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Abstract: A water lubricating axial piston pump (WLPP) is the core power component of a green
and environmentally friendly water hydraulic system. The friction and wear of the friction pairs
of a WLPP are the key factors that restrict its development. In order to explore the friction and
wear mechanism of materials, the tribological properties of CFRPEEK against 316L and 1Cr17Ni2
under water lubrication were investigated in a friction testing machine and an axial piston pump,
respectively. An environmental scanning electron microscope (ESEM), confocal laser scanning
microscopy and a surface profiler were used to analyze the morphology of the samples. In a friction
testing machine, two different metals are paired with CFRPEEK, and the friction coefficient and wear
rate barely show any differences. The wear rate of CFRPEEK is two orders of magnitude higher
than that of metal. In the WLPP, 316L can hardly be paired with CFRPEEK, while 1Cr17Ni2 works
well. The wear of 1Cr17Ni2 in the WLPP is greater than that of CFRPEEK. The high-pressure water
film lubrication friction pairs cause the wear of the metal and show the difference in these two test
methods. The wear mechanism is mainly abrasive wear. Improving the wear resistance of metals is
very important for the development of WLPP.

Keywords: CF/PEEK; axial piston pump; water hydraulics; water lubrication; wear

1. Introduction

Water hydraulics, which uses tap/sea water instead of traditional mineral oil as
the working medium, has the advantages of environmental protection, non-combustion,
compatibility with the environment and accessibility. This technology is widely used in
seawater desalination [1,2], submersible buoyancy regulation [3,4], fire protection [5] and
other fields. A water lubricating axial piston pump (WLPP), which increases the pressure
of the working medium, is the core component of a water hydraulic system.

Figure 1 shows the structure of a WLPP. Its working principle is as follows. The
rotating shaft drives the slipper to slide on the surface of the swashplate. The piston
also rotates with the shaft and reciprocates in the cylinder sleeve. At the same time, the
rotating shaft drives the floating plate to slide on the surface of the valve plate. Under
the action of this motion and the hydraulic pressure, it forms three major friction pairs
of the water pump, namely, the slipper/swashplate pair, the piston/cylinder sleeve pair
and the valve plate/floating plate pair. These three friction pairs perform bearing and
sealing functions [6]. However, compared with mineral oil, water has low viscosity, strong
corrosion, high vaporization pressure and other physical and chemical properties [7], which
make the friction pairs of a WLPP face serious friction and lubrication problems.
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Therefore, the materials of water-lubricated friction pairs have been researched. Gen-
erally, friction pair materials for a WLPP require corrosion resistance, good mechanical
properties and tribological properties [8,9]. At present, the materials of water-lubricated
friction pairs are mainly stainless steel [10], engineering plastics [11] and ceramics [12,13].
Ceramics are characterized by high strength, large elastic modulus, wear resistance and
corrosion resistance, and are suitable to use under high-speed and heavy-load conditions.
Nevertheless, the toughness and fatigue resistance of ceramics are poor. The main failure
modes of ceramic parts are brittle fracture and fatigue spalling [14]. Furthermore, ceramics
are difficult to process and are not the best material for making the friction pairs of a
WLPP. In comparison, engineering plastics and stainless steel are more suitable for the
friction pairs.

