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Abstract: Multicomponent and high-boron cast alloys have been recognized as materials with
excellent wear resistance due to the formation of hard phases called carbides and borides. However,
the wear performance of the combination of these two materials called hybrid multicomponent cast
alloys (HMCAs) has not been comprehensively studied. Therefore, this study will evaluate the effect
of C (0–0.9 wt.%) and B (1.5–3.5 wt.%) addition on the erosion wear behavior of an HMCA containing
2.5 wt.% Ti, 10 wt.% Cr, and 5 wt.% each of V, Mo, and W. Shot-blast erosion testing was used to
evaluate the wear resistance of each alloy. The test was conducted for 3600 s using 2 kg of irregularly
shaped steel sand as a scraper at impact angles of 30◦, 60◦, and 90◦. The results showed that the
highest wear rate in 0C and 0.45C with 1.5–3.5% B occurred at an impact angle of 60◦ due to gouging
and indentation mechanisms occurring simultaneously. However, different results occurred in the
case of 0.9C with the same amount of B where the wear rate increased with increasing impact angle
due to brittleness. Based on the chemical composition, the wear resistance of the alloy increased with
increasing C content due to higher hardness values. However, the reverse performance occurred
when the addition of B exceeded the threshold (more than 1.5 wt.%) despite the higher hardness.
This fact was due to the susceptibility to carbide cracking as the amount of B increased. Therefore,
the alloy with the best erosion wear resistance was 0.9C–1.5B HMCA.

Keywords: erosion; hybrid multicomponent; carborides; boron

1. Introduction

Research on wear has received extensive attention from many researchers after the
Josh report was released regarding the potential benefits of using materials with excellent
wear resistance. Specifically, it has been estimated that the gross national product (GNP)
of Japan can be reduced by about 2.6%, Germany by 0.5%, the United States by 0.84%,
and China by about 7% [1]. There are several types of wear, one of which is erosive wear.
Erosive wear is the loss of material from the surface of a solid material due to the collision
of small hard particles trapped by the flow of gas or liquid [2,3]. Erosive wear has been
widely discussed by experts, and studies show that various test parameters such as impact
angle, particle impact velocity, and temperature are important to consider in investigating
erosive wear [4–6]. It also depends on the nature of the erodent particles (composition,
shape, and hardness) [7–10]. In addition, the wear behavior of a material is also known to
be strongly influenced by the wear properties of the material itself (hardness, carbides, and
toughness) [11–13]. However, investigations still have to be carried out into how different
chemical compositions of the material undergoing wear often give different findings. In
addition, erosive wear occurs on many machine parts, e.g., pipes, pump impellers, boiler
tubes, rocket nozzles, and turbine blades. It can account for about 8% of mechanical failures
due to wear problems [1]. Therefore, in addition to enriching the knowledge of erosive
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wear, it is very important to conduct research on the development of wear resistance of
materials to reduce economic losses during the manufacturing process in industry.

It is well known that the family of cast alloys, such as steel-alloys and white cast
iron, commonly exhibit an severe wear phenomenon, especially erosion, owing to their
outstanding wear-resistance properties. In recent decades, multicomponent cast iron
(MCCI) has been proposed as a suitable wear-resistance material by Matsubara et al. [14]
and Shimizu et al. [15,16]. Both of these research groups agree that the outstanding wear
resistance of MCCI compared to other cast alloys is due to the formation of several types of
hard eutectic carbides (MC, M2C, and M7C3) during the solidification process. The letter M
represents the added transition metal. In addition, it is also recommended to carry out a
destabilizing heat treatment process to enable the precipitation of secondary carbides and
the transformation of the austenite matrix to martensite. However, it is also noted that the
C content should be in the hypoeutectic range (less than 3 wt.%) to avoid the tendency of
cracking due to simultaneous precipitation of MC, M2C, and M7C3 carbides. In our recent
study, the effect of C content in hypoeutectic MCCI was evaluated. It was concluded that
the wear resistance of both MCCIs (5V–5Cr–5Mo–5W and 5Nb–5Cr–5Mo–5W) increases as
the amount of C (1; 1.5; 2 wt.%) increases [17].

