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Abstract: Nanofluids are engineered colloidal suspensions of nanoparticles in the base fluids. At very
low particle concentration, nanofluids have a much higher and strongly temperature-dependent
thermal conductivity, which enables them to enhance the performance of machining applications
such as the cooling and lubrication of the cutting zone during any machining process, the vehicle’s
braking system, enhanced oil recovery (EOR), engine oil, and the drilling process of crude oil.
In the current work, the density is assumed as an exponential function of temperature due to larger
temperature differences. The main focus of this mechanism is the variable density effects on heat
and mass characteristics of nanoparticles across the stretching porous sheet with thermophoresis
and Brownian motion to reduce excessive heating in high-temperature systems. This is the first
temperature-dependent density problem of nanofluid across the stretching surface. The coupled
partial differential equations (PDEs) of the present nanofluid mechanism are changed into nonlinear
coupled ordinary differential equations (ODEs) with defined stream functions and similarity variables
for smooth algorithm and integration. The changed ODEs are again converted in a similar form for
numerical outcomes by applying the Keller Box approach. The numerical outcomes are deduced
in graphs and tabular form with the help of the MATLAB (R2013a created by MathWorks, Natick,
MA, USA) program. In this phenomenon, the velocity, temperature, and concentration profile, along
with their slopes, have been plotted for various parameters pertaining to the current issue. The range
of parameters has been selected according to the Prandtl number 0.07 ≤ Pr ≤ 70.0 and buoyancy
parameter 0 < λ < ∞, respectively. The novelty of the current work is its use of nanoparticle fraction
along the porous stretching sheet with temperature-dependent density effects for the improvement of
lubrication and cooling for any machining process and to reduce friction between tool and work piece
in the cutting zone by using nanofluid. Moreover, nanoparticles can also be adsorbed on the oil/water
surface, which alters the oil/water interfacial tension, resulting in the formation of emulsions.

Keywords: temperature-dependent density; nanofluid; Keller box method; porous medium; heat
transfer; thermophoresis; stretching sheet; mass transfer

1. Introduction and Literature Review

The heat, mass, and momentum transfer in the laminar boundary layer nanofluid
flow over a stretching porous sheet play an important theoretical and practical role in
metallurgy and polymer technology. Nanofluids are suspensions of nanoparticles in fluids
that show significant enhancement of their properties at modest nanoparticle concentra-
tions. Engine oils, automatic transmission fluids, coolants, lubricants, and other synthetic
high-temperature heat transfer fluids found in conventional truck thermal systems—e.g.,
radiators, engines, heating, ventilation, and air-conditioning—have inherently poor heat
transfer properties. These could benefit from the high thermal conductivity offered by
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nanofluids that resulted from the addition of nanoparticles. The results of previous research
and field tests revealed that nanofluids could improve oil recovery through plugging and
profile control, transformation of wettability of the rock surface, changes in oil–water in-
terface properties, and increases in the viscosity ratio between fluids. On the other hand,
nanoparticles might stabilize oil–water emulsions produced during the extraction stage,
adversely affecting subsequent oil–water separation processes, especially electrical dehy-
dration. Moreover, nanofluids have a much higher and strongly temperature-dependent
thermal conductivity, which is considered to be a key parameter for enhanced performance
for most of the machining applications. When nanoparticles are supplied along with base
fluid, it comes with a ball bearing effect because of its nano size rang and the high thermal
conducting nature of heat. Nanofluids proved themselves best as an option for any ma-
chining process as molybdenum disulfide nanoparticles, aluminum oxide nanoparticles,
silver nanoparticles, graphite nanoparticles, and carbon nanotubes. The cooling of a sizable
metallic plate across a stretching surface in a bath that may or may not contain an electrolyte
poses a significant problem in a number of engineering processes, including extrusion,
melt-spinning, hot rolling, wire drawing, the production of glass fiber, and the production
of plastic/rubber sheets. In the manufacturing process, the production of polymer sheets
and filaments are the most important factors. This kind of flow is used in many engineer-
ing processes, including plastic film stretching, continuous casting, glass fiber and paper
production, food manufacturing, and the extrusion of polymers. It is helpful to leverage the
combined effects of heat transmission and variable density to produce a finished product
with the desired properties. Such factors are crucial, particularly in metallurgical processes
that include the purifying of molten metal from non-metallic impurities and the cooling of
continuous strips and filaments dragged through a quiescent fluid.