Among many engineering plastics, Poly ether ether ketone (PEEK) is a promising
polymer with high mechanical and tribological properties, such as high temperature re-
sistance, corrosion resistance, self-lubrication and dimensional stability, which is widely
used in the fields of automobiles, aerospace, nuclear power and medical equipment [15–18].
Many researchers have studied the friction and wear properties of PEEK/modified PEEK
under water lubrication. Chen et al. [19] studied the tribological behaviors of CF/PEEK
under seawater lubrication, with sliding speeds of 0.5 m/s–1 m/s and normal loads of
200 N–600 N. The results showed that the incorporation of CF can greatly improve the
wear resistance of PEEK. Li et al. [20] investigated the effect of different temperatures
(0–50 ◦C) on the friction and wear properties of CFRPEEK against AISI 431 steel under
water lubrication, using a disc-on-disc tester under sliding speeds of 0.68–1.36 m/s and
loads of 0.61–1.83 MPa. It was found that the increasing lubricant temperature will lead
to the deterioration of tribological properties of the materials. Davim et al. [21–23] used
a pin-on-disc machine to research the effects of the PV factors (0.5–3 MPa·m/s) and the
sliding distance on the tribological behaviors of CF/PEEK and AISI 316L under dry friction
and water lubrication. Li et al. [24] investigated the friction and wear behaviors of PEEK
filled with short carbon fibers and SiO2 against GCr15 under dry sliding conditions, with
PV factors ranging from 1 to 12 MPa·m/s. Moreover, under high hydrostatic pressure,
the friction and wear behavior of materials have been studied by scholars. Liu et al. [25]
Studied the tribological behavior of different polymer materials under 0–40 MPa hydro-
static pressure. It was found that the wear behavior of thermoplastic polymers sliding in



Lubricants 2023, 11, 158 3 of 14

seawater is strongly dependent on the hydrostatic pressure. Wu et al. [26] have developed
a disc-on-disc friction testing machine that can simulate hydrostatic pressure up to 80 MPa.
In their follow-up work [27], the friction and wear characteristics of CF/PEEK against
431 stainless steel under high hydrostatic pressure were investigated. The results showed
that hydrostatic pressure helps reduce the wear rates of CF/PEEK and 431 stainless steel.

The research on the tribological properties of PEEK and its poly composites focus
on sliding speed, loads, lubricating temperature, material modification and hydrostatic
pressure. The test method is usually conducted with a friction and wear testing machine
with normal-pressure water lubrication. These studies focus more on the tribological
characteristics of PEEK, and suggest that the strength and hardness of the metals are much
greater than PEEK, while ignoring the wear issue of the metal materials. However, the
WLPP works at 14 MPa and 1500 rpm, which makes the load of its friction pairs as high
as 6.7 m/s and 4.1 MPa. Moreover, the friction pairs of the WLPP are lubricated by high-
pressure water, which lead to the materials’ deformation [28]. Hence, the wear mechanism
of PEEK and steel will be different when the lubrication conditions change. It is necessary
to study the tribological behaviors of PEEK and stainless steel under real conditions for the
design of WLPP.

In this work, the difference in tribological characteristics between CFRPEEK and
stainless steel, under water lubrication in a friction testing machine and an axial piston
pump, was studied. The friction coefficients and wear rates of CFRPEEK and stainless steel
were measured, and the worn surface morphology was obtained. In particular, the wear
mechanism of metals was analyzed using a friction testing machine and high-pressure
lubrication in the WLPP. This study has instructive significance for the design and material
selection of the friction pair of the water hydraulic pump.

2. Experimental
2.1. Sample Preparation
2.1.1. Sample for Friction Testing Machine

The materials of the upper samples are 316L (ASTM A240M-15a) and 1Cr17Ni2
(GB/T 1221-2007). The 316L sample is austenitic stainless steel, which is corrosion-resistant
and is generally used in a corrosive environment. It has low strength and its hardness
cannot be improved via heat treatment. Its hardness is usually lower than 187 HB. The
1Cr17Ni2 sample is martensitic stainless steel with high strength, and is widely used in
ships, steam turbines and other harsh environments. After heat treatment, its hardness
is HRC41–44 (~400 HB). These two materials have good water corrosion resistance and
are commonly used to make parts of water hydraulic piston pumps [20,29]. The main
mechanical properties of the two stainless steel materials are shown in Table 1.

Table 1. Mechanical properties of the two stainless steels.