In addition to the development of MCCI, the effect of adding B to cast alloys (Fe-B)
has also been investigated separately by previous researchers. At first, B was added in
very small percentages to improve the mechanical properties of carbon steel alloys [18,19].
However, it has been found that the wear resistance of these alloys can be improved by
more than 0.05 wt.% after the addition of B due to the precipitation of Fe2B boride [20,21].
On the other hand, since the boride has a very high hardness (FeB: 1800–2000 HV and Fe2B:
1400–1600 HV), the amount of C should be reduced (less than 1 wt.%) to avoid cracking
tendency [17]. Therefore, Lakeland [22] produced Fe-B alloys with 1.2–3.5 wt.% B and
0.2–0.5 wt.% C. The results show that the microstructure of the alloy containing FeB boride
and Fe2(B,C) carbide provides better wear resistance compared with the first generation
Fe-B alloy. Continuing this research, the effect of Cr addition on the mechanical properties
of these alloys has also been investigated. The results show that the element Cr (8–10 wt.%)
can decrease the tendency of carboride cracking of Fe-Cr-B alloy due to the promotion of a
ductile bainitic matrix [23–26]. The addition of Ti element (≈2 wt.%) in the cast alloys has
also been comprehensively studied. It is known that the Ti element will first react with the
adjacent C to form TiC, leaving less available C in the molten iron during the solidification
process of Fe-Cr-C alloys. Thus, the smaller M7C3 carbide will precipitate when the
molten iron reaches the appropriate temperature for carbide formation. The refinement of
M7C3 carbide provides a higher toughness leading in better wear resistance. In particular,
Liu et al. [27] investigated the effect of Ti element on microstructure and mechanical
properties of Fe-B alloys. They found that the presence of this element effectively retarded
the precipitation of interconnected borides, resulting in better mechanical properties.

Based on the above two cast alloys (MCCI and Fe–Cr–B–C), Efremenko and his col-
leagues [28,29] tried to combine these two material design concepts, to form a hybrid
multicomponent cast alloy (HMCA). The microstructure of this new alloy has been compre-
hensively discussed in the above articles. It was found that this alloy consists of several
types of eutectics named “Chinese-script” and rosetted and M2(B,C)5, M(C,B), M7(C,B)3,
and M3(C,B) carborides. In addition, the matrix of this alloy is ferrite without any signs
of autenite matrix. However, the previous studies only focused on characterizing the mi-
crostructure of the alloy. Meanwhile, it is important to investigate the wear performance of
these new cast alloys as the main goal of material development. Indeed, the wear behavior
of HMCAs in as-cast condition under abrasion test has been initiated in the recent research
of Chabak et al. [30]. It has been revealed that the increment of eutectic carborides provides
better wear performance. However, the wear behavior of this new HMCA under erosive
wear conditions has not been investigated. In addition, although improvements have been
obtained, it is still possible to suppress the cracking tendency by lowering the amount
of C to less than 1.1 wt.% without inhibiting the formation of borides or carborides. To



Lubricants 2023, 11, 243 3 of 15

address this research gap, the effect of C (0–0.9 wt.%) and B (1.5–3.5 wt.%) on the erosion
wear characteristics of HMCA was evaluated. This reduced C content is expected to be
an appropriate solution to reducing economic losses due to wear phenomena occurring
on various machine parts such as pipes, pump impellers, boiler tubes, rocket nozzles, and
turbine blades.

2. Materials and Methods

The alloy studied was designed into one multicomponent cast alloy containing 2.5 wt.%
Ti, 10 wt.% Cr, and 5 wt.% Mo, W, and V with three different additions of C (0, 0.45, and
0.9 wt.%) and B (1.5, 2.5, and 3.5 wt.%). In all, nine HMCAs were studied in this research.
The manufacturing processes was introduced in our previous research [13]. Approximately
50 kg of each of the added elements was melted in a high-frequency induction furnace and
then the molten iron was poured into a Y sand mold. The bottom part of the ingot was cut
using a high-speed precision cutting machine (Refinetech Co., Ltd., RCA-234, Kanagawa,
Japan) to a size of 50 mm × 50 mm × 10 mm. SPECTROLAB (AMATEK, Inc., Berwyn, PA,
USA) was used to measure the chemical composition of each alloy after the manufacturing
process. The chemical compositions are provided in Table 1.

