two dynamic models of planetary
gears to find the interactions between nonlinear spur gear dynamics and surface wear. The
results indicated that gear wear reduced the nonlinear forced response at the initial stage.
However, the nonlinear forced response would appear again as the wear increased continu-
ously. Wu [50] and Zhou [51] also performed investigations to develop the gear-wear theory.
Additionally, Choy [52], Wojnarowski [53], Zhang [54], and Feng [55] focused on gear wear
and analyzed the gear performance. It is important to note that wear will increase the
backlash size of gearing and, as a result, affect the dynamic performance of transmission
mechanisms. Wear leads to a decrease in the precision of mechanisms, particularly for high
accuracy and long lifespan mechanisms.
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Therefore, it is necessary to thoroughly investigate and discuss the effects of wear on
dynamic responses of gear transmission in mechanical systems. To understand the effects
of gear wear on the dynamic responses of planetary gears during long-term operations,
this paper presents a computational methodology to investigate the vibration responses
of planetary gear mechanisms by considering dynamic wear effects. First, a time-varying
dynamic model of planetary gears is proposed. The parameters of the dynamic model
vary with the number of mesh cycles, and the mesh forces and tangential friction forces
are obtained to describe the contact–impact forces on the gear surface. Second, a dynamic
wear model of the gear is developed to predict the dynamic wear depth on the gear surface.
Finally, the proposed model is used to study the wear and dynamic responses of a plane-
tary gear transmission system. The computational process involves the following steps:
(1) obtaining the mesh forces on the gear surface, (2) analyzing the distribution of gear wear
using the gear wear model, and (3) updating the backlash and gear surface to obtain the
dynamic characteristics of the gear transmission system.

This paper is organized as follows: Section 2 presents the rotational dynamic model
of planetary gears, considering the friction of gear teeth. The model of the time-varying
stiffness of the gear mesh is introduced in Section 3. Section 4 proposes the wear model
of gear teeth. The simulation process coupling the wear model and gear dynamics are
presented in Section 5. Section 6 presents the simulation results of mesh stiffness, gear-wear
depth, and meshing vibration at different rotational speeds. Section 7 summarizes the
conclusion of the presented work.

2. Rotational Dynamic Model of Planetary Gear Mechanism

In this section, a dynamic model of the planetary gear mechanism is established to
analyze the vibration responses of the planetary gear transmission system. As shown in
Figure 1, the planetary gear mechanism comprises the sun gear, planet gears, ring gear,
and planet-gear carrier. An angle of 120◦ was utilized in the configuration of the three
planet gears.
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Figure 1. Components of the planetary gear. Figure 1. Components of the planetary gear.

To simplify the dynamic model of the planetary gear mechanism, certain assumptions
are made:

(1) The planetary gear mechanism is planar, with one degree of freedom.
(2) Each component is assumed to be rigid.
(3) The tooth profile is involute, and each planet gear in the planetary gear system has

the same uniform parameters.
(4) The initial backlashes and comprehensive transmission errors are zero.
To describe the motion of the gears, their coordinate systems must first be established.

Figure 2 shows the coordinate systems and parameters of the planetary gear system.
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Figure 2. Coordinate systems and parameters of the planetary gear system.

In Figure 2, θ, s, pi, and c represent the rotational displacement, sun gear, ith-planet
gear, and planet-gear carrier, respectively. Ts, Tspi, and Tc denote the torques of the sun
gear, ith-planet gear, and planet-gear carrier, respectively. Is and Ipi are the inertia moment
of the sun gear and ith-planet gear, respectively. Ic is the inertia moment of the planet gear
and its carrier. The masses of the sun gear, ith-planet gear, and planet-gear carrier are ms,
mpi, and mc, respectively. kspi and kpri represent the varying mesh stiffness of the tooth
pair of the ith-planet–sun meshing pair and the tooth pair of the planet–ring meshing pair,
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respectively. cspi is the varying meshing dampness of the ith-planet–sun meshing pair. cpri
is the varying meshing dampness of ith-planet–ring meshing pair. espi is the tooth-profile
meshing error of ith-planet–sun meshing pair. epri is the tooth-profile meshing error of
ith-planet–ring meshing pair. α is the gear pressure angle. ϕ is the rotation angle of the
coordinate system x2Oy2. x1Oy1 is the global coordinate system, and x′1Oy′1 is the rotating
coordinate system. x2Oy2 is the body coordinate system of the planet gear.

