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Abstract: Improving the frictional response of a functional surface interface has been a significant
research concern. During the last couple of decades, lubricant oils have been enriched with several
additives to obtain formulations that can meet the requirements of different lubricating regimes
from boundary to full-film hydrodynamic lubrication. The possibility to improve the tribological
performance of lubricating oils using various types of nanoparticles has been investigated. In
this study, we proposed a data-driven approach that utilizes machine learning (ML) techniques to
optimize the composition of a hybrid oil by adding ceramic and carbon-based nanoparticles in varying
concentrations to the base oil. Supervised-learning-based regression methods including support
vector machines, random forest trees, and artificial neural network (ANN) models are developed
to capture the inherent non-linear behavior of the nano lubricants. The ANN hyperparameters
were fine-tuned with Bayesian optimization. The regression performance is evaluated with multiple
assessment metrics such as the root mean square error (RMSE), mean squared error (MSE), mean
absolute error (MAE), and coefficient of determination (R2). The ANN showed the best prediction
performance among all ML models, with 2.22 × 10−3 RMSE, 4.92 × 10−6 MSE, 2.1 × 10−3 MAE, and
0.99 R2. The computational models’ performance curves for the different nanoparticles and how
the composition affects the interface were investigated. The results show that the composition of
the optimized hybrid oil was highly dependent on the lubrication regime and that the coefficient
of friction was significantly reduced when optimal concentrations of ceramic and carbon-based
nanoparticles are added to the base oil. The proposed research work has potential applications
in designing hybrid nano lubricants to achieve optimized tribological performance in changing
lubrication regimes.

Keywords: machine learning; friction; lubrication; nanoparticles; tribology; artificial neural network;
Bayesian optimization

1. Introduction

Metal-on-metal interfaces are found abundantly in engineering applications. Some
examples are mechanical seals, bearings, pistons/plungers, and gears. These interfaces
are prone to wear for various loading conditions. For instance, an intuitive mapping of
the wear mechanism of metallic and non-metallic materials with lubricating conditions
was graphically presented by Lim et al. [1]. A lubricant may be utilized to establish a
thin lubricating film to separate the interfacial surfaces and reduce friction and wear.
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However, the lubricating film developed by traditional and non-traditional lubricants may
not be sustained during operation due to the high loads and relative speed of the mating
surfaces [2,3]. Recent advances in nanoparticle (NP)-based lubricant additives have shown
promising results in reducing the coefficient of friction (CoF) and wear of highly loaded
interfaces operating in the boundary lubrication regime and increasing the load-carrying
capacity of full-film hydrodynamic lubricated interfaces. Single-NP-based lubricant oil
blends have been evaluated extensively for the last two decades. However, optimizing oil
blends for more than one additive particle is needed to address the varying demands of the
tribo-pairs for varying lubricating domains.

Several studies have investigated the use of NP as lubricant additives to improve the
antiwear and frictional performance of lubricating oils. For example, CuO/Al2O3 [4] and
Bi2O3 [5] NPs were found to reduce friction and wear scar diameter (WSD), whereas CeO2
was shown to facilitate the frictional performance of polyamide-imide/polytetrafluoroethylene
lubricating coatings [6] and engine oils [7]. When used in combination with ZDDP, CeO2
NP was found to improve antiwear performance even further [8]. Cu [9] and CuO [10],
and TiO2 [11] NPs were also found to improve the thermal conductivity and rheological
properties of lubricating oils, respectively. The addition of SiO2 NP was reported to increase
the load-carrying capacity of soya bean and sunflower oil [12], whereas the addition of CuO
NP to coconut oil resulted in the lowest friction and a polishing effect on worn surfaces [13].