Table 1. Chemical composition of each HMCA (wt.%).

Sample Name C B Cr V Mo W Ti Fe

0C–1.5B 0.08 1.51 9.80 5.21 4.80 5.01 2.45 Bal.
0C–2.5B 0.07 2.43 10.10 5.14 5.02 4.95 2.37 Bal.
0C–3.5B 0.10 3.56 10.36 5.07 4.93 4.86 2.59 Bal.

0.45C–1.5B 0.44 1.47 10.04 5.04 4.78 4.79 2.54 Bal.
0.45C–2.5B 0.44 2.38 10.12 5.01 5.21 5.01 2.43 Bal.
0.45C–3.5B 0.45 3.35 10.09 5.31 5.13 5.01 2.52 Bal.

0.9C–1.5B 0.85 1.56 9.87 5.04 5.02 5.03 2.67 Bal.
0.9C–2.5B 0.81 2.51 9.59 5.10 5.21 5.05 2.50 Bal.
0.9C–3.5B 0.93 3.33 10.12 5.05 5.07 4.85 2.51 Bal.

In our previous research [31], it was revealed that the quenched category of multicom-
ponent cast alloys had better erosive wear resistance compared to as-cast and quenched-
tempered alloys due to higher hardness. The temperature range of the quenching process
is usually 1173–1323 K, to harden the matrix and form secondary carbides. Therefore, the
cast alloy in this study was also quenched after being heated at 1223 K for 2 h and cooled
by air-forced cooling using a fan. The cooling rate for all alloys during the quenching
process was the same (approximately 2.5 K/s) to ensure all cast alloys were subjected to
the same treatment.

Small cubic specimens (10 mm × 10 mm × 10 mm) were fabricated to observe the
microstructure of each alloy. Prior to analysis, the specimens were gently polished with
1200 P fine silica sand, followed by 9, 3, and, finally, 0.03 µm diamond suspension paste to
avoid cracking of the borides/carborides. These were analyzed using optical microscopy
(OM; Eclipse LV150N, Nikon, Tokyo, Japan) and scanning electron microscopy (SEM + EDS;
JSM-6510A, JEOL, Tokyo, Japan). In addition, the bulk areas (Chinese-script eutectics,
rosette eutectics, borides, and carborides) were calculated using the binarization technique
using 5 SEM images. First, 5 SEM images with 400× magnification were stained using paint
application to increase the contrast of the bulk area and matrix. Then, the images were
uploaded to ImageJ to calculate the total bulk area. In this study, the result was assumed
to be the bulk volume fraction. Spot analysis was performed at more than 15 random
locations on the SEM microphotos to determine the type of boride/carboride. In addition,
the hardness of each alloy was also investigated. There are two types of Vickers hardness
data, the microhardness is assumed to be matrix hardness only, and the macrohardness is
matrix and bulk. Microhardness was measured using a Future-Tech Co: FM-300, Kanagawa,
Japan, while the macrohardness was measured using a Future-Tech Co: FV-800, Kanagawa,
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Japan. The loads of microhardness and macrohardness were 0.25 N and 294 N, respectively.
The dwell time of both hardness measurements was 15 s according to the standard Vickers
hardness tester used. The measurements were taken for 14 repetitions of the test. However,
the highest and lowest values were ignored to minimize data errors. Therefore, the average
hardness of 12 measurements was used in this study.

A shot-blast erosive wear machine test was used to determine the wear behavior of
each HMCA. The machine testing scheme is given in Figure 1. The test was conducted
for 3600 s and repeated six times. The average of each data obtained was used and 2 kg
of irregularly shaped steel grit was used as the erodent particle. The hardness and size of
erodent were 810 HV and 770 µm, respectively. During the test, the erodent was injected at
200 m/s and 0.49 MPa at three different impact angles (30◦, 60◦, and 90◦). The weight of the
HMCA before and after the test was measured using an electronic balance (GH-300 A&D
Co., Ltd, Tokyo, Japan). The erosive wear rate was calculated using Equation (1). In
addition, the wear mechanism of the HMCA was also evaluated through the worn surface
and cross section after the erosive wear test.