When the gear teeth contact, the surfaces of the gear teeth are affected by frictional
forces. The loads and directions of the frictional forces are related to the meshing configura-
tion. A single-tooth meshing area and two double-tooth meshing areas are present when
the gears mesh. Figure 3 presents the contact forces between gear teeth during single-tooth
and double-tooth meshing.
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gears. (c) Forces acting during double-tooth pair meshing at the sun–planet gears. (d) Forces acting
during double-tooth pair meshing at the planet–ring gears.

In Figure 3, Rs is the basic radius of the sun gear, and Rpi is the basic radius of the
ith-planet gear. Rc is the rotation radius of the planet gear axis. sp and ps denote the forces
acting on the sun and planet gears, respectively. rp and pr denote the forces of the internal
ring gear and planet gear, respectively. f mij (m = sp, ps, rp, pr; j =1,2) is the friction force
between the ith-planet gear and jth-tooth meshing pair. Fmij (m = sp, ps, rp, pr; j = 1, 2)
represents the normal forces between the ith-planet gear and jth-tooth meshing pair.
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Further, the dynamic equations of the planetary gear mechanism are obtained by
analyzing the forces on the gears, which are expressed as follows:

Is
..
θs = Ts − Rs

N
∑

i=1

nz
∑

j=1
Fspij −

N
∑

i=1

nz
∑

j=1
ΛspijρspijµspijFspij

Ipi
..
θpi = Rpi

nz
∑

j=1
Fpsij +

nz
∑

j=1
ΛpsijρpsijµpsijFpsij

−Rpi
nz
∑

j=1
Fprij −

nz
∑

j=1
ΛprijρprijµprijFprij

(Ic +
N
∑

i=1
Ipi)

..
θc = Rs

N
∑

i=1

nz
∑

j=1
Fspij +

N
∑

i=1

nz
∑

j=1
ΛspijρspijµspijFspij

+Rr
N
∑

i=1

nz
∑

j=1
Frpij +

N
∑

i=1

nz
∑

j=1
ΛrpijρrpijµrpijFrpij + Tc

(1)

where the directions of the surface frictional forces are represented by Λspij, Λpsij, Λprij, and
Λrpij (i = 1, 2, 3; j = 1, 2), and these values can be −1 or 1; ρspij, ρpsij, ρprij, and ρrpij (i = 1, 2, 3;
j = 1, 2) are the radius of curvature at the contact point; and µspij, µpsij, µprij, and µrpij (i = 1,
2, 3; j = 1, 2) are the coefficients of dynamic friction. N is the number of the planet gears. nz
is the number of meshing teeth pairs.

The normal meshing force of gearing involves two terms, that is, elastic forces and
damping forces. The normal elastic force can be calculated using the penetration depth of
the gear teeth surfaces, as shown below:

Fmi =


kmi(δmi − b)

0

kmi(δmi + b)

,
,
,

δmi > b

−b < δmi < b

δmi < −b

(2)

where b is the backlash, δmi is the related distance along the mesh line of meshing gears,
and m = sp, pr; i = 1, 2, 3.

Considering the tooth-profile meshing error in the sun–planet gear and planet–internal
gear pairs, δmi is given by:

δspi =


δ∗spi − espi

0

δ∗spi + espi

, δ∗spi ≥ espi

,−espi ≤ δ∗spi ≤ espi

, δ∗spi ≤ −espi

(3)

δpri =


δ∗pri − epri

0

δ∗pri + epri

, δ∗pri ≥ epri

,−epri ≤ δ∗pri ≤ epri

, δ∗pri ≤ −epri

(4)

where epri and epri are the tooth-profile meshing errors. δ∗spi and δ∗pri represent the linear
displacement along the mesh line and they are given by:{

δ∗spi = rsθs − rpiθpi − rcθc cos α

δ∗rpi = rpiθpi − rcθc cos α
(5)
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After substituting Equations (2)–(5) into Equation (1), and considering the damping
force, we can obtain the following equation:

..
δspi −

Fspi
Mspi

+
Frpi Rs
McpRc

+
(

1
Ms

+ Rs
McpRc

)
·(

N
∑

i=1
Fspi +

N
∑

i=1
Fcspi +

N
∑

i=1

nz
∑

j=1
ΛspijSspij fspij

)
+ Rr

McpRc
·(

N
∑

i=1
Frpi +

N
∑

i=1
Fcrpi +

N
∑

i=1

nz
∑

j=1
ΛrpijSrpij frpij

)
= Ts

MsRs
− Tc

McpRc

..
δrpi +

Fspi
Mspi
− Frpi

Mspi
+ Rs

McpRc
·(

N
∑

i=1
Fspi +

N
∑

i=1
Fcspi +

N
∑

i=1

nz
∑

j=1
ΛspijSspij fspij

)
+ Rr

McpRc
·(

N
∑

i=1
Frpi +

N
∑

i=1
Fcrpi +

N
∑

i=1

nz
∑

j=1
ΛrpijSrpij frpij

)
= − Tc

McpRc

(6)

where Fcspi and Fcrpi are the damping forces between the planet and sun gears, respectively;
Mspi is the mass of the ith-planet gear; and Sspij, Spsij, Sprij, and Srpij are the equivalent cur-
vature radii of the tooth surface, where Sspij = ρspij/Rs, Spsij = ρspij/Rpi, Sprij = ρprij/Rpi,
and Srpij = ρrpij/Rr. Ms is the mass of the sun gear, and Mcp is the equivalent mass of the

planet carrier with all planet gears, which is expressed as Mcp =
(

Ic + ∑N
i Ipi

)
/Rc.

Damping forces can be obtained from Equation (7).

Fcmi = cmi
.
δmi (7)

where cmi is the meshing damping, m = sp, pr; i = 1, 2, 3.
Tangential friction forces can be obtained from Equation (8).

fmi = µmiFmi (8)

where µmi is the dynamic friction coefficient.

3. Modeling Gear Mesh Stiffness

The model of nonlinear mesh stiffness for planetary gears was derived by applying
the principle of minimum potential energy (PMPE). This model accommodates both sun–
planet and planet–ring mesh configurations. The mesh stiffness on mesh points is also
examined in this section. Stiffness excitation is a major contributor to the dynamic mesh
force and vibration responses in gears, which can lead to shock and decrease the stability
of the gear transmission. To analyze the dynamic mesh force, the time-varying feature of
mesh stiffness should be considered. In this study, the gear teeth were modeled as variable-
section cantilever beams on the base circle. The mesh stiffness can also be simplified as the
contact of several beams. Therefore, the mesh stiffness can be expressed as Equation (9) [31]

Ks =
K1K2KH

K1 + K2 + KH
= Ks(ξ) (9)

where K1 and K2 are the driving and driven stiffness, respectively; KH is the contact
stiffness; and ξ is the contact coefficient at point P. The mesh stiffness can be determined
from Equation (10) according to PMPE.

Ki =

(
1

kix
+

1
kis

+
1

kin

)−1
(10)
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where kx is the bending stiffness, ks is the shear stiffness, and kn is the axial compressive stiffness.

1
kx

= ± 12
EB
∫ yp

yb

[
±
(
yp − y

)
cos αp − rp sin γp

2 sin αp

]2 dy
ε3(y)

1
kn

= ± 1
EB
∫ yp

yb
sin2 αp

dy
ε(y)

1
ks

= ±Cs
1

GB
∫ yp

yb
cos2 αp

dy
ε(y)

(11)

where αp is the pressure angle at point P, γp is the angular thickness at point P, E is the
elasticity modulus, G is the shear modulus, B is the gear width, and y is the axial distance of
point P. ε(y) is the chordal thickness at point P; yb and yp are the distances to the gear-tooth
root and point P, respectively; Cs is the equivalent correction factor; and Cs = 1.5. The gear
parameters are shown in Figure 4.
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Figure 4. Calculation parameters of gear-tooth stiffness: (a) Internal ring gear parameters. (b) External
gear parameters.

ε(y) is obtained from Equation (12).

ε(y) = 2 tan(
π + 4x tan α

2z
− (invαP − invα))y (12)

where x is the gear modification coefficient, z is the tooth number, and α = 0.349066 rad,
that is, 20◦.