Enhanced oil recovery (EOR) has been widely used to recover residual oil after the
primary or secondary oil recovery processes. Nanofluids have received extensive attention
owing to their advantages of low cost, high oil recovery, and wide applicability. In recent
years, nanofluids have been widely used in EOR processes. Moreover, several studies have
focused on the role of nanofluids in the nanofluid EOR process. Nanofluids can alter the
wettability of minerals (particle/surface micromechanics), oil/water interfacial tension
(heavy oil molecules/water micromechanics), and structural disjoining pressure (heavy
oil molecules/particle/surface micromechanics). They can also cause viscosity reduction
(micromechanics of heavy oil molecules). Pourrajab and Noghrehabadi [1] illustrated
bio convective mechanism of viscoelastic fluid across a stretched surface in a permeable
material using kinetic temperature in the existence of a micro-organism. They found that
conductivity and Reynolds ratio increase the temperature of fluid with decreasing behav-
ior. Sarkar and Endalew [2] elaborated the impacts of the crystallization on viscoelastic
small fluid particles with magnetohydrodynamic MHD (Magnetohydrodynamics is the
study of the magnetic properties and behaviour of electrically conducting fluids) flow
in porous material. They observed that the thickness of the temperature field decreases
due to the maximum value of the Nusselt number. Kalavathamma and Lakshmi [3] stud-
ied the impact of various characteristics on the mass and heat transfer of viscous fluid
particles across a horizontal cylinder saturated by permeable material. They found that
the temperature distribution of the fluid decreases as the value of the Brownian motion
parameter rises. Dero et al. [4] depicted the impacts of Darcy–Forchheimer permeable
material on the flow of revolving radiation magnetism over a decreasing hybrid shape.
They deduced that the thermal flow ratio decreases with the maximum value of copper
volume concentration. Srinivasacharya and Surender [5] analyzed the impacts of double
stratification on the free forced convective boundary flow of viscous fluid particles across a
vertical surface in permeable material. They discovered that the ratio of temperature and
energy decreases significantly for higher Darcy parameter. Ayodeji et al. [6] developed
flow separation impacts of mass particles of slip flow on fluid particles passing through a
permeable stretched material. They discovered that surface tension rises as the slip velocity
increases and the mass slip falls. Khan and Pop [7] performed a tubular analysis on a
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laminar nanofluid problem form a stretching geometry. They observed that the Sherwood
number is reduced by increasing the Prandtl number. Ghalambaz et al. [8] determined the
physical flow of nanoparticles across a porous stretched material. James et al. [9] developed
a dynamic thickness of fluid particles through a conductive cylinder inserted in a porous
material with heat energy. They observed that the Nusselt and Sherwood numbers increase
along the stretching surface due to maximum value of thermal radiation parameter. The
researcher [10] analyzed the effects of baffles on nanofluid-filled enclosures used in con-
vective heat transfer. Entropy analysis on circular pseudo-plastic flow with MHD utilizing
the Keller box approach is carried out numerically in [11]. The researcher [12] performed a
numerical analysis of the effects of Reynolds on micro-polar flow in a channel.

Nanofoam technology, nano-emulsion technology, and injected fluids are very impor-
tant during the EOR process. The mechanism of nanofluid EOR is based on the nanoparticle
adsorption effect. Nanoparticles can be adsorbed on mineral surfaces and thus alter the
wettability of minerals from oil-wet to water-wet conditions. Nanoparticles can also be
adsorbed on the oil/water surface, which alters the oil/water interfacial tension, resulting
in the formation of emulsions. For the improvement of vehicle aerodynamics, there is
a higher demand for braking systems with higher and more efficient heat dissipation
mechanisms and properties to reduce drag forces. To overcome this situation, nanofluids
are very important to reduce friction and maximum heat transfer performance. Rana
and Bhargava [13] illustrated the mechanism of laminar fluid of nanoparticles across a
quasi-stretched surface by using finite element method. Irfan et al. [14] constructed the
MHD nano-liquid flow across a dynamic surface area by using numerical methods with
different liquid properties. Ferdows et al. [15] studied the free forced convective boundary
flow of nanofluid particles across the porous material by using stretched shape. Gorla
and Sidawi [16] explored the heat transfer assessment of free convective flow along the
stretching sheet in the presence of suction and blowing effects. Wang [17] studied the
thermal boundary layer performance of free convective fluid across the stretching sheet
numerically. Sandeep et al. [18] computed the MHD nanofluid particles in an irregular
boundary layer past a stretching surface with variable intrinsic heat generation. Khan
and Pop [19] performed the formulation of a stretching sheet in porous material filled by
base fluid. Alam et al. [20] analyzed the nanofluid particles across a quasi-stretched and
permeable shape. Uddin et al. [21] developed a free forced convective nanofluid problem
though a thermally conductive stretched surface immersed in a porous material filled with
nanofluid. Jafar et al. [22] illustrated the MHD convective problem of nanofluid particles
in a porous material across a stretched surface. Prasannakumara et al. [23] performed
the impact of particles’ dispersion on nanofluid flow with thermal convection through a
stretched surface immersed in porous material. Narender et al. [24] elaborated the chemical
process and viscoelastic dispersion in a numerical solution of mixed convective nanofluid
flow along a stretching sheet. Dessieand Fissha [25] studied free forced convective flow of
Maxwell nano fluid particles across a horizontal porous surface. Gireesha et al. [26] studied
a numerical simulation for fluid particle suspension and MHD flow for heat transmission
across a stretch sheet contained in a quasi-permeable medium. They observed that the size
of the atmospheric boundary layer is decreased by floating small dust particles in pure
solution. Lakshmi et al. [27] investigated the solution of mass transfer of multiple particles
produced by a continuously stretched surface by using Runge Kutta Fehlberg RKF (Runge
Kutta Fehlberg is a numerical tool to convert nonlinear ordinary differential equations into
system of algebraic equations) simulation. They concluded that with rising nanoparticle
concentration, the size of the energy, temperature, and chemical boundary regions reduces.