Mirzaamiri et al. [14] introduced nanodiamonds to water, resulting in a 70% reduction
in friction and an 88% reduction in wear that was attributed to the ball-bearing effect of the
nanodiamond. Wu et al. [15] added sulfonated graphene to water, increasing viscosity by
25.8% and reducing the WSD and CoF by 74% and 15.7%, respectively. Xu et al. [16] studied
the effect of graphene nanosheet (GNS) and Ag hybrids on phenolic composites, reporting
that a 9 wt% GNS/Ag hybrid reduced the friction coefficient and wear rate by 40% and
72%, respectively, due to strong molecular interactions. Wang et al. [17] found that thicker
copper coated with molybdenum disulfide had a lower friction coefficient but exhibited
more severe wear. Yu et al. [18] reported that hydrated silica tribofilm reduced the CoF of
MoAlB ceramic to 0.12. Pham et al. [19] showed that SiO2 enhances the anti-oxidation of
lubricants. Simonovic et al. [20] found that the wear of WSC-coated ceramic is reduced
under low loads and more WS2 monolayers are present; however, abrasive wear occurs at
loads above 8 N. Xu et al. [21] investigated materials containing 1% kyanite with the best
braking performance. Chen et al. [22] compared Si3N4-based and carbon-rich MLG-based
MLG/Si3N4 ceramics and found that the combination of MLG and Si3N4 improved wear
resistance and reduced the CoF. Fahad et al. [23] studied base oil containing modified
TiO2/CuO NPs, which improved the viscosity index and load-carrying capacity. Sharma
et al. [24] found that mixing alumina/graphene (GnP) hybrid NPs reduced cutting tool
wear and nodal temperature. Huang et al. [25] found that GO–Al2O3 hybrid NPs provided
better friction and wear performance than pure GO or Al2O3 due to the GO layer preventing
surface asperities from direct contact and the Al2O3 tribo-layer acting as a load bearer to
polish asperities.

Besides ceramic and carbon-based NPs, various studies [26–28] have also investigated
the tribological performance of ferrous-NP-based lubricants. Oliveira et al. [26] additized
PAO 8 oil with Fe2O3 NP to evaluate the lubricant performance for reduced friction and
wear. The boundary lubrication resulted in increased scuffing resistance and reduced wear
rates by up to 27% for high loads due to the intrinsic properties of metallic oxides. Another
study [27] investigated the effect of coated magnetic NPs dispersed in trimethylolpropane
trioleate base oil. The Nd and Fe3O4 NPs in 0.015 wt% concentration significantly reduced
the CoF and WSD by 29% and 67%, respectively, in comparison with the base oil. Alvi
et al. [28] enhanced the tribological performance of drilling fluids with iron oxide-based
NP. Fe2O3 NP in a 0.019 wt% concentration reduced the CoF by 47% and 45% with dis-
persion in bentonite and KCl-based base fluids, respectively. This indicates that hybrid
lubricant blends can outperform previously formulated lubricants; however, application-
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and operating-condition-dependent optimization is needed. It is a delicate task involving
many independent parameters and requiring a highly robust optimization scheme.

Machine learning (ML)-based methodology has shown the capability to handle many
multi-featured input parameters and target the desired outcome with high accuracy and
precision. Bhaumik et al. [29] presented a method for designing multiple NP-based bio-
lubricants using a multi-layered artificial neural network (ANN). The ANN-based model
was optimized with a genetic algorithm and the additized biolubricant showed a decrease
in the CoF of 45–50% compared with mineral oils. Humelnicu et al. [30] used a feed-forward
ANN to obtain the minimum CoF for blended diesel fuel by optimizing the concentrations
of two vegetable oils. A CoF of 0.00156 was achieved using 4% sunflower oil, based
on the results from the ANN computations. Haldar et al. [31] designed an ANN-based
regression estimator to predict the dynamic viscosity of multi-walled carbon nanotubes
(MWCNT) and SiO2-based nano lubricant in a 20:80 ratio. The perfect estimation was
found within a 2.62% maximum deviation by comparing experimental data with the model
predictions. Recently, Esfe et al. [32] used a quasi-Newton algorithm based on a multi-
layered ANN to predict the viscosity of a hybrid nano lubricant with high precision. The
trained Levenberg–Marquardt (LM)-based regression learner achieved a mean squared
error (MSE) of 6.15 × 10−4 while estimating the observed behavior of a hybrid lubricant
blend of SAE40 oil additized with MWCNT and Al2O3 at a 10:90 concentration ratio. Table 1
summarizes studies that effectively employed ML-based data-driven approaches to model
the inherent non-linearities of nano lubricants.