4. Modeling Gear Wear

This section proposes a model for predicting wear on gear teeth. The teeth surfaces
are divided into microelements. Moreover, the wear parameters within each microelement
are assumed constant. The wear depth for each microelement was calculated by applying
the Archard wear theory, and the resulting wear depths were used to determine the
overall distribution of wear on the gear surfaces. Wear causes changes in the backlash;
consequently, the dynamic characteristics of the gear transmission mechanism change
over time. Therefore, a mathematical model for predicting wear on the planetary gear is
necessary for analyzing the nonlinear characteristics of the transmission system. In this
study, the wear process is described from the perspective of the Archard wear theory, and
it is represented by Equation (13) [56,57]

V
s
= K

FN
H

(13)

where V is the wear volume, s represents the relative sliding distance, K is a dimensionless
wear coefficient, H is the hardness of the softer gear surface, and FN is the load of the
surface. Taking V/A = h and FN/A = p, Equation (14) can be obtained as follows:

h
s
= K

p
H

(14)
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where A is the contact area and p is the pressure.
Letting κ = K/H the wear at point P on a dry friction surface can generally be regarded

as a dynamic process from the initial state. Equation (14) is then described by differential
equations in Equation (15).

dh
dt

= κpv (15)

where v is the relative sliding speed and h is the wear depth. The wear depth at point P can
be obtained from the integral of Equation (15). Therefore, the wear depth is formulated
as Equation (16).

hp =

t∫
0

κpv dt (16)

To analyze the wear distribution on gear surfaces, the surface was divided into many
microelements. In each microelement, κ and p are constant. Equation (16) is then trans-
formed to Equation (17).

hi,j = hi,j−1 + κpi,j−1vi,j−1∆t (17)

where i is the number of elements, j is the mesh time, and ∆t is the time step. The progress
of gear wear is described in Figure 5: v1 and v2 are the tangent velocities of the driving and
driven gears, respectively, and P1P2 is a mesh line.
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5. Wear Prediction Process

This section presents the methodology for calculating the wear distribution and dy-
namic responses of the planetary gear mechanism, and a numerical calculation of the wear
depth and dynamic response is proposed. Further, a detailed procedure for calculating
dynamic responses is discussed. A numerical case study is also presented. For each pair
of teeth, a meshing cycle consists of one complete mesh period, which is determined by
the rotational speed and the number of teeth. For each meshing cycle, the mesh begins at
time t1 and ends at time t2. The double-tooth meshing period within one meshing cycle
occurs between ta and tb. Thereafter, the surface microelements can be represented in time
increments. The next step after obtaining the microelements is calculating the initial mesh
force. Equation (18) presents the relationship between F and Ks according to PMPE.

U =
1

Ks

F2

b
(18)
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where U is a constant denoting the meshing potential energy. Thus, the mesh forces of each
tooth pair are inversely proportional to their stiffness. The load ratio LR of each tooth pair
can then be expressed as Equation (19).

LR(ξ) =
F(ξ)

F
=

Ks(ξ)

∑nz−1
j=0 Ks(ξ + j)

(19)

The initial mesh force Fd0 is expressed as Equation (20).

Fd0 = LR(ξ)F (20)

Further, the initial mesh force can be obtained by combining Equations (9) and (18)–(20).
The variable mesh force can be solved from Equations (16) and (6). When variable mesh forces
are introduced into the wear model, the wear distribution can be obtained. The computational
process, which consists of a dynamic model and a wear model of the planetary gear mechanism,
is shown in Figure 6.
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Figure 6. Procedure for dynamics and wear analysis of the gear mechanism. Figure 6. Procedure for dynamics and wear analysis of the gear mechanism.

The process is as follows: First, the operating conditions and initial parameters are
specified to discretize the gear surface. The meshing process is then simulated, and the
steady mesh forces numerically obtained, which are introduced into the dynamic model of
the gear mechanism. The dynamic mesh force is then used input into the gear wear model
to determine the wear depth on the gear surface. Further, the gear surface and backlash
are updated based on the calculated wear depth, and the corresponding parameters of the
gear dynamic model are updated accordingly. Finally, the evolution of the gear-wear depth
and backlash with the number of cycles can be determined. Figure 7 presents the dynamic
calculation process. The initial mesh force, mesh stiffness, and mesh instant are separately
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solved. In the dynamic model of the planetary gear mechanism, the Newmark-βmethod
is employed to solve the dynamics equations. The initial distance and velocity are then
obtained from the periodicity of the distance and velocity. Tz is the meshing period of the
corresponding rotational speed. Finally, the initial data are obtained.