Higher temperature at the tool–work interface causes failure of the cutting tools and
the formation of micro cracks. The reason behind the high temperature formation is the
high rate of friction between tool–work and tool–chip interfaces caused by the continuous
rubbing action of forming the chip with the tool face and the shearing failure of chip.
To overcome this problem, the solution which is most widely used comes into picture;
that is, implementation of nanofluid. The purpose of nanofluid such as cutting fluids is to
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provide cooling and to reduce the friction between the tool and work piece at the shear zone.
It is well known that the application of minimum quantity lubrication (MQL) as a nanofluid
is more preferable than other fluids for the cooling technique. To increase the effectiveness of
MQL, the addition of nanoparticles is very important. Minimum quantity lubrication fulfills
the desire of almost all the machining processes where the cooling and lubrication is a must.
The machining processes in which MQL has wide application are turning, grinding, drilling,
and milling. On account of emerging ‘nanotechnology’, the concept of nanofluid lubrication
has been developed. Nano lubrication is a process of effectively cooling and lubricating
cutting zone during any machining process by involving nanofluid instead of the normally
used fluids. Krishnaan and Chamkha [28] analyzed the impacts of Maxwell and ion drift on
mixed convective mechanism of nanofluid flow particles across a stretched surface enclosed
in a permeable medium. Gireesha et al. [29] illustrated the viscoelastic fluid flow separation
past a stretching sheet filled with nanoparticles. They found that the temperature increased
with a higher Prandtl number and the volumetric percentage of micro-particles. The viscous
dissipative, magnetohydrodynamics, and radiations impacts on laminar fluid flow along
the stretching geometry were examined by Maranna et al. [30]. For various engineering
applications, Mabood et al. [31] carried out magnetohydrodynamics and entropy analysis
for the Jeffrey nanofluid phenomenon across the stretching surface. The nonlinear boundary
value problems modeling steady polymer flows in domains with impermeable solid walls
were studied by Baranovskii [32]. Following these authors, many people believe that
nanotechnology is the most important factor for the next large industrial revolution of
this century. The nanofluid particles have great capacity to manipulate matter’s molecular
structure in order to innovate in almost every sector of the economy and in government-run
projects, including national security, transportation, the environment, medical and physical
sciences, and electronic cooling.

The goal of present paper is to reduce friction and heat generation between tool–chip
and tool–work in the machining process cutting zone by using nanofluids. Thus, in this
paper, we investigate the simultaneous effects of temperature-dependent density and
thermophoresis on the flow of nanofluid over a stretching porous surface. In particular, the
variations of Brownian motion and thermophoresis are analyzed. All the above-mentioned
studies are found to deal with a small temperature difference between the surface and
ambient fluid. However, circumstances arise where this temperature difference is high.
In this situation, the Boussinesq approximation becomes inappropriate (see Kakac and
Yenar [33]). That is why, for the particular situation where a high temperature difference
arises, the density is assumed as a function of temperature. The effects of variable density
on heat–mass transfer and the nanoparticle fraction phenomenon of nanofluid across
a stretching sheet placed in porous material with thermophoresis and Brownian motion
effects have been investigated numerically, building on the concepts of previous research [7].
The non-similar expressions are numerically integrated with the Keller Box method. The
numerical outcomes are deduced in graphs and tabular form with the help of the MATLAB
program. The physical characteristics of unknown variables in the flow model, such as
velocity graph, temperature field graph, concentration graph, skin friction rate, rate of heat
transfer, and rate of mass transfer, have been plotted. The findings of this research, to the
best of our knowledge, are original and have never been published.