Table 1. List of similar studies on ML-based approaches for tribological performance prediction.

Ref. Methodology Input/Output Parameter Base Oil/Additive Performance

[29] ANN, GA Load, speed, concentration/
CoF

NCO, CMO/
GRT, MWCNT, GRPHN,

ZnO

CoF ↓ by 45–50%
WSD ↓ by 87.5%

[30] FF-ANN Concentration/
CoF

Regular diesel fuel/
Sunflower oil, Rapeseed oil

CoF: 1.56 × 10−3 with
4% sunflower oil

[31] ANN Temperature, volume fraction,
shear rate/Viscosity prediction

SAE68 hydraulic oil/
MWCNT, SiO2

R2: 0.998
RMSE: 2.135415

[32] LM-based MLP Temperature, volume fraction,
shear rate/Viscosity prediction

SAE40/
MWCNT, Al2O3

R: 0.9999
MSE: 6.15 × 10−4

−2% < MOD < 2%

[33] DT, RF, GLM, ANN Temperature, volume fraction/
Kinematic viscosity prediction

SAE30, Hydrex100, EP90/
Al2O3, CeO2

R2: 0.861 (SAE30)
R2: 0.971 (Hydrex100)

R2: 0.973 (EP90)

[34] LM-ANN Temperature, volume fraction,
shear rate/Viscosity prediction

SAE50/
MWCNT, Al2O3

MSE: 3.58
R: 0.999

GA: genetic algorithm; NCO: neat castor oil; CMO: commercial mineral oil; GRT: graphite; GRPHN: graphene; FF:
feed-forward; MLP: multi-layer perceptron; MOD: margin of deviation; DT: decision trees; RF: random forest;
GLM: generalized linear model; ↓ shows a decrease.

The studies reviewed above show that NP enrichment can be used to control the
dynamic and static properties of the lubricant. However, the mechanisms that govern the
changes in lubrication performance are complex and not yet fully understood. Moreover,
there exist many parameters that affect the outcome of NP addition to the base lubricant.
Due to the complexity of the mechanism and the numerous design parameters of hybrid
lubricant blends containing multiple NPs, there is a gap in the literature presenting studies
on the possibilities of obtaining performance improvements. In this work, random forest
trees (RFT) and support vector machines (SVM)-based regression models are initially
developed to capture the NP-based lubricant behavior. In the final approach of designing
computational methods, multi-layered ANNs are developed and trained to predict the
performance of multiple-NP-based lubricants and their hybrids to minimize the CoF. The
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details of the experiments, training dataset, modeling, and results are discussed and the
capabilities of the ML-based techniques are compared. The CoF is analyzed for varying
operating conditions and the evolution of lubricating regimes is analyzed for individual
and hybrid oils. Optimization of the NP concentrations for varying lubricating regimes is
also evaluated.

2. Design of Experiment

The experimental dataset was created using a pin-on-disc tribometer for experiments
with different NP-based lubricants as shown in Figure 1. A commercially available oil,
5W30 by Shell plc, was used in this study to create NP-based blends, and a comparison
is drawn with the same oil without NP. The experiments were carried out with varying
values of the parameters involved. The parameters under consideration were the NP
concentrations in weight percentages (wt%) for silicon dioxide (SiO2) and nano graphite
(NG) with varying load (Newton, N) and speed (revolutions per minute, RPM). The
single output CoF was recorded for each experiment. The experiments were conducted
at two load levels and five speed levels for all the lubricants comprising the plain oil (PO)
without NP and PO with both NPs individually. For each NP, two levels of concentration,
along with the above load and speed levels, are used because the load and speed both
influence the lubrication regime. Similarly, the NP concentration affects the oil viscosity,
which in turn is an important parameter controlling the lubricating regime experienced by
the tribo-pair. Therefore, five factors and the corresponding three levels have been adopted
to explore the pure hydrodynamic, mixed, and boundary lubrication of the tribo-interface
for varying design parameters and to explore the effect of the combination of NPs on the
said lubricating regimes.
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Figure 1. Pin-on-disk schematic illustrating surface parameters, geometry, and loading conditions.