Lubricants 2023, 11, x FOR PEER REVIEW 11 of 22 
 

 

The process is as follows: First, the operating conditions and initial parameters are 
specified to discretize the gear surface. The meshing process is then simulated, and the 
steady mesh forces numerically obtained, which are introduced into the dynamic model 
of the gear mechanism. The dynamic mesh force is then used input into the gear wear 
model to determine the wear depth on the gear surface. Further, the gear surface and 
backlash are updated based on the calculated wear depth, and the corresponding param-
eters of the gear dynamic model are updated accordingly. Finally, the evolution of the 
gear-wear depth and backlash with the number of cycles can be determined. Figure 7 pre-
sents the dynamic calculation process. The initial mesh force, mesh stiffness, and mesh 
instant are separately solved. In the dynamic model of the planetary gear mechanism, the 
Newmark-β method is employed to solve the dynamics equations. The initial distance and 
velocity are then obtained from the periodicity of the distance and velocity. Tz is the mesh-
ing period of the corresponding rotational speed. Finally, the initial data are obtained. 

Input working conditions,
Gear and lubricant parameters

Solve the meshing time  t1, t2, ta, tb 
and gear tooth stiffness Ks

Initial meshing force Fd0

Initial meshing displacement δ0

Yes

No

Output     and 

M C K Fδ δ δ+ + = 

rx

0

0

Tz

Tz

δ εδ
δ εδ

=

= 

rx

0 00.01and 0.01Tz Tz

Tz Tz

δ δ δ δ
δ δ
− −< <

 


 
Figure 7. Calculation process for the initial data. 

In the planetary gear system, assuming that the inputting power is 1 kW, the sun gear 
is the input component, and the planet-gear carrier is the output component. The geomet-
ric and material parameters of the gear mechanism are presented in Table 1. 

Table 1. The geometric and material parameters of the gear mechanism. 

Parameters Value 
Modules/mm 3 

Tooth number of the internal ring gear 81 
Tooth number of the planet gear 30 

Tooth number of the sun gear 21 
Meshing angle/rad 0.349066 

Figure 7. Calculation process for the initial data.

In the planetary gear system, assuming that the inputting power is 1 kW, the sun gear
is the input component, and the planet-gear carrier is the output component. The geometric
and material parameters of the gear mechanism are presented in Table 1.

The time-changing gear-mesh stiffness is presented in this subsection as a precondition
for investigating the time-varying mesh forces. Figure 8 illustrates the variation in time-
changing gear-mesh stiffness corresponding to different tooth pairs, where Tz in the time
axis is the mesh period.

In Figure 8, Tz in the time axis denotes the mesh period. The peak stiffness of the
single-tooth-pair mesh for both types of tooth pairs is 6.372 × 106 N/m. However, in sun–
planet meshing, the peak of the general tooth-pair mesh is 7.776 × 106 N/m. It decreases to
7.033× 106 N/m in planet–ring meshing. The change in the overall stiffness for planet–ring
meshing is less pronounced, resulting in stiffness excitation having a weaker impact on this
type of meshing compared with sun–planet meshing. The gear stiffness values are listed
in Table 2.
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Table 1. The geometric and material parameters of the gear mechanism.

Parameters Value

Modules/mm 3
Tooth number of the internal ring gear 81

Tooth number of the planet gear 30
Tooth number of the sun gear 21

Meshing angle/rad 0.349066
Gear width/mm 50

Elasticity modulus of internal ring gear E1/GPa 206
Elasticity modulus of planet gear E2/GPa 206

Elasticity modulus of sun gear E3/GPa 206
Shear modulus of internal ring gear G1/GPa 79.4

Shear modulus of planet gear G2/GPa 79.4
Shear modulus of sun gear G3/GPa 79.4

Poisson ratio of internal ring gear 0.3
Poisson of planet gear 0.3
Poisson of the sun gear 0.3

Dynamic friction coefficient 0.1
Wear coefficient K 5 × 10−11
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Table 2. Data on gear stiffness.