2. The Flow Geometry and Mathematical Formulation

The current mechanism is computed for numerical outcomes of the variable density
impact on heat–mass transfer and the nanoparticle fraction phenomenon of nanofluid
across a stretching sheet in a porous material with thermophoresis and Brownian motion
effects. Using stream function forms, the extended issue will be reduced to a set of partial
differential conditions, which will subsequently be converted into ordinary conditions.
By incorporating the Keller Box approach with the finite difference FDM method (finite
difference method is a numerical tool to convert nonlinear ordinary differential equations
into system of algebraic equations), the molding issue will be solved. Graphical and
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tabular interpretations of the simulation solution for the material properties under analysis
will be used.

Think about the incompressible, steady nanofluid in two dimensions by observing
Figure 1; u and v are the velocity fields in the x and y orders, respectively, where x and y
are parallel and perpendicular to the stretching porous sheet; temperature is denoted by T;
free stream temperature is denoted by T∞; fluid thermal conductivity is denoted by κ; and
specific heat is denoted by Cp. Fluid density is represented with ρ; the density of particles
is denoted by ρp; the kinematic fluid viscosity is denoted by ν = µ/ρ, the fluid density is
denoted by ρ f ; and the gravitational acceleration is denoted by g. The governing equations
for the current physical model are given below:

∂(ρu)
∂x

+
∂(ρv)

∂y
= 0, (1)

ρ

(
u

∂u
∂x

+ v
∂u
∂y

)
= −∂p

∂x
+ µ

(
∂2u
∂x2 +

∂2u
∂y2

)
− ∈

2 µ

k
u + g(ρ∞ − ρ), (2)

ρ

(
u

∂v
∂x

+ v
∂v
∂y

)
= −∂p

∂y
+ µ

(
∂2v
∂x2 +

∂2v
∂y2

)
− ∈

2 µ

k
v + g(ρ∞ − ρ), (3)

(ρcp) f

(
u

∂T
∂x

+ v
∂T
∂y

)
= κ

(
∂2T
∂x2 +

∂2T
∂y2

)
+ (ρcp)p

{
DB

(
∂C
∂x

∂T
∂x

+
∂C
∂y

∂T
∂y

)
+

(
DT
T∞

)[(
∂T
∂x

)2
+

(
∂T
∂y

)2
]}

, (4)

u
∂C
∂x

+ v
∂C
∂y

= DB

(
∂2C
∂x2 +

∂2T
∂y2

)
+

(
DT
T∞

)(
∂2T
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∂2T
∂y2

)
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The boundary conditions of the present model are

v = 0, u = uw(x) = ax, T = Tw, C = Cw at y = 0, (6)

u→ 0 , T → T∞ , C → C∞ as y→ ∞.
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The preceding description outlines the appropriate boundary conditions for the tem-
perature and velocity components. P represents fluid pressure, ρ represents the density of
the base fluid, α represents thermal diffusivity, ν represents kinematic viscosity, a represents
a positive constant, and DB represents the Brownian diffusion coefficient, DT represents
the thermophoretic diffusion coefficient, and τ = (ρc)p/(ρc) f represents the fluid heat
capacity and the nanoparticle materials heat capacity ratio, where ρ represents density and
c represents the coefficient of volume expansion.

3. Stream Functions and Similarity Variables

The appropriate unitless stream functions ψ and similarity variables to transform PDEs
into ODEs are given in Equations (7) and (8) with η and dimensionless temperature θ:

u =
1
ρ

∂ψ

∂y
, v = −1

ρ

∂ψ

∂x
, φ(η) =

C− C∞

Cw − C∞
p = po(constant), (7)

ψ = (av)
1
2 x f (η), θ(η) =

T − T∞

Tw − T∞
, η = (a/v)1/2y. (8)

Equations (7) and (8) are used to turn the PDEs from Equations (1)–(6) into nonlin-
ear ODEs; (

f ′2 − f f
′′)

= e−nθ
(

f
′′′ − nθ′ f

′′)− enθΩ f ′ − λ

(
1− enθ

1− e−n

)
, (9)

e−nθ

pr
(θ
′′ − nθ′

2
) + f θ′ +

(
e−nθ

)2[
NBφ′θ′ + NTθ′

2
]
= 0, (10)

(
e−nθ

)2
[(φ

′′ − nφ′θ′) +
NT
NB

(θ
′′ − nθ′

2
)] + Le f φ′ = 0, (11)

where Pr= ν
α is Prandtl parameter, Le = v

DB
is Lewis parameter, NB =

(ρc)pDB(φw−φ∞)

(ρc) f v is

a Brownian motion number, Ω = ε2v
ka is the porous number, dimensionless temperature

is denoted by θ, kinematic viscosity is denoted by ν = µ
ρ , and NT =

(ρc)pDT(Tw−T∞)

(ρc) f vT∞
is the

thermophoresis parameter. The boundary conditions in (6) then become

f (η) = 0, f ′(η) = 1, θ(η) = 1, φ(η) = 1 at η = 0, (12)

f ′(∞) = 0, θ(∞) = 0, φ(∞) = 0 at η → ∞.