Properties Unit 316L 1Cr17Ni2

density g/cm3 7.98 7.75
tensile strength MPa 480 1080
yield strength MPa 177 -

tensile modulus GPa 210 210
hardness HB 187 400

CFRPEEK was selected to make the lower sample, which is made of 70% PEEK matrix
and 30% carbon fibers. This material was commercially obtained from Ensinger Co., Ltd.
(Nufringen, Germany). The main performance parameters of CFRPEEK are shown in
Table 2.
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Table 2. Properties of CFRPEEK [30].

Properties Unit Value

density g/cm3 1.40
water absorption % 0.06
tensile strength MPa 265

compressive strength MPa 300
tensile modulus GPa 28

hardness Shore D 87.5

2.1.2. Samples of WLPP

As shown in Figure 2, the friction surface of slippers is coated with CFRPEEK by
injection molding process, and its roughness and flatness are not greater than 0.8 µm and
0.003 mm, respectively. The swashplate parts are made of 316L and 1Cr17Ni2, and the heat
treatment process is the same as that of the upper samples. The roughness and flatness of
swashplate parts are less than 0.8 µm and 0.01 mm, respectively.
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2.2. Tribology Tests
2.2.1. Tribology Tests in Friction Testing Machine

A pin-on-disc friction testing machine (MMU–10, SHIJIN, Jinan, China) was utilized
for tribological tests. As shown in Figure 3, the upper sample (stainless steel pin) and the
lower sample (CFRPEEK disc) were installed in the sample box. Circulating water flowed
into the sample box from the inlet and flowed out from the outlet for lubrication. The
temperature of water was kept between 22–25 ◦C.

Lubricants 2023, 11, x FOR PEER REVIEW 4 of 15 
 

 

Table 2. Properties of CFRPEEK [30]. 

Properties Unit Value 

density g/cm3 1.40 

water absorption % 0.06 

tensile strength MPa 265 

compressive strength MPa 300 

tensile modulus GPa 28 

hardness Shore D 87.5 

2.1.2. Samples of WLPP 

As shown in Figure 2, the friction surface of slippers is coated with CFRPEEK by 

injection molding process, and its roughness and flatness are not greater than 0.8 μm 

and 0.003 mm, respectively. The swashplate parts are made of 316L and 1Cr17Ni2, and 

the heat treatment process is the same as that of the upper samples. The roughness and 

flatness of swashplate parts are less than 0.8 μm and 0.01 mm, respectively. 

 

Figure 2. Slipper and swashplate parts of WLPP. 

2.2. Tribology Tests 

2.2.1. Tribology Tests in Friction Testing Machine 

A pin-on-disc friction testing machine (MMU–10, SHIJIN, Jinan, China) was utilized 

for tribological tests. As shown in Figure 3, the upper sample (stainless steel pin) and the 

lower sample (CFRPEEK disc) were installed in the sample box. Circulating water 

flowed into the sample box from the inlet and flowed out from the outlet for lubrication. 

The temperature of water was kept between 22–25 °C.  

 

Figure 3. Pin-on-disc friction testing machine. Figure 3. Pin-on-disc friction testing machine.



Lubricants 2023, 11, 158 5 of 14

The surfaces of pin-on-disc samples were polished with abrasive papers. The surface
roughnesses of the pin-on-disc samples were less than 0.1 µm and 0.2 µm. Before and
after the test, the samples were ultrasonically cleaned in industrial alcohol for 5 min and
dried with a blower for 3 min. Then, the mass of samples was measured by an analytical
balance (MS105, 0.01 mg, Mettler-toledo, Zurich, Switzerland). The weight difference of
the samples before and after the test was the wear amount. The wear rate (w) and wear
amount of the sample could be calculated by the following formula:

w =
∆m
ρNL

(1)

where ∆m is the mass loss of the sample (g), ρ is the density (g/mm3), N is the load (N),
and L is the sliding distance (m). Repeated tests were carried out for each group.