Erosion rate =
Mass removal per sec ond

( g
s
)
× Density

(
g

cm3

)
Mass of impact particle per sec ond

( g
s
) (1)
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Figure 1. Schematic of shot-blast erosive wear machine test.

3. Results and Discussions
3.1. Microstructure Observation

In general, microstructure greatly affects the wear behavior of cast alloy. Therefore,
this was also examined in this study. The microstructure of each alloy is shown in Figure 2
obtained by SEM-EDS. It can be seen that the microstructure of 0C–1.5B consists mainly of
eutectic phases and ferrite matrix without primary (P) boride or austenite matrix. Most of
the eutectic phase is solidified in the form of colonies that have a fiber-like shape. These
eutectics appear similar to previous findings in the microstructure of Al-Mg-Si alloys named
“Chinese-Script (CS)” [32,33]. Therefore, the term CS will also be used in this study. In
addition, globular eutectics (G) can also be found scattered along the matrix. From the
EDS, as shown in Figure 3, the G phase is mostly occupied by elemental Ti that can be
assumed as MB borride (the letter M represents Ti). The size of G (≈5 µm) does not differ
significantly as the amount of C or B increases. The same condition of microstructure can
also be observed in 0.45C and 0.9C alloys with the same amount of B addition.
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As the amount of B increased to 2.5 wt.%, the primary (P) carborides were embedded
within the microstructure at either 0C, 0.45C, or 0.9C alloy. This hard phase is as M2(C,B)5
carborides which is in good agreement to previous study [28]. It has rectangular shape that
appears similar with increasing amounts of C. The size is also similar, with an average of
≈125 µm. It seems to crack easily which might be due to its brittleness. However, the cracks
progressively disappear as the amount of C increases. Just like alloy 1.5B, the presence of
G can be observed where Ti mostly occupies this phase, as shown in Figure 3. After the
C element was added at 0.45 and 0.9 wt.%, it also embedded G boride. This means that
MB boride transformed into M(C,B) carboride [28]. In addition, the CS eutectic cannot be
observed in the microstructure of the 0C–2.5B alloy—it transforms into a “rosette-like (R)”
eutectic [28]. However, the appearance of CS eutectic still exists in the microstructure of
0.45C–2.5B and 0.9C–3.5B alloys, and no R eutectic is observed.
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In the case of 0C–3.5B alloy, the presence of M2(C,B)5 as the P carboride, M(C,B)
carboride (G), and R eutectic in the ferrite matrix can be encountered [28]. Cracks appear
on the P carborides, as shown in the figure. The number of P carborides seems to increase
as the C increases. This is because during solidification, the composition of the melt will be
less at the liquidus temperature and will increase at the final or near-solid stage. The tip
of the solid dendrite also has a lower concentration at the liquidus stage and increases as
solidification continues. These two changes in concentration from the initial concentration
(C0) to the final stage are referred to as micro-segregation. Micro-segregation is strongly
influenced by the equilibrium partition coefficient which is the ratio of liquid composition
to solid composition (CL/CS). The Cl and CS depend on the constant partition coefficient
(k). Unfortunately, the value of k in the case of multicomponent cast alloys is very difficult
to solve due to the simultaneous complex interaction of the added multi elements. However,
it is believed that once micro-segregation occurs in molten iron, it will increase the inclusion
fraction. The added elements C and B and transition metals have the properties to increase
the probability of micro-segregation. Therefore, a higher amount of C will increase the
tendency of micro-segregation resulting in more P carbides in the microstructure of the alloy
studied in the present investigation. However, to provide accurate data, the effect of B and
C addition to the bulk volume fraction was also calculated. This will be discussed further
in Section 3.2. In Figure 2, the presence of R eutectic can be seen in the microstructure of
0C–3.5B alloy. However, the existence of CS eutectic cannot be found. In addition, it is
difficult to find cracking in P carborides of 0.45C–3.5B and 0.9C–3.5B alloys. Thus, it can
be said that the C element effectively strengthens the P carboride. The presence of M(C,B)
carborides seems to be less in the 0.45C–3.5B alloys and it cannot even be found in the
microstructure of the 0.9C–3.5B alloy. This might be due to the simultaneous embedding
of Ti in the M2(C,B)5 carborides, as shown in the elemental distribution of Figure 3. In
addition, the CS eutectic cannot be found in the microstructure of 0.45C–3.5B. In the case
of 0.9C–3.5B, neither SC nor R eutectic can be found, instead coarse-nets are formed in
the microstructure and it is mostly occupied by elemental Cr. The morphology of this
coarse-net looks like M7C3 carbide in Fe-Cr-C alloys. Therefore, it can be assumed as
M7(C,B)3 carborides, as described in the earlier published paper [28]. In addition, it can
be seen that the elements W, Mo, and V are mostly embedded in the area of M2(C,B)5,
M(C,B), and M7(C,B)3 carboborides. This is due to the high affinity of these transition
metals to C and B. Meanwhile, elemental Fe is mainly solidified as the matrix. By lowering
the magnification of SEM microphotograph, it can be seen that there are fine secondary
carborides embedded in long areas of the matrix area. These must be precipitated during
the heat-treatment process. However, there were no significant differences observed in
either the shape, number, or size (≈0.5–2 µm) of the secondary carborides of each alloy.
Since there is no appreciable difference in secondary carborides between the alloys, their
influence on the erosive wear behavior of the alloys is negligible.