4. Computational Scheme and Solution Methodology

The connected mathematical nonlinear PDEs model is changed in a similar ODEs
model with similarity variables using an appropriate stream function formulation. In Equa-
tions (9)–(11), similar coupled ODE models with given boundary conditions are solved
using the iterative Keller Box approach (12). The additional independent quantities are
introduced by p(η); q(η), u(η), v(η), l(η), and m(η) by using Equation (13):

f ′ = p′, f
′′
= p′ = q, f

′′′
= q′, ϕ′ = u, (13)

ϕ
′′
= u′ = v, ϕ

′′′
= v′, θ′ = l, θ

′′
= l′ = m.
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To overcome the issues, the Equations (9)–(12) become easier to solve when the
straightforward forms are

f ′ = p⇒ f ′ − p = 0, (14)

p′ = q⇒ p′ − q = 0, (15)

φ′ = u⇒ φ′ − u = 0, (16)

u′ = v⇒ u′ − v = 0, (17)

θ′ = l ⇒ θ′ − l = 0, (18)

(
p2 − fq

)
= e−nθ

(
q′ − nlq

)
− e−nθΩp− λ

(
1− enθ

1− e−n

)
, (19)

1
pr

(
m− nl2

)
+ f l + e−nθ

[
NBul + NT l2

]
= 0, (20)

(
e−nθ

)2
[
(v− nlu) +

NT
NB

(
m− nl2

)]
+ Le f u = 0. (21)

The reduced boundary conditions are

f (0) = 0, P(0) = 1, θ(0) = 1, ϕ(0) = 1, at η = 0, (22)

P(∞)→ 0, θ(∞)→ 0, ϕ(∞)→ 0, as η → ∞.

Now consider the midpoint values with segment ηn−1, ηn with ηn− 1
2

by using
Equation (23):

η0 = 0, ηn = ηn−1 + hn, ηn = η∞. (23)

The above Equations (14)–(22) are transformed, with average and central difference
forms given in Equation (24):

f ′ =
fn − fn−1

hn
, f =

fn + fn−1

2
= fn− 1

2
, (24)

and
fn − fn−1 −

1
2

hn(pn + pn−1 ) = 0, (25)

pn − pn−1 −
1
2

hn(qn + qn−1 ) = 0, (26)

φn − φn−1 −
1
2

hn(un + un−1) = 0, (27)

un − un−1 −
1
2

hn(vn + vn−1 ) = 0, (28)

θn − θn−1 −
1
2

hn(ln + ln−1) = 0, (29)



Lubricants 2023, 11, 172 8 of 17

1
4 (pn + pn−1)

2 − 1
4 ( fn + fn−1)(qn + qn−1) =

1
2hn

(2− nθn + nθn−1)(qn − qn−1)− n
8 (2− nθn + nθn−1)(ln+

ln−1)(qn + qn−1)− Ω
4 (2− nθn + nθn−1)(pn + pn−1)− λ

2 (θn + θn−1),
(30)

1
2Pr

(mn + mn−1)− n
4Pr

(ln + ln−1)
2 + 1

4 ( fn + fn−1)(ln + ln−1) +
Nb
8 (2− nθn − nθn−1)(un + un−1)(ln + ln−1)+

Nt
8 (2− nθn − nθn−1)(ln + ln−1)

2 = 0,
(31)

1 + n2

2 (θn + θn−1)
2 − n(θn + θn−1)

[
1
2 (vn + vn−1)− n

4 (ln + ln−1)(un + un−1)
]

NT
Nb

(
1
2 (mn + mn−1)−

n
4 (ln + ln−1)

2
)
+ Le f

2 (un + un−1) = 0,
(32)

along with boundary conditions

f0 = 0, φ0 = 1, p0 = 0, θ0 = 1, u = 1, at η = 0, (33)

pn → 0, θn → 0, φ0 → 0, asη → ∞,

and now by using the iterative Newton–Raphson method for a smooth algorithm de-
scribed below:

f k+1
n = f k

n + δ f k
n , pk+1

n = pk
n + δpk

n, (34)

qk+1
n = qk

n + δqk
n, θk+1

n = θk
n + δθk

n,

uk+1
n = uk

n + δuk
n, φk+1

n = φk
n + δφk

n,

vk+1
n = vk

n + δvk
n, lk+1

n = lk
n + δlk

n.