2.2.2. Tribology Tests in WLPP

Figure 4 shows the principle of the experimental system for testing the slipper/
swashplate pairs of the WLPP. Slipper/swashplate pairs of different materials were installed
in the tested pump to evaluate their tribological performance under real working conditions.
A safety valve (4) was used to prevent system overpressure. The outlet pressure of the
tested pump was regulated by the throttle valve (9), and measured by the pressure sensor
(8, range: 0–25 MPa, accuracy: ±0.25% FS). The outlet flow was measured by flowmeter
(10, range: 1–10 m3/h, accuracy: ±1% FS). The input speed and torque of the tested pump
were measured by the tacho-torquemeter (5, range: 0–200 Nm, 0–5000 rpm, accuracy:
±0.1% FS). The change in pump volumetric efficiency could indirectly represent the wear
of internal parts [31,32]. Its volumetric efficiency (ηv) could be expressed as follows:

ηv =
q
qt

(2)

where q is the outlet flow of the WLPP (L/min), qt is the theoretical flow of the WLPP
(L/min), qt = 85n/1000, and n is the speed of the WLPP (r/min). Moreover, the wear of parts,
including the macro size and macro morphology, was measured directly by measuring
instruments.
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3. Results and Discussions
3.1. Tribological Behaviors and Surface Topography within Friction Testing Machine
3.1.1. Tribological Behaviors of the Samples

In order to observe the friction and wear of materials in a short timeframe, the testing
conditions in the friction testing machine were set to a contact pressure of 10 MPa and
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a sliding speed of 2 m/s. Each group of tests was carried out continuously for 180 min.
The change in friction coefficients of the 316L/CFRPEEK and 1Cr17Ni2/CFRPEEK pairs,
with time elapsed, is shown in Figure 5a. Both pairs have a running-in stage, after which
the friction coefficient is stable. In order to compare the friction coefficient difference
between the two materials, the average value of multiple sets of data is calculated, as
shown in Figure 5b. Although the materials matched with CFRPEEK are different, the
friction coefficients of the two pairs are slightly different. This means that different metal
materials have little influence on the friction coefficient within the friction testing machine.
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Furthermore, the wear rates of CFRPEEK and the two metals are also tested, as shown
in Figure 6. In these two pairs, the wear rates of CFRPEEK have little difference, with the
order of 10−7, which is similar to the results from previous studies [20,33]. Similarly, the
wear rates of the two metals are similar, but are far less than the difference in CFRPEEK, with
the order of 10−9. This means that the two metals are more wear-resistant than CFRPEEK.
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Figure 6. Wear rates of different pairs. (a) Wear rates of CFRPEEK; (b) wear rates of metals.

3.1.2. Surface Topography of the Samples

The surface morphology of the 316L/CFRPEEK pair is similar to that of the 1Cr17Ni2/
CFRPEEK pair after testing. An environmental scanning electron microscope (ESEM,
FEI Quanta 200) was used to analyze the morphology of the samples. Due to the non-
conductivity of CFRPEEK, the CFRPEEK samples were subjected to a gold-plating treatment
before the morphology was calculated. Only the ESEM image of the 1Cr17Ni2/CFRPEEK
pair is analyzed below. As shown in Figure 7a, there are some cavities on the surface
of the unused CFRPEEK, which may be formed by the fracture and extraction of carbon
fibers caused by mechanical cutting and the sanding with the abrasive paper. Compared
with the worn CFRPEEK surface (see Figure 7b), the cavities on unused CFRPEEK surface
disappear due to wear. Furthermore, the carbon fibers thin and break due to wear. More
significantly, the carbon fibers are separated and pulled out from the PEEK matrix [20]. The
wear mechanisms of CFRPEEK are mainly surface fatigue wear and adhesive wear [34].
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The wear morphology of 1Cr17Ni2 is different from that of CFRPEEK. As shown in
Figure 7c, the surface of the unused 1Cr17Ni2 sample is flat, and there are some crisscross,
fine textures present after polishing. As shown in Figure 7d, there are clear abrasion marks
along the sliding direction on the worn 1Cr17Ni2 surface. At the same time, some PEEK
materials have adhered to the 1Cr17Ni2 metal surface. The wear mechanism of CFRPEEK
and 1Cr17Ni2 metal is as follows. The mechanical properties of the PEEK matrix are
increased by filling carbon fibers; that is, carbon fibers improve the bearing capacity of the
PEEK matrix. However, under high contact pressure and sliding speed, the carbon fiber is
worn and peeled off. Due to the high hardness and strength of carbon fiber, it causes metal
surface wear. The PEEK matrix is worn off and transferred to the 1Cr17Ni2 metal surface
in a small amount, which reduces wear to a certain extent. These wear mechanisms also
verify previous research [35,36].