Parameter Sun–Planet Planet–Ring

Max. single stiffness 6.372 × 106 N/m 6.372 × 106 N/m
Max. general stiffness 7.776 × 106 N/m 7.033 × 106 N/m

First stiffness excitation 1.558 × 106 N/m 1.561 × 106 N/m

6. Numerical Results and Discussion

In this section, the distributions of wear depth on gear surfaces are first analyzed.
Thereafter, the relationship between the characteristics of gear wear and rotational speeds
is established. Additionally, the variation in gear vibration with mesh times is analyzed.
Finally, the influence of gear wear on the vibration frequency is analyzed via FFT.
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6.1. Wear Distribution

The gear mesh forces were obtained based on the gear mesh stiffness and the gear
dynamic model. Here, the input power is constant. The rotational speeds were 100 rpm,
200 rpm, and 400 rpm. The variation in wear depth with gear surface at different rotational
speeds as mesh time increases is shown in Figure 9.
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Figure 9. Wear distribution on tooth surface: (a) Sun-gear wear distribution in a sun–planet tooth
pair (100 rpm). (b) Planet-gear wear distribution in a sun–planet tooth pair (100 rpm). (c) Planet-gear
wear distribution in a planet–ring tooth pair (100 rpm). (d) Internal-ring-gear wear distribution
in a planet–ring tooth pair (100 rpm). (e) Sun-gear wear distribution in a sun–planet tooth pair
(200 rpm). (f) Planet-gear wear distribution in a sun–planet tooth pair (200 rpm). (g) Planet-gear
wear distribution in a planet–ring tooth pair (200 rpm). (h) Internal-ring-gear wear distribution
in a planet–ring tooth pair (200 rpm). (i) Sun-gear wear distribution in a sun–planet tooth pair
(400 rpm). (j) Planet-gear wear distribution in a sun–planet tooth pair (400 rpm). (k) Planet-gear
wear distribution in a planet–ring tooth pair (400 rpm). (l) Internal-ring-gear wear distribution in a
planet–ring tooth pair (400 rpm).

The distance shown in Figure 9 represents the span between each point on the gear
surface and the pitch curve. The negative distance denotes the point at the root of the
gear tooth. As shown in Figure 9, the wear depth of the sun–planet tooth pair is markedly
larger than that of the planet–ring tooth pair. As the rotational speed increased from
100 rpm to 400 rpm, the maximum wear depth of the sun–planet teeth decreased by
approximately 87.93% (from 1.1610 × 10−4 mm to 1.410 × 10−5 mm) after a mesh time
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of 2 × 105. The maximum wear depth of the planet–ring teeth decreased by 67.70% after
2 × 105 meshing cycles. Because the input power is constant, the gear torque decreases
linearly when the rotational speed is increased linearly. However, the maximum wear
depth decreases nonlinearly. The nonlinear relationship between wear depth and mesh
time is more pronounced when the rotational speed is 200 rpm because the combined
effects of rotational speeds, torque, and gear rotational speed are different at different
rotational speeds. As the rotational speed increases, it primarily comes under the effect
of wear depth. The wear depth of the internal mesh is 3% of the external mesh when the
rotational speed is 100 rpm. As the rotational speed increases to 400 rpm, the ratio increases
to 6.5%. The wear characteristics of the gear mechanism will be improved with the increase
of rotational speed. Generally, the distributions of wear depth become smoother as the
rotational speed increases. The distribution characteristics illustrate that gear shocks are
suppressed with increasing rotational speed. Comparisons of different tooth pairs revealed
that the planet–ring tooth pair has better shock and wear resistance. The planet–ring tooth
pair has weaker stiffness excitation and lower sliding speeds, making it more advantageous.

6.2. Dynamic Characteristics

The penetration depth at the meshing line is responsible for the gear interactions. The
trend of dynamic performance as the number of mesh cycles increases should be analyzed
to elucidate the relationship between gear wear and dynamic characteristics. Figure 10
shows the variation in penetration depth at the meshing line with increasing mesh cycles at
different rotational speeds.
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Figure 10. Penetration depth at the meshing line: (a) Sun–planet gear-penetration depth at the meshing
line (100 rpm). (b) Planet–ring gear-penetration depth at the meshing line (100 rpm). (c) Sun–planet gear-
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line (200 rpm). (e) Sun–planet gear-penetration depth at the meshing line (400 rpm); (f) Planet–ring
gear-penetration depth at the meshing line (400 rpm).