In the same way as in the standard Newton–Raphson approach, equations become
simpler by eliminating any instances of powers greater than the first power:

δ fn − δ fn−1 −
1
2

hn(δpn + δpn−1) = (r1)n, (35)

δpn − δpn−1 −
1
2

hn(δqn + δqn−1) = (r2)n, (36)

δφn − δφn−1 −
1
2

hn(δvn + δvn−1) = (r3)n, (37)

δun − δun−1 −
1
2

hn(δvn + δvn−1) = (r4)n, (38)

δθn − δθn−1 −
1
2

hn(δln + δln−1) = (r5)n. (39)

The equations are given below in their condensed form, once more utilizing Equa-
tions (35)–(39) in Equations (30)–(33):

(a1)nδpn + (a2)nδpn−1 + (a3)nδ fn + (a4)nδ fn−1 + (a5)nδqn + (a6)nδqn−1 + (a7)nδθn+
(a8)nδθn−1 + (a9)nδln + (a6)nδln−1 = (r6)n,

(40)

(b1)nδmn + (b2)nδmn−1 + (b3)nδln + (b4)nδln−1 + (b5)nδθn + (b6)nδθn−1 + (b7)nδun+
(b8)nδgn−1 + (b9)nδ fn + (b10)nδ fn−1 = (r7)n,

(41)
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(c1)nδθn + (c2)nδθn−1 + (c3)nδvn + (c4)nδvn−1(c5)nδln + (c6)nδln−1 + (c7)nδ fn+
(c8)nδ fn−1 + (c9)nδun + (c10)nδun−1 = (r8)n.

(42)

Recalling the precise boundary conditions without iteration, we take steps to make
sure that these correct values are preserved across all iterations:

δ f0 = 0, δφ0 = 1, δp0 = 1, δθ0 = 1 (43)

δpn = 0, δθn = 0, δφn = 0

5. Matrix Form of Vector Equations

The matrix-based structure of the aforementioned difference equations is a crucial
next step. If it is conducted incorrectly, the strategy either becomes incredibly ineffective
since the matrix has no visible structure, or produces zero solutions due to a solitary matrix
with zero determinants or sub-matrices. The matrix form of vector equations is given as

Aδ = r (44)

[A] =


[A1][C1]

[B2][A2][C2]
· · · · · ·

...
. . .

...
... · · · [Bn−1][An−1][Cn−1]

[Bn][An]

, [δ] =


[δ1]
[δ2]
...

[δn−1]
[δn]

, [r] =


[r1]
[r2]
...

[rn−1]
[rn]

 (45)

6. Quantitative and Physical Reasoning

Due to excessive heating, various physical problems are go unaddressed in modern
technologies and industries. The current physical phenomena addressed the variable den-
sity impact on heat–mass transfer and the nanoparticle fraction phenomenon of nanofluid
across stretching sheet placed in porous material with thermophoresis and Brownian mo-
tion effects and has been explored numerically. The coupled partial differential equations
of the present nanofluid mechanism are changed in nonlinear coupled ordinary differential
equations with defined stream functions and similarity variables for smooth algorithm
and integration. The changed ODEs are again converted in similar forms for numerical
outcomes by applying the Keller Box approach. The numerical outcomes are deduced in
graphs and tabular form with the help of the MATLAB program. How physical quantities
such as velocity graphs, temperature graphs, and concentration graphs behave together
with their slopes, which represent the rates of mass transfer, heat transfer, and skin friction
under the influence of various flow model parameters, is examined. The impact of physical
parameters, such as Prandtl parameter Pr, temperature density number n, Lewis parameter
Le, thermophoresis parameter Nt, buoyancy number λ, Brownian motion number Nb, and
porous number Ω, are drafted in numerical and physical form.