3.2. Wear Analysis of Slipper/Swashplate Pair of WLPP
3.2.1. Volumetric Efficiency of WLPP

In the test system shown in Figure 4, the 316L and 1Cr17Ni2 swashplates are installed
in the tested pump to test volumetric efficiency. At the beginning of the test, the tested
pump speed was adjusted to 1500 rpm, and the outlet pressure was set to 14 MPa. Then, the
tested pump was operated under this working condition. The tested pump with the 316L
swashplate was operated continuously for 20 min at 1500 rpm and with no load (~0.5 MPa).
The temperature of the pump shell was high and the vibration and noise were abnormal.
Therefore, the volumetric efficiency of the pump could not be tested at high outlet pressure.

For the tested pump with the 1Cr17Ni2 swashplate, the vibration, noise and shell
temperature were normal during the test. Under the working conditions of 14 MPa and
1500 rpm, the tested pump was worked for 6–8 h every day, with a total final testing time of
500 h. Its volumetric efficiency was tested. The volumetric efficiency of the pump changed
with time elapsed, as shown in Figure 8. The volumetric efficiency of the pump decreased
gradually with the increase in operation time, from 92.5% at the beginning to 88.6% at
500 h. This indirectly reflected the wear of the moving parts, which increased the fit or seal
clearance, resulting in increased leakage and reduced volumetric efficiency [37].
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Figure 8. The volumetric efficiency of WLPP (installed with 1Cr17Ni2 swashplate) changes with time.

During the test of the WLPP, the 1Cr17Ni2/CFRPEEK and 316L/CFRPEEK friction
pairs showed obvious differences. The results showed that the 316L/CFRPEEK friction
pair cannot be used in the WLPP, while the 1Cr17Ni2/CFRPEEK friction pair can operate
for a long time at a high speed and with a heavy load. This is significantly different from
the tribological characteristics of the two in the friction testing machine.
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3.2.2. Wear Analysis of Slipper and Swashplate Pairs

In order to study the wear mechanism of the swashplate and slipper friction pairs made
of two materials, the worn appearances of the swashplate and the slipper were measured.
A camera was used to take photos of the friction surface in order to observe the wear from
a macro perspective. The wear profile of the swashplate was measured along the normal
direction of the sliding direction with a profiler. This model is the MarSurf LD130 (Mahr,
Gottingen, Germany), with a resolution of 0.8 nm. The three-dimensional morphology of
the swashplate wear area was measured by confocal laser scanning microscopy (LSM800,
Zeiss, Oberkochen, Germany). The wear of the friction surface of the swashplate parts is
shown in Figure 9.
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The wear photo shows that the 316L swashplate friction surface (see Figure 9a) is
severely worn after a short period of no-load operation. Along the sliding direction of the
slipper, the wear forms a dense groove, which makes a clear boundary between the wear
area and the non-wear area. From the profile measurement results showing the sliding
direction of the slipper, it can be seen that the surface roughness increases significantly,
from Ra0.69 µm before the test to Ra1.43 µm after the test. The height difference between
the worn area and the non-worn area is 3 µm, which is the depth of the wear marks on the
316L swashplate surface. The 3D morphology of the wear area shows that the maximum
height of the peaks and troughs formed by the wear mark is more than 30 µm, and the
surface roughness is Sa2.99 µm.