As shown in Figure 10, the amplitude of the penetration depth at the meshing line increases
significantly when the mesh time increases. The shocks caused by the stiffness excitations
were strengthened as the mesh time increased. The penetration depth at the meshing line
in Figure 10c,d has a nonlinear relationship with the meshing time. The penetration-depth
amplitude first decreased and then increased at 200 rpm. Further, the point at which the
penetration depth peak occurred was delayed as the number of mesh cycles increased because
increasing the wear depth at an early stage is equivalent to modifying the gear teeth. This
smooths the meshing and causes a lag in the contact point. However, when the wear depth
increases ulteriorly, the backlash damages the gear meshing, thus increasing the amplitude.
Comparisons of penetration depth at different rotational speeds reveal that the shock in the
tooth pair is suppressed as the rotational speed increases. This is attributable to decreases
in torque and enhanced rotor dynamic characteristics when the rotational speed increases.
Additionally, the time of dissipation was shortened, resulting in stable vibration. Comparison
of the penetration depths of different tooth pairs reveal that the amplitudes of the penetration
depth of the planet–ring tooth pair decreased about 72.94% compared with those of the sun–
planet tooth pair. The results of the penetration depth at the meshing line correspond with those
of the wear depth.

When combining the stiffness of the gear meshing with the penetration depth, the mesh
force should be calculated. The acceleration of gear meshing is useful data for assessing the
meshing condition and state, as well as for determining a healthy level of gear meshing. This
acceleration information is depicted in Figure 11.
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meshing line (200 rpm). (d) Planet–ring gear acceleration at the meshing line (200 rpm). (e) Sun–planet gear
acceleration at the meshing line (400 rpm). (f) Planet–ring gear acceleration at the meshing line (400 rpm).

The acceleration-gear meshing in Figure 11 exhibits similar shock characteristics as
those in Figure 10. However, the gear shocks are more marked than those shown in
Figure 10. At a rotational speed of 100 rpm, as mesh time linearly increases, the amplitude
of the acceleration increases at a faster rate. When the rotational speed is 200 rpm, as mesh
times increase linearly, the amplitude of the acceleration increases at a slower rate. The
gear accelerations exhibit nonlinear characteristics when the rotational speed increases.
The gear wear increases at a high rotational speed. For different tooth pairs, the shocks in
the planet–ring tooth pair were weaker than those in the sun-planet tooth pair. Three gear
shocks were present in both types of tooth pairs because the second stiffness excitation in
both types of tooth pairs was coincident. Notably, the two meshing types interacted.

FFT was employed to analyze the frequency information in the gear vibrations,
and it showed the changes in amplitude at different frequencies when the mesh time
was increased.

In Figure 12, the acceleration-vibration frequency and amplitude of the planet–ring
meshing gears are lower and smaller. Compared with those of the sun–planet tooth
pairs, planet–ring tooth pairs are less affected by wear. At 100 rpm, the amplitude of the
acceleration vibration initially decreases and then increases as the mesh time increases.
However, the amplitude always decreases at 200 rpm and 400 rpm. This suggests that at
low rotational speeds, early-stage gear wear reduces the acceleration vibration at the main
frequency due to the strong meshing force and wear speed. Further, as the rotational speed
increases, the main frequency of acceleration vibration for sun–planet meshing increases
from 450 Hz to 550 Hz, whereas the main frequency for planet–ring meshing increases
from 250 Hz to 650 Hz. The low-frequency band is always in the range of 112–120 Hz and
does not change with the rotational speed. This phenomenon can be attributed to the main
frequency of acceleration vibration being determined by the rotational speed and the low
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frequency of acceleration vibration by the natural frequency. The amplitude of acceleration
vibration at 200 rpm is the largest of the three cases. The amplitude of the low-frequency
band increases significantly. The greater the difference between the meshing frequency and
the natural frequency, the weaker the effect on the gear acceleration vibration after wear.
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6.3. Discussion

From the result and analysis, the planet–ring meshing shows the benefit of wear and
impact resistance. The wear depth of planet–ring meshing is smaller than 10% of the wear
depth of sun–planet meshing. The amplitudes of penetration depth of the planet–ring tooth
pair are about 27.06% of those of the sun–planet tooth pair. The maximum amplitude of the
acceleration vibration of planet–ring meshing is about 11.86% that of sun–planet meshing.