The dataset array was generated for 30 experiments (number of samples) according to
the values shown in Table 2. The NPs used in this study are nearly spherical in powder
form, with an average size of 20 µm and 7 nm for NG and SiO2, respectively. Dispersion
of the NPs and their static stability in the oil over time is ensured based on the dispersion
test. A volumetric sample is taken from each blend and examined after each hour by the
naked eye for any visible sedimentation. No sedimentations were observed during the
first day of sample preparation; therefore, all the tribological tests were performed on the
same day as the sample preparation, which was accomplished through the signification
process. Multigrade oil was used to create the NP-based blends, and the viscosity of such
oils is highly dependent on the temperature. The actual temperature of the interface may
vary significantly depending on the lubrication domain being experienced by the interface.
This oil temperature variation is in comparison with the ambient temperature and the bulk
oil temperature in the sump. Therefore, conducting a comparative analysis for variations
in oil viscosities because of NP concentration requires an in-depth study considering the
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lubrication condition in the actual tribo-pair and is hence deliberately not presented here.
This is a limitation of the present study, which will be addressed in the future.

Table 2. List of parameters involved and their values for the conducted experiments with
multiple NPs.

Parameters Minimum Maximum Average

SiO2 NP concentration (wt%) 0.2 0.4 0.3

NG NP concentration (wt%) 0.2 0.4 0.3

Load (N) 30 50 40

Speed (RPM) 35 100 58

Coefficient of friction 0.02 0.3 0.16

3. Computational Models of Lubricants

The initial study to develop the computational models of NP-based lubricants was
initiated by training the RFT- and SVM-based regression models. The shortcomings of
these two models directed the study to create more comprehensive ANN-based regression
models to cater for the non-linearity involved in the experimental data of the lubricants. De-
veloping the ANN-based computational model for hybrid nano lubricants with optimized
parameters is daunting. It is required to capture the true behavior of the lubricant’s tribol-
ogy, as evident from the experimental data. This study employs the Bayesian optimization
(BO) method to find optimal hyperparameters for the ANN models of NP-based lubricants.
Once optimized hyperparameters are known, the ANN regression models are developed
accordingly to estimate the CoF for the individual- and multiple-NP-based lubricants.

3.1. Training Dataset Generation

Multiple training datasets were developed from the experimental data to train the
regression models. Two datasets contained the NP concentration, load, and speed as inputs
along with the response variable CoF for both the NPs, i.e., SiO2 and NG. The third dataset
contained multiple NP concentrations as input along with the other parameters. All the
inputs were rescaled with min–max normalization to regularize the data for loss function
and to achieve rapid convergence during training. Input normalization was applied using
the normalize built-in function of MATLAB 9.12 (MathWorks, Natick, MA, USA) according
to the following relationship:

X′i = a +
Xi −min(Xi)

max(Xi)−min(Xi)
(b− a) (1)

where X′i is the normalized value and Xi is the original value of the input i, a and b are the
normalization range limits which are set as [a b] = [0 1] for all the inputs.