By comparison, the friction surface of the 1Cr17Ni2 swashplate is much smoother,
as shown in Figure 9b; however, due to the wear caused by long-time operation under
high pressure, there are an grooves on the swashplate surface. Similarly, a clear boundary
(step) is formed between the worn area and the non-worn area. The profile of the 1Cr17Ni2
swashplate was tested with the same method and position. The wear area is smoother
than the non-wear area, and the roughness is reduced from Ra0.729 µm to Ra0.238 µm.
This means that the 1Cr17Ni2 swashplate is polished by CFRPEEK. The 3D morphology
observation results also show that the maximum contour height difference is less than
20 µm, and the surface roughness is Sa2.35 µm. Nevertheless, the depth of the wear
marks on the swashplate surface reaches 0.128 mm, and the metal is considerably worn
away, which is obviously different from the wear rate results obtained using the friction
testing machine.

The wear of the CFRPEEK slippers matched with the different stainless steels was
evaluated and analyzed. A micrometer was used to measure the height difference of the
slipper friction surface before and after the test. Each slipper friction surface was measured
at three points at equal intervals and averaged to reduce error. The CFRPEEK slipper
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matched with the 316L swashplate was worn 0.005 mm, and it was worn 0.103 mm when
matched with the 1Cr17Ni2 swashplate. Although the wear of the former was much less
than that of the latter, the wear rate of the former was also much greater than that of the
latter. This is because the former had been operated for nearly 20 min under no load
(~0.5 MPa), and the latter had been operated for 500 h under a rated load (14 MPa).

The wear morphology of the CFRPEEK slippers matched with different stainless steels
was measured, as shown in Figure 10. When matched with the 316L swashplate, the slipper
friction surface becomes very rough after a short time of operation (see Figure 10a). The
friction surface is covered with dense and staggered grooves. As shown in Figure 10b, the
PEEK matrix is embedded with a certain amount of metal debris. At the same time, the
carbon fibers are broken or even pulled out, which causes some cavities on the surface
of CFRPEEK. This is because the strength and hardness of carbon fiber are much higher
than that of 316L stainless steel. When the two of them rub against each other, the carbon
fibers cut 316L metal to form large abrasive debris. Due to the low strength and hardness
of the PEEK matrix, it is embedded with metal debris under the action of the load and
speed [33,34].
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swashplate.

As shown in Figure 10c, when matched with the 1Cr17Ni2 swashplate, the slipper
friction surface is relatively flat after high-pressure operation for a long time. The enlarged
scanning electron microscope shows (Figure 10d) that the carbon fibers are densely dis-
tributed on the surface, and a few parts are separated from the PEEK matrix. Moreover,
wear debris of a small size is embedded into the PEEK matrix around the carbon fiber.

However, when CFRPEEK slippers are paired with the 316L and 1Cr17Ni2 swashplate
in the WLPP, the wear rates of the metals are very different. The wear rate of 316L is
much greater than that of the 1Cr17Ni2. At the same time, the depth of the the 1Cr17Ni2
swashplate wear mark is greater than that of the CFRPEEK slipper. This means that
CFRPEEK is more wear-resistant than the metals. These results are completely different
from the results of the friction testing machine.

In summary, due to the low strength and hardness of 316L, the swash plate made of
this material is microcut by carbon fibers with a high hardness. The wear mechanisms
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of 316L are mainly severe abrasive wear [34] and slight adhesive wear. However, with
the higher strength and hardness of 1Cr17Ni2, the swash plate made of this material has
a certain polishing effect. Its wear mechanism is slight abrasive wear. As for CFRPEEK,
carbon fibers break and fall off on the surface, and the PEEK matrix is embedded with
metal abrasive debris. The wear mechanisms of CFRPEEK are mainly abrasive wear [23],
surface fatigue wear and adhesive wear [20,38].