By doing deep etching with nital for about 12 h, all eutectics (CS, R, and M(C,B), and
M2(C,B)5 and M7(C,B)3 carborides) can be observed in 3D version, as shown in Figure 4.
All the eutectic phases of the alloys are connected to each other. In addition, the P carboride
appears rod-like and this does not alter significantly as the amount of B increases. From
all the findings, it can be said that the eutectics types are highly dependent on the overall
chemical composition of the alloy. However, the shape of the carborides is not affected by
the addition of C or B.
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3.2. Bulk Volume Fraction and Hardness of Alloy

Figure 5 is the relationship between total bulk volume fraction (BVF) and Vickers
hardness of each alloy. Increasing the BVF in the microstructure of the cast alloy results in
a harder material. Thus, the 0.9C–3.5B has the highest hardness (about 586 HV10) owing
to having the most BVF (approximately about 31.5%). Meanwhile, the lowest hardness
was found in 0C–1.5B (about 282 HV10) due to it having the lowest BVF (approximately
17.5%). In the case of the 0C alloy, the BVF increased as the amount of B increased, resulting
in higher hardness values. In the case of 0.45C, the BVF first increased and then slightly
decreased as the amount of B increased. On the other hand, the hardness of the alloy was
improved which is different from the previous results [12,13,34]. In general, the hardness
of the cast alloy will naturally increase as the volume fraction of the hard phase increases.
Since eutectic CS does not exist at 0.45C–3.5B, as earlier described, this might be a factor
in the reduction of BVF in this study, or, in other words, it can be said that the increase
in hardness is not necessarily caused by the increase in BVF. Meanwhile, it is also related
to the type of hard phase. However, the reason for the increase in hardness is due to the
increase in the amount of M2(C,B)5 as P carboride. In the case of 0.9C, it shows different
results. The BVF first decreased and then increased slightly. Neither CS nor R eutectic was
formed as the amount of B increased (from 1.5 wt.% to 2.5 wt.%) resulting in a reduction
of BVF. However, after the addition of B up to 3.5 wt.%, coarse-net started to form which
increased the BVF. On the other hand, the change in BVF did not affect the hardness, as the
hardness of the alloy continued to increase as the amount of B increased.
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When comparing BVF and hardness with the same amount of B addition, the hardness
of 1.5B and 3.5B was consistent with BVF. The higher hardness belonged to the alloys with
more BVF due to more C addition. However, a different condition occurred in the case of
2.5B where the BVF first increased, then decreased. On the other hand, the hardness of this
alloy improved with increase in the amount of C. The lower BVF of 0.9C compared to 0.45C
might have been due to the disappearance of CS or R eutectic in the alloy’s microstructure.
Therefore, it can be stated that the elements C or B not only significantly affect the type of
hard phase (eutectic and boride/carboride), but also greatly affect the BVF. Meanwhile, the
hardness of the alloy was not directly dependent on the change in BVF. Rather, it is affected
by the amount of C or B added with more C or B producing greater hardness.