3.2. Random Forest Trees

The initial regression model is developed using the ensemble method with bootstrap
aggregating (bagging) of multiple decision trees (DT)-based regression learners. The
random forest is developed at each ensemble split with a minimum leaf size of eight. A
total of 30 DT learners were bagged in the ensemble with 100 learning cycles. The objective
function is the MSE, which is minimized, and a threshold is set as a stopping criterion.
The RFT training performance is evaluated via various regression performance assessment
metrics such as root mean square error (RMSE), MSE, mean absolute error (MAE), and
coefficient of determination (R-squared or R2). All the training sessions are conducted
using the 10-fold cross-validation, and the assessment metrics are calculated upon the
validation results. The RFT model is implemented using the fitrensemble built-in function of
MATLAB 9.12.
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3.3. Support Vector Machines

The other initial regression model is the non-linear SVM regression learner with a
radial basis function (RBF) kernel for more accurate predictions. The rapid variations in the
CoF are well predicted with the fine Gaussian SVM as compared with the polynomial-based
SVM models. The fine Gaussian SVM employed a Gaussian kernel RBF with the kernel
scale set to

√
P

4 for P number of predictors. For three input parameters of the individual
NP-based datasets, the kernel scale is set to 0.43. In model designing, the box constraint and
epsilon values are calculated heuristically by gradually increasing and decreasing them.
Both these parameters are fine-tuned to generate a flexible model that avoids overfitting the
predictions. The 10-fold cross-validation-based model training is conducted to achieve the
best RMSE, MSE, MAE, and R2 metrics results. The SVM regression model is implemented
using the fitrsvm function of MATLAB 9.12.

3.4. Hyperparameter Estimation with Bayesian Optimization

The well-tuned hyperparameters for all the ANN models are computed with the BO
algorithm, a derivative-free optimization method for non-analytical models. The MSE is
used as the objective function f (x), which is minimized upon subsequent iterations of the
BO with different random samples of x according to the following relationship:

min
x∈A

f (x) = min
x∈A

(MSE) = min
x∈A

(
1
N ∑N

i=1(Ti −Oi)
2
)

x=R6
(2)

where Ti and Oi are the actual target and predicted output values, respectively, for training
sample i ranging from 1 to N number of observations, x is a random sample of six optimiza-
tion variables for each iteration of the BO algorithm and always selected from the bounded
domain of the structure A, containing search ranges for all the optimization variables as
stated in Table 3.

Table 3. Optimized hypermeters and their search range for Bayesian optimization.

Optimization Variable (Hyperparameter) Search Range for Optimization

Number of hidden layers
[
1 3

]
Number of neurons in 1st, 2nd, 3rd hidden layers

[
1 300

]
for each layer

L2 Regularization strength (λ)
[
1× 10−6 1× 104]

Activation function
[
ReLU Sigmoid Tanh None

]
The selection of x from A for each iteration of BO is based upon the Gaussian distri-

bution model, which is updated after each iteration to sample the x from the region that
maximizes the acquisition function. The acquisition function (expected improvement per
second plus) is used here, which is best for the global minimization of the objective function
by avoiding the local minima. The local minima are avoided by the balanced exploration
ratio of 0.5, which means an equal trade-off between the exploitation of already explored
regions and the exploration of comparatively unexplored regions of A for sampling the
new x. The maximization of the acquisition function, and hence, the convergence of the
BO algorithm, is obtained by an iterative quasi-Newton numerical optimizer known as the
limited-memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) algorithm. This way, the
fine-tuned hyperparameters of x for global minimization of the MSE are computed using
the BO method.

The additional hyperparameters are the data standardization and training iterations
limit, which were not optimized and were set manually for multiple sessions of the BO
algorithm for all the training datasets. As all the datasets were already normalized before
the BO application, data standardization during the optimization process was set to false.
All the sessions of BO were conducted with 10-fold cross-validation to find out the optimal
and validated trained model. Ten sessions of the BO method were applied to each dataset
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to ensure optimal hyperparameter tuning. After validation, the optimization results were
selected for the session with the minimum RMSE, MSE, and MAE values and the maximum
R2. The BO computational method is implemented using the bayesopt built-in function of
MATLAB 9.12 and various optimization settings.