Figure 2a–c shows the impact of the Prandtl number on the velocity graph, the tem-
perature graph and concentration graph, respectively. The Figure 2a shows the physical
quantity of the velocity graph for diverse Pr = 0.3, 0.5, 0.7, 1.0. It is deduced that the velocity
graph is enhanced for minimum Pr = 0.3 and reduced for higher Pr = 1.0. It is noted that
the temperature θ plot is increased for minimum Pr = 0.3 and reduced for higher Pr = 1.0 in
Figure 2b. The prominent variation is noted in the temperature plot against Pr. In Figure 2c,
the fluid concentration profile is enhanced for minimum Pr = 0.3 and reduced for higher
Pr = 1.0. Figure 3a–c illustrates the effect of different values of λ = 1.0, 5.0, 10.0, 15.0 on
the velocity U, temperature θ, and concentration φ profiles. In Figure 3a, it is seen that
velocity U profile is increased at a maximum of λ = 15.0 and reduced for a minimum λ = 1.0,
with good response. Figure 3b represents the effect of λ on the θ(η) graph. It can be seen
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that the temperature profile is reduced for higher λ = 15.0 but increased by decreasing
λ = 1.0. Figure 3c indicates the effect of λ on various values of φ(η) plot. That the con-
centration profile increased by decreasing λ = 1.0 but decreased by increasing λ = 15.0 is
examined in Figure 3c. The prominent variation in every plot is noted for various choices
of buoyancy number λ. Figure 4a–c shows the physical plots of velocity U, temperature θ,
and concentration φ plots for diverse values of n = 0.0, 0.3, 0.6, 1.0. In Figure 4a, it is
noted that the velocity U plot is enhanced for minimum n = 0.0 and reduced for maximum
n = 1.0. Figure 4b illustrated the temperature profile along η. It is deduced that the θ(η)
of fluid is decreased with the increase of n. Figure 4c displays the impact of density n
on the concentration graph, which is decreased by increasing n = 1.0, but increased by
decreasing n = 0.0. The prominent variation in every graph is noted for various choices
of density n. Figure 5a–c presented the physical outcomes of velocity U, temperature θ,
and φ(η) plots for Ω = 0.5, 1.5, 2.0, 2.5. It is noted that the velocity profile is enhanced for
minimum Ω = 0.5 and reduced for higher Ω = 2.5 by keeping other parameters fixed, as
in Figure 5a. The temperature θ graph is enhanced for maximum Ω = 2.5 and the other
value of Ω the f ′(η) plot is similar in Figure 5b. The concentration φ plot is enhanced
by increasing Ω = 2.5 but decreased by decreasing Ω = 0.5 in Figure 5c. The prominent
variation in every plot is noted for various porous number Ω. Figure 6a–c demonstrates the
plots of velocity U field, temperature θ field, and concentration φ field for diverse values of
the thermophoresis parameter Nt by keeping other parameters fixed. The velocity plot is
enhanced for maximum Nt = 3.0 and reduced for minimum Nt = 0.1 with good response in
Figure 6a. The θ(η) plot is enhanced for maximum Nt = 3.0 and reduced for minimum
Nt = 0.1 in Figure 6b. The concentration φ profile is enhanced by decreasing Nt = 0.1 but
decreased by increasing Nt = 3.0 in Figure 6c. The prominent variation in every plot is noted
for various choices of the thermophoresis parameter Nt. Figure 7a–c depicted the graphs
of velocity U, temperature θ , and concentration φ graphs for diverse choices of Brownian
motion parameter Nb = 0.1, 1.0, 2.0, 3.0, and 4.0 with some other constant parameters.
The velocity U plot in increased for higher Nb = 4.0 and decreased at minimum value of
Nb = 0.1 by keeping other parameters fixed, as in Figure 7a. The temperature distribution is
increased at the maximum value of Nb = 4.0 and reduced for the minimum Nb = 0.1, as in
Figure 7b. The concentration φ profile is enhanced by decreasing Nb = 0.1 but decreased by
increasing Nb = 4.0 in Figure 7c.

From Table 1, it can be seen that skin friction f
′′
(0) is enhanced for large n = 1.0 and the

minimum skin friction f
′′
(0) is deduced for small n = 0.0 under the influence of buoyancy

parameter λ = 1.5. The heat rate −θ′(0) is enhanced for larger n = 1.0 and the minimum
heat transfer is computed for the smaller n = 0.0, with buoyancy parameter λ = 1.5. The
mass transfer is maximum for larger n = 1.0 and the minimum mass transfer is noticed for
the smaller n = 0.0 with buoyancy parameter λ = 1.5. Table 2 indicated the impact of the Ω
parameter for some choices of Ω = 0.5, 1.5, 2.0, and 3.5 past a porous stretching sheet
for the physical characteristics of f

′′
(0),−φ′(0), and −θ′(0) past the stretching surface

with some constant λ = 1.7, M = 3.5, and δ = 1.3. The f
′′
(0) is enhanced for lower Ω = 0.5

while the minimum value of skin friction is examined for the maximum Ω = 2.5. It is
mentioned that −θ′(0) is increased by decreasing Ω = 0.5 and reduced by increasing
Ω = 2.5. It can be seen that the mass transfer is raised for the lower choice of Ω = 0.5,
while the lowest value of mass transfer is examined for the larger value of Ω = 2.5. Table 3
presents the comparison of heat transfer −θ′(0) with Gorla and Sidawi [16], Wang [17],
and Khan and Pop [18] by reducing Nt and Nb effects for seven values of the Prandtl
number—Pr = 0.07, 0.20, 0.70, 2.0, 7.0, 20.0, 70.0—in the presence of the temperature
density impact past the stretching porous sheet. It is deduced that the prominent heat
transfer is obtained with temperature-dependent density effects for each Pr. Therefore, the
current heat transfer results are commensurate with the previous results.
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Table 1. The numerical results for f
′′
(0), −θ′(0), and for −φ′(0) for various values of n = 0.0,