3.3. Erosive Wear Behavior of Each Cast Alloy

In the past, the erosive wear behavior of two types of material based on the impact
angle (30◦, 60◦, and 90◦) has been studied. It is known that ductile cast alloys such as
steel alloy will easily erode at an impact angle of 30◦ due to the micro-cutting phenomena.
In the case of brittle material such as ceramics, a higher erosion wear rate occurs at an
impact angle of 90◦ due to micro-gouging [35]. However, the effect of impact angle on the
wear rate of HMCAs has not yet been reported. Thus, it was systematically evaluated at
impact angles of 30◦, 60◦, and 90◦ in this study. The results are given in the Figure 6. A
different condition was found where 0C with 1.5, 2.5, and 3.5 wt.% B addition experienced
the highest erosion wear rate at 60◦ impact angle. The same tendency also occurred in the
case of 0.45C cast alloys which was different from the previous study [35]. However, in
the case of 0.9C, the material loss increased as the impact angle increased with the highest
erosion wear rate occurring at an impact angle of 90◦. It seems that the behavior of ceramic
materials is different from that of HMCAs, which might be due to the different erosive wear
mechanisms which will be explained in the next section. However, since most cast alloys
experienced the highest material loss at 60◦, the investigation was focused on this impact
angle for a clearer explanation. The results are illustrated in the bar chart, as shown in
Figure 7, using the average values from six repetitions of the test. Overall, the best erosion
wear resistance was for 0.9C–1.5B (wear rate approx. 2.42 × 10−3 cm3/kg) and the worst
was for 0C–3.5B cast alloy (wear rate approx. 12.90 × 10−3 cm3/kg).

In the case of 0C, it can be seen that the erosion wear rate of the cast alloy increased
significantly as the amount of B increased. In many published articles [5,11,13,31], it is
reported that higher material hardness will provide better wear resistance. However, al-
though the hardness of 0C increased as the amount of B increased, the formation of primary
(P) carboride in the microstructure of 2.5B and 3.5B alloys (which easily cracked) makes
these cast alloys too brittle. As a result, the erosive wear resistance dropped significantly,
which could be said to be one of the novelties of this study. In the case of 0.45C, the wear
rate of the cast alloy first increased, then decreased slightly as B increased from 0 wt.%
to 3.5 wt.%. The lower erosion wear resistance of 2.5B and 3.5B compared to 1.5B might
be also due to the formation of P carboride. However, the absence of CS eutectic in the
microstructure of 3.5B, as described in the previous section, might be a factor of slightly
better wear resistance than 2.5B. The same tendency also occurred in the case of 0.9C. The
wear resistance of 1.5B was better than others which might be due to the greater resistance
to cracking. In addition, the wear resistance of 3.5B was slightly better than 2.5B which
might be related to the formation of coarse-net.

When comparing cast alloys with the same amount of B addition, the wear resistance
of the cast alloys increased significantly as the amount of C increased from 0 to 0.9 wt.%.
The improvement might be associated to the increment of material‘s hardness. It means
that the erosive wear behavior of the present cast alloy is influenced by the microstructure
as well as the hardness. In other words, the higher hardness provides better wear resistance.
However, the opposite performance will occur when the microstructure consists of P
carboride. Therefore, it is important to control the microstructure constituent and the
appropriate hardness to achieve an excellent wear-resistance material. To better understand
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the erosive wear behavior of hybrid multicomponent cast alloys, the wear mechanism will
be discussed in the section.
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3.4. Erosive Wear Mechanism of Each Cast Alloy

From previous studies [2,31], it is known that it is important to investigate the wear
mechanism of material in order to gain a better understanding of the process. Therefore,
in this study, both the worn surface and the cross section of the most eroded surface area
were observed.