3.5. Design of Lubricant ANN Model

Once the optimized hyperparameters for all the lubricant models are computed, regres-
sion ANNs are developed from all three training datasets with fine-tuned hyperparameters.
The general mathematical model for a single perceptron in all the ANNs is given below:

zj,i = bj + ∑n
i=1 wj,i xj−1,i (3)

hj,i = σ
(
zj,i

)
=

1
1 + e−zj,i

(4)

where wj,i is the weight for neuron i of the layer j, bj is the bias term for a particular layer
j, x is the input value from the preceding neuron, zj,i is the linear output value of all the
connected weighted inputs subjected to the activation function, σ is the non-linear sigmoid
activation function generating the final value hj,i for the neuron i in layer j.

Using the tuned hyperparameters, the regression ANN models are trained with
different training algorithms for neural networks. The two variants of training algorithms
were tested here for multiple training sessions, the scaled conjugate gradient (SCG) and the
LM backpropagation from the conjugate gradient and the quasi-Newton families. These
learning algorithms were implemented in MATLAB 9.12 with the built-in functions trainscg
for SCG and trainlm for LM training methods. Among the various comparative runs for both
methods, the SCG showed the best validation performance compared with LM for these
smaller datasets. The SCG converged to a lower MSE with fewer iterations at the expense
of training time. It also performed well during the testing of the approach with a varying
number of hidden neurons, as it is less sensitive to hyperparameter changes than LM. The
final design models of lubricant ANNs are generated with optimized hyperparameters and
an SCG backpropagation learning scheme. The convergence information for all the ANNs,
along with the hyperparameters, is shown in Table 4. The optimized number of hidden
layers, hidden neurons, and their activation functions are obtained from the multi-session
BO application on the datasets. To further validate the BO-based hyperparameter tuning
results, trial tests were conducted by changing the numbers of hidden layers and hidden
neurons. It was observed that further increasing the number of hidden layers and their sizes
did not significantly improve the regression performance in terms of assessment metrics.
Moreover, the prediction results of such trial models showed significant deviations from
the experimental data. This ensured that the best hypermeter combination was selected
by the BO, which reproduced the experimental results with high accuracy and precision.
The best validation results of performance assessment metrics are obtained with these
hyperparameters, as shown in Table 4.

Table 4. BO-estimated hyperparameters and convergence results for all lubricant ANN models.

ANN Model

Optimized Model Hyperparameters and Convergence Results

Hidden
Layer Size

Activation
Function L2 Regularization ‘λ’

Validation
MSE at
Epoch

Iterations Training
Loss Gradient Training

Time (s)

SiO2 NP 10 sigmoid 0 7.81 × 10−4

at 37
43 52.31 × 10−4 7.02 × 10−4 213

NG NP 4 sigmoid 0 5.89 × 10−4

at 27
33 2.02 × 10−4 10.01 × 10−4 188

Multi-NP 2 sigmoid 0.11 × 10−4 1.44 × 10−4

at 22
28 5.97 × 10−4 3.96 × 10−4 142
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4. Results and Discussion

Figure 2 shows the regression plots for each NP with initial regression models, i.e.,
RFT and SVM. The best regression models with the most promising performance metrics
are selected out of multiple training sessions with each regressor. The RFT regression
plots show a significant sensitivity drift compared with the perfect predictions for both
NPs, as shown in Figure 2a,b. The RFT prediction function follows the positive kurtosis
with the leptokurtic distribution of predictions that can be observed from the regression
plots. The RFT model failed to capture the complete variance of target data for the CoF
predictions with 0.87 and 0.757 mean values for the coefficient of correlation (R) and R2,
respectively. Moreover, a slight negative skewness of prediction distribution is observed
towards higher target values of the CoF. On the other hand, the SVM regression model
performed better with comparatively higher R and R2 values, as shown in Figure 2c,d for
SiO2 and NG NPs, respectively. The sensitivity drift is significantly reduced as compared
with the RFT, but few predicted values of the CoF still vary significantly from the target CoF.
The kurtosis of prediction distribution is significantly reduced to mesokurtic in comparison
with the leptokurtic distribution of the RFT model. These attributes and performance
metrics results for both models are further compared with the final design of ANN-based
regression models.
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The regression plots for the individual-NP-based and hybrid lubricant ANNs are
shown in Figure 3. The regression plots for SiO2 and NG ANN models in Figure 3a,b
represent the best fit between the actual target values and ANN computed predictions of
the CoF with higher R values.
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The R2 is almost equal to one for all the models, representing the perfect estimation
power of the designed ANNs and good confidence level in their computations. Moreover,
these models are trained over a wide target range as compared with the initial models
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and they performed better with comparatively good sensitivity over a larger spread of the
target CoF. The error histograms show the perfect Gaussian distribution of training, testing,
and validation errors during ANN model convergence.