0.3, 0.6, 1.0 with some parameters fixed.

n= f
′′

(0) −θ
′
(0) −φ

′
(0)

0.0 4.879240614576633 0.174622809744148 1.514028648228383

0.3 5.553517239574258 0.282093810281554 1.929879513656921

0.6 7.128708418082393 0.451526060701176 2.503545641529655

1.0 11.14056359516007 0.828854931906472 3.609754807395438

Table 2. The numerical outcomes of f
′′
(0), −θ′(0) , and −φ′(0) with some choices of Ω = 0.5,

1.5, 2.5, 3.5.

Ω f
′′

(0) −θ
′
(0) −φ

′
(0)

0.5 9.540455671088386 3.024123755289357 2.291019891109566

1.5 8.487572033095056 2.944285424442383 2.085276681324071

2.0 8.086105381985982 2.913421437893619 1.987179978853624

3.5 7.737145446285837 2.886620197701986 1.890161615731341

Table 3. Comparison of numerical results for −θ′(0) heat transfer for various values of Pr = 0.07,
0.20, 0.70, 2.0, 7.0, 20.0, 70.0 with temperature density effects past the stretching porous sheet.

Pr Gorla and Sidawi [16] Wang [17] Khan and Pop [7] Present
Analysis

0.07 0.0656 0.0656 0.0663 0.0688

0.20 0.1691 0.1691 0.1691 0.1696

0.70 0.5349 0.4539 0.4534 0.4616

2.0 0.9114 0.9114 0.9113 0.9632

7.0 1.8905 1.8954 1.8954 1.9064

20.0 3.3539 3.3539 3.3539 3.3905

70.0 6.4622 6.4622 6.4621 6.4962

7. Conclusions

In the present paper, the variable density impact on heat–mass transfer and nanopar-
ticle fraction phenomena of nanofluid across a stretching sheet in porous material with
thermophoresis and Brownian motion effects has been explored numerically. The coupled
partial differential equations of the present nanofluid mechanism are changed in nonlinear
coupled ordinary differential equations with defined stream functions and similarity vari-
ables for a smooth algorithm and integration. The changed ODEs are again converted to
similar forms for numerical outcomes by applying the Keller Box approach. The numerical
outcomes are deduced in graphs and tabular form with the help of the MATLAB program.
How physical quantities such as velocity graphs, temperature graphs, and concentration
graphs behave together with their slopes, which represent the rates of mass transfer, heat
transfer, and skin friction under the influence of various flow model parameters, is exam-
ined. The effects of physical variables, such as Prandtl parameter Pr, temperature density
number n, Lewis parameter Le, thermophoresis parameter Nt, buoyancy number λ, Brow-
nian motion number Nb, and porous number Ω, are drafted quantitatively and graphically.
The concluding remarks are given as follows:

• The velocity plot is enhanced for minimum quantity of Pr = 0.3 and reduced for
maximum Pr = 1.0. The fluid concentration plot is increased for minimum quantity of
Pr = 0.3 and reduced for maximum Pr = 1.0;
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• The temperature θ graph is at a minimum by higher λ = 15.0 but increased by
decreasing λ = 1.0. It is deduced that θ(η) of fluid is decreased with the increase of n.
The prominent variation in every plot is noted for diverse choices of density number n;

• It is noted that the velocity graph is maximum for the small quantity of Ω = 0.5 and
reduced for the larger Ω = 2.5 by keeping the other parameters fixed. It can be seen
that the temperature θ plot is enhanced for the maximum choice of Nb = 4.0 and
reduced for the minimum choice of Nb = 0.1;

• The concentration graph is enhanced by decreasing Nb = 0.1 but decreased by increas-
ing Nb = 4.0. The skin friction f

′′
(0) is increased by increasing the value n = 1.0 but

decreased by decreasing the value of n = 0.0;
• It is found that heat transfer −θ′(0) is enhanced for the maximum choice of n = 1.0

and the minimum choice at lower value of n = 0.0. It is also noted that mass transfer
is enhanced due to increasing n = 1.0 but reduced due to decreasing n = 0.0.
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