3.4.1. Worn-Surface Investigation

The wear surfaces of representative alloys are displayed in Figure 8. It can be seen
that most of the cutting patterns can be found on the wear surface of 0.45C–1.5B after being
tested at an impact angle of 30◦. This means that the cast alloy experienced a micro-cutting
mechanism at this impact angle. In contrast, there is only gouging pattern at 90◦ impact
angle, caused by the micro-indentation mechanism. Meanwhile, cutting and gouging can
be clearly seen at an impact angle of 60◦. Since both mechanisms (cutting and indentation)
occur simultaneously at an impact angle of 60◦, this might be a factor in the highest erosive
wear rate of 0.45C–1.5B. This is also implied for 0.45C–2.5B, 0.9C–3.5B, and 0C with the
same addition of B. However, cutting and gouging can be seen at an impact angle of 30◦ in
the case of 0.9C–1.5B. This indicates that the micro-cutting and gouging mechanisms occur
simultaneously at this angle of impact. The gouging pattern becomes dominant, while the
cutting pattern becomes less visible as the number of impact angle increases. The higher
hardness level as the amount of C increases, as previously described, makes this alloy
similar to a brittle material that has the highest wear rate at 90◦ impact angle. In addition,
the worn surface of the 0C–1.5B and 0.45C–1.5B alloy is more severe than 0.9C–1.5B at all
impact angles. Therefore, it can be said that a more severe wear surface indicates a material
with lower erosion wear resistance.
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3.4.2. Cross-Section Investigation

In cross-section, as shown in Figure 9, the crack can be encountered underneath the
worn surface of alloys owing to the continuous striking of the steel-grit (erodent). It gets
worse as the amount of B increases. A clearer cross-section of a representative alloy can
be seen at a lower magnification on the SEM micrograph. It shows that the crack mostly
exists in the CS eutectic area of 0.9C. Meanwhile, it occurs on the P carborides in the case of
2.5B and 3.5B with the same amount of C. The appearance of cracking and spall might be
due to brittleness of these hard phases. Moreover, the P borides seem to directly spall after
the test. This indicates that the cast alloys containing more P borides will be easier to crack
leading to lower erosive wear resistance. Therefore, it can be stated that the micro-cutting
and indentation are the erosive wear mechanisms of this present studied alloy.
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To simplify the explanation of the erosion wear behavior of cast alloys, a schematic of
erosion wear has been drawn, as shown in Figure 10. It is understood that particles will
erode all microstructure constituents (matrix and eutectic). During the impact process, the
particles will first cut the ferrite matrix owing to a lower hardness compared to steel grit,
and fracture the CS or R eutectic and borides/carborides. Then, they will simultaneously
remove the eutectic and matrix leaving micro-cutting and cracks on the worn surface after
testing. The increase in material hardness as the amount of C increases makes it difficult
for the particles to cut the matrix and crack the eutectic, resulting in lower material loss.
However, when the area of the P carboride is exposed to the eroding particles, it tends to
crack or spall, resulting in a higher amount of material loss.
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4. Conclusions

The erosive wear behavior of new HMCAs with different C and B contents was
evaluated in this study. The results can be summarized as follows:

1. The hardness of the alloy was not directly dependent on the change in BVF. Instead, it
was affected by the amount of C or B added. Alloys with more C or B will definitely
have a higher hardness.

2. Based on impact angle, the highest wear rate in 0C and 0.45C with 1.5–3.5% B occurred
at an impact angle of 60◦ due to gouging and indentation mechanisms occurring
simultaneously. However, different results occurred in the case of 0.9C with the
same amount of B, where the wear rate increased with increasing impact angle due
to brittleness.

3. Based on the chemical composition, the wear resistance of the alloy increased with
increasing C content due to higher hardness values. However, the reverse performance
occurred when the addition of B exceeded the threshold (more than 1.5 wt.%) despite
the higher hardness. This fact is due to the susceptibility to carbide cracking as the
amount of B increases.

4. Overall, the alloy with the best erosion resistance was 0.9C–1.5B because it was more
resistant to cracking and had appropriate hardness.
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