These models can be further investigated to exhibit the behavior of NP-based lu-
bricants in terms of the CoF, with varying input parameters such as NP concentration,
load, and speed. Individual-NP-based lubricants mostly exhibit limitations in achieving
the required tribological characteristics. To overcome these limitations, the hybrid nano
lubricant ANN model is trained to achieve the benefits of both NPs to gain the required
tribological properties of the lubricants. Figure 3c represents the regression plot along with
the error histogram obtained during this ANN training. The regression plot with 0.9546 R2

shows the good computational power of this model to find out the optimum CoF against
the number of observations from the multi-NP-based training dataset. Few outlier samples
in the regression plot achieved the training errors, with higher magnitudes on both sides of
the zero error. Despite these countering outliers, the perfect regression fit is achieved. The
rest of the error histogram shows that the ANN is well trained with the SCG method and
has achieved minimal errors during the training, testing, and validation phases.

Table 5 shows the validation results of four regression performance assessment metrics,
i.e., RMSE, R2, MSE, and MAE, for all the computational models (RFT, SVM, ANN) for
both NPs and their hybrid (with ANN only). For SiO2 NP, the ANN achieved the lowest
RMSE, MSE, and MAE values with less difference from the SVM results and a significant
difference from the RFT results. The R2 for ANN and SVM is almost equal. For NG NP,
SVM achieved slightly lower RMSE, MSE, and MAE values than the ANN, whereas the
ANN achieved the best R2 among all models.

Table 5. Performance assessment metrics results for all regression models with individual NP and
hybrid nano lubricants.

Regression Model Nanoparticle
Performance Assessment Metrics

(10-Fold Cross-Validation)

RMSE R2 MSE MAE

Random Forest Trees
SiO2 8.8662 × 10−3 0.7373 7.8609 × 10−5 7.9509 × 10−3

NG 6.7444 × 10−2 0.7778 4.5487 × 10−3 6.3266 × 10−2

Support Vector Machines
SiO2 2.2689 × 10−3 0.9790 5.1481 × 10−6 2.1874 × 10−3

NG 3.2127 × 10−2 0.9727 1.0321 × 10−3 1.8183 × 10−2

Artificial Neural Network

SiO2 2.2181 × 10−3 0.9753 4.9199 × 10−6 2.1026 × 10−3

NG 4.2407 × 10−2 0.9909 1.7983 × 10−3 3.1608 × 10−2

Hybrid 3.6296 × 10−2 0.9546 1.3174 × 10−3 2.3902 × 10−2

Hence, these ANN models can be further investigated to study the tribological behav-
ior of computationally designed lubricants that are influenced by the individual character-
istics of multiple NPs. The inherent properties of such lubricant models can be utilized to
achieve better CoF values with varying NP concentrations, load, and speed trends.

During the investigation of lubricant characteristics, it was observed that the speed is a
less significant input as compared with the NP concentration and load. Substantial changes
in the operating speed do not considerably affect the CoF for any load and concentration,
whereas changing the NP concentration significantly affects the CoF of the lubricant.
Figure 4 represents the characteristics of individual-NP-based lubricants with varying
speeds and concentrations at a fixed load of 50 N. In an agreement with Bhaumik et al.’s
study [29], it is evident that varying the concentration (with identical speeds) varies the
CoF significantly. Thus, varying loading conditions results in variation in the optimum
concentration to achieve CoF minima.
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Surface plots are developed to incorporate the influence of input parameters on the
performance of the lubricants. Figure 5 represents the load–speed effects on the CoF
with NP concentrations obtained for the individual-NP-based lubricants. These surfaces
indicate that the load and NP concentrations are the influential input parameters in the
NP-based lubricants and can drastically affect their tribological properties, as evident from
the varying CoFs.