3.3. Analysis of Tribological Differences under Two Test Methods

The cause of the difference in the friction tests between CFRPEEK and the two stainless
steels in the friction testing machine and the axial piston pump is the pressure of the
lubricating water. Atmospheric pressure water lubrication is used in the friction testing
machine, while high-pressure (~14 MPa) water lubrication is used in the WLPP. The wear
mechanisms of CFRPEEK and the metals under the two test methods are shown in Figure 11.

Lubricants 2023, 11, x FOR PEER REVIEW 12 of 15 
 

 

With the low hardness and strength of CFRPEEK, its wear rate is larger than that of 

metal. The worn surface of CFRPEEK is also relatively flat. 

Figure 11b shows the wear mechanism of CFRPEEK against two stainless steels 

under high-pressure water lubrication, which is used to analyze the wear condition in 

the WLPP. The tensile strength and modulus of carbon fibers exceed 3.0 GPa and 230 

GPa, respectively. Its hardness is second only to diamond, and more than 10 times that 

of the metals [39]. However, the hardness and elastic modulus of the PEEK matrix are 85 

(shore D) and 3.5 GPa [30], respectively. Based on the diameter of the carbon fibers (~8 

μm) [30], the deformations of the carbon fibers and the PEEK matrix are 0.5 × 10−3μm 

and 32 × 10−3 μm, respectively, under the pressure of 14 MPa. Therefore, under the con-

dition of high-pressure water lubrication, the deformation of the PEEK matrix is larger 

than that of the carbon fibers. The difference deformation increases the amount of the 

carbon fibers’ contact with the metal and makes them bear a greater load. Due to the ex-

tremely high hardness of carbon fibers, the wear of the metal increases when rubbed 

against them. In this case, the strength and hardness of the metal materials affect their 

wear rates. Generally, the higher the strength and hardness of metal materials, the lower 

the wear rates. Due to the low strength and hardness of 316L, the wear of the 316L 

swashplate is serious. With the high strength and hardness of 1Cr17Ni2, the surface of 

the 1Cr17Ni2 swashplate is smooth after rubbing against carbon fibers. The micro sur-

face of CFRPEEK matched with the metal is relatively rough. Metal wear debris is em-

bedded into the PEEK matrix with low hardness between carbon fibers. 

 
            (a)                                       (b) 

Figure 11. Wear mechanisms of CFRPEEK and metals. (a) Atmospheric pressure water lubrication 

in friction testing machine; (b) high-pressure water lubrication in WLPP. 

4. Conclusions 

In this work, the tribological characteristics of CFRPEEK sliding against 316L and 

1Cr17Ni2 stainless steel under water lubrication in a friction testing machine and an axi-

al piston pump were investigated. Based on the study, the following conclusions can be 

drawn: 

(1) Metal (316L or 1Cr17Ni2) is more wear-resistant than CFRPEEK within a friction 

testing machine. When tested with a friction testing machine, the friction coefficient and 

wear rates of the CFRPEEK/316L and CFRPEEK/1Cr17Ni2 friction pairs have no signifi-

cant difference. The wear rate of CFRPEEK is on the order of 10−7, while that of metal is 

on the order of 10−9. 

Figure 11. Wear mechanisms of CFRPEEK and metals. (a) Atmospheric pressure water lubrication in
friction testing machine; (b) high-pressure water lubrication in WLPP.

Figure 11a shows the wear mechanism of CFRPEEK against two stainless steels under
atmospheric pressure water lubrication, which is used to analyze the wear condition in
the friction testing machine. Under the action of the test load, contact stress is generated
between the metal sample and the CFRPEEK sample. The carbon fibers and the PEEK
matrix in the contact area jointly bear the contact stress. Because the lubricating water is
at atmospheric pressure, it cannot cause microdeformation on the surface of the carbon
fibers or the PEEK matrix, but it still plays the role of lubrication and cooling. With the low
hardness and strength of CFRPEEK, its wear rate is larger than that of metal. The worn
surface of CFRPEEK is also relatively flat.