The rotational speed increased from 100 rpm to 400 rpm, and the maximum wear
depth of the sun–planet teeth decreased by approximately 87.93% (from 1.1610 × 10−4 mm
to 1.410 × 10−5 mm) after mesh times of 2 × 105. The maximum wear depth of the planet–
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ring teeth decreased by 67.70% after 2 × 105 meshing times. That is due to the input power
being constant, and the lower rotational speed leads to a higher torque. The wear and the
dynamic characteristics of gear mechanisms are phenomena. Additionally, the nonlinear
characteristics are more remarkable at 200 rpm. The acceleration amplitude of FFT increases
by about 102.11%.

7. Conclusions

A computational methodology for the dynamic responses of a planetary gear mecha-
nism that considers dynamic wear effects is proposed in this study. The nonlinear parame-
ters, namely the gear stiffness, gear backlash, and gear wear distribution are considered in
the investigation. The method combines the wear model and the dynamic model of the
gear mechanism to analyze the relationship between gear surface wear and gear dynamic
responses. The numerical results reveal the influences of wear on the dynamic responses of
the gear. The main conclusions are drawn as follows:

1. According to the wear distribution of the planetary gear, the wear corresponding to
sun–planet meshing is more severe. The wear in planet–ring meshing represents less
fluctuation, which suggests better wear resistance. Because the driven gears have
higher sliding speeds during meshing, the driven gears exhibit greater wear depths.
The dynamic performance of the gear rapidly deteriorates as the wear depth of the
tooth surface increases.

2. The gear-meshing vibration at a low rotational speed exhibits a nonlinear relationship
with mesh time, which is due to the coupling among the dynamic characteristics, mesh
force, and sliding speed. As rotational speed increases, the nonlinear characteristic
deteriorates, which is due to sliding speed becoming the main influencing factor.

3. The analysis of gear wear, vibration responses, and the frequency spectra reveal
that planet–ring meshing exhibits better wear and shock resistance than sun–planet
meshing. This leads to frequent failure of the sun gear, which is consistent with
practical engineering experience. Therefore, increasing the maintainability of the sun
gear will improve the service life of the planetary gear mechanism.

4. At different rotational speeds, gear wear has different effects on the amplitude of
the main frequency. The adverse effects of planetary-gear wear on planetary-gear
vibra-tion can be effectively mitigated by selecting an appropriate rotational speed,
and the gear vibration can be improved through early gear wear.

The wear of the planetary gear mechanism exhibits different characteristics at different
types of meshing. The sun–planet meshing degenerates rapidly, so special care is required
to increase wear resistance. The rotational speed exhibits a stronger influence at a low
rotational speed; thus, such a rotational speed should be avoided to weaken the nonlinear
characteristics. Studying the dynamic responses of the planetary gear mechanism by
considering dynamic wear effects provides a guideline for designing and predicting the
life of planetary gear mechanisms.
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Nomenclature
A Contact area
Cs Equivalent correction factor
csp Sun-planet tooth profile meshing damping
cpr Planet-ring tooth profile meshing damping
E Elasticity modulus
epr Planet-ring meshing error
esp Sun-planet meshing error
Fc Damping force
FN Load force
f Frictional force
G Shear modulus
H Hardness of soft surface
h Wear depth
Ic Inertial moment of planet gear carrier
Ip Inertial moment of the planet gear
Is Inertial moment of the sun gear
KH Contact stiffness
Ks Mesh stiffness
kn Axial compressive stiffness
ks Shear stiffness
kx Bending stiffness
LR Load ratio
M Equivalent mass
mc Mass of planet gear carrier
mp Mass of planet gear
ms Mass of sun gear
p Pressure
Rc Rotation radius of planet gear carrier
Rp The basic radius of planet gear
Rs The basic radius of the sun gear
S Equivalent curvature radius of tooth surface
s Sliding distance
Tc Torque of planet gear carrier
Ts Torque of sun gear
Tp Torque of planet gear
U Gear meshing potential energy
V Wear volume
v Sliding velocity
z Tooth number
α Pressure angle
γp Angle thickness at point P
δ Meshing penetration depth
ε Chordal thickness
∆t Time step
ζ Wear coefficient
θc Rotational displacement of planet gear carrier
θp Rotational displacement of planet gear
θs Rotational displacement of sun gear
κ Dimensionless wear coefficient
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