In Figure 5, the CoF has been plotted for varying loads and speeds for both NPs, i.e.,
SiO2 and NG. Notably, regardless of the same base oil, the lubricating regimes vary for
different NPs for the same loading conditions. An increasing and then decreasing CoF
with increasing speeds for SiO2 occurs, in contrast with NG, where the CoF decreases for
growing speeds. This is attributed to the already fully developed lubricant oil film for the
former one for identical loading conditions against the interface still experiencing mixed
lubrication for the latter one. The decreasing CoF also highlights a thicker lubricant film
with an increasing load because of shearing thinning for NG.

Moreover, a precise offset is evident in friction reduction with increasing concentration,
regardless of the loading conditions. The percentage of each NP is different in oil to achieve
an identical CoF, e.g., 1 wt% of SiO2 and 0.1 wt% of NG results in a similar CoF at 100 RPM
and counterbalance weight load conditions. This, and the above-mentioned existence of the
interface in different lubricating regimes for identical loading conditions, makes it possible
to develop a hybrid lubricant with more than one NP.

The magnitude of influence caused by a combination of NPs is illustrated in Figure 6
for identical speeds but at varying loads, i.e., 10–100 N. This is to observe the effect of
NP combinations in different lubrication domains and how it influences the optimum
concentration of the NPs to develop a composite N-enriched lubricant oil. NG facilitates
the interface to reduce friction at low loads when the lubrication film thickness is well
developed and the interface is experiencing pure hydrodynamic lubrication at a 10 N
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load, as shown in Figure 6c. In contrast, when the load is increased, e.g., 50 N, as shown
in Figure 6b, the local minima for the CoF move toward a high concentration for both
the NPs and keep moving until they reach an equal concentration near (1,1). Similarly,
with another increase in load, e.g., at 100 N, as in Figure 6a, the SiO2 tends to facilitate
the decrease in friction more compared with the NG. This could be because of the high
molecular weight of SiO2, which increases the viscosity more than NG, or better tribofilm
development caused by SiO2. The mechanism of friction reduction, and hence the different
optimum concentrations at varying lubrication domains, is a limitation of the present work
and will be reported on in a future publication.
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5. Conclusions

The coefficient of friction (CoF) in nano lubricants has a complex and non-linear
relationship with its composition and loading conditions. Therefore, analytical models
for predicting the tribological behavior of such lubricants are not available. A study is
conducted utilizing machine learning (ML), and the following conclusions can be made
from the observations of this study.

• The computational models given by the data-driven ML-based approaches such as ran-
dom forest trees (RFT), support vector machines (SVM), and artificial neural networks
(ANN) are promising solutions to predict non-linearity in such complex interactions.

• The multi-layered ANN-based regression models of lubricants having single and
multiple nanoparticles (NP) are developed to examine their tribological behavior. The
complex interactions of input parameters (load, speed, and NP concentration) and the
output parameter (CoF) is well estimated by the ANNs when their hyperparameters
are optimized.

• A better performance for ML-optimized nano lubricant models is found in decreasing
the CoF between metal-to-metal interactions in sliding lubricated contact for engineer-
ing applications.

• The results have shown that the optimum concentration of NP varies with varying
lubrication domains and that a composite lubricant based on multiple NPs can be
beneficial to reduce frictional energy loss and improve the lubrication conditions.

• The optimum concentration of multiple NPs can be reached for interfaces that experi-
ence fluctuating loads and thus varying lubrication conditions during their service.

The future scope of this study is to examine the mechanism of friction reduction in
hybrid nano lubricants with different NPs and base oil combinations. Finding out the
optimum NP concentrations at varying lubrication domains is an underexplored research
area requiring the further study of such ML-based applications.
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