Figure 11b shows the wear mechanism of CFRPEEK against two stainless steels under
high-pressure water lubrication, which is used to analyze the wear condition in the WLPP.
The tensile strength and modulus of carbon fibers exceed 3.0 GPa and 230 GPa, respectively.
Its hardness is second only to diamond, and more than 10 times that of the metals [39].
However, the hardness and elastic modulus of the PEEK matrix are 85 (shore D) and
3.5 GPa [30], respectively. Based on the diameter of the carbon fibers (~8 µm) [30], the
deformations of the carbon fibers and the PEEK matrix are 0.5 × 10−3 µm and 32 × 10−3 µm,
respectively, under the pressure of 14 MPa. Therefore, under the condition of high-pressure
water lubrication, the deformation of the PEEK matrix is larger than that of the carbon
fibers. The difference deformation increases the amount of the carbon fibers’ contact with
the metal and makes them bear a greater load. Due to the extremely high hardness of
carbon fibers, the wear of the metal increases when rubbed against them. In this case, the
strength and hardness of the metal materials affect their wear rates. Generally, the higher
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the strength and hardness of metal materials, the lower the wear rates. Due to the low
strength and hardness of 316L, the wear of the 316L swashplate is serious. With the high
strength and hardness of 1Cr17Ni2, the surface of the 1Cr17Ni2 swashplate is smooth after
rubbing against carbon fibers. The micro surface of CFRPEEK matched with the metal is
relatively rough. Metal wear debris is embedded into the PEEK matrix with low hardness
between carbon fibers.

4. Conclusions

In this work, the tribological characteristics of CFRPEEK sliding against 316L and
1Cr17Ni2 stainless steel under water lubrication in a friction testing machine and an
axial piston pump were investigated. Based on the study, the following conclusions can
be drawn:

(1) Metal (316L or 1Cr17Ni2) is more wear-resistant than CFRPEEK within a friction
testing machine. When tested with a friction testing machine, the friction coefficient and
wear rates of the CFRPEEK/316L and CFRPEEK/1Cr17Ni2 friction pairs have no significant
difference. The wear rate of CFRPEEK is on the order of 10−7, while that of metal is on the
order of 10−9.

(2) The wear of 1Cr17Ni2 is greater than the wear of CFRPEEK in a WLPP. When tested
in a water-lubricated axial piston pump, the CFRPEEK/316L and CFRPEEK/1Cr17Ni2
friction pairs show great differences. The wear rates of CFRPEEK against 316L are very
high, and show that the pair can hardly be used in the pump. However, CFRPEEK against
1Cr17Ni2 can be used as friction pair materials in the pump for a long time. After 500 h
in a high-pressure test, the CFRPEEK slipper and the 1Cr17Ni2 swashplate were worn by
0.103 mm and 0.128 mm, respectively. This is obviously different from the wear rate test
results of metal and CFRPEEK in the friction testing machine.

(3) The amount of load borne by carbon fibers is the main reason for the difference in
tribological properties between the different metals and CFRPEEK. The friction interface
between metal (316L or 1Cr17Ni2) and CFRPEEK is lubricated by atmospheric pressure
water in the friction testing machine, but it is lubricated by high-pressure water in the
pump. This is the biggest difference between the two. The high-pressure water film causes
the microdeformation of the PEEK matrix at the interface of CFRPEEK, which makes the
carbon fibers bear more loads. High strength and high hardness carbon fibers cut metal
to form grinding, resulting in the abrasive wear of the metal and CFRPEEK. The wear
mechanism of CFRPEEK is mainly surface fatigue wear. The 316L with low strength and
hardness rubs against carbon fibers, causing serious wear. The wear of 1Cr17Ni2 with
higher strength and hardness is better.

Based on the above findings, it is necessary to study wear resistance methods for
metals in the future to improve the performance of WLPPs.
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