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Abstract: The corrosion inhibition properties of three spiro-isoxazoline derivatives, namely 3,4-diphenyl-
1,7-dioxa-2-azaspiro[4.4]non-2-en-6-one (DDA), 3-phenyl-4-(p-tolyl)-1,7-dioxa-2-azaspiro[4.4]non-2-en-
6-one (PDA) and 4-(4-methoxyphenyl)-3-phenyl-1,7-dioxa-2-azaspiro[4.4]non-2-en-6-one (MDA) on
carbon steel in 1.0 mol/L HCl acid medium were experimentally and computationally investigated.
The experimental results showed that the inhibitory efficiency reached remarkable values of 76.26,
80.31, and 82.91%, respectively, for DDA, PDA and MDA at a maximum concentration of 10−3 mol/L.
The potentiodynamic polarization curves (PPCs) showed that investigated compounds had a mixed
type character, controlling both anodic and cathodic corrosion reactions. In addition, electrochemical
impedance spectroscopy (EIS) indicated that the addition of increasing concentration of tested com-
pounds to HCl solutions led to a significant increase in the polarization resistance of the carbon steel,
which was accompanied with a simultaneous decrease in the double layer capacitance. On the other
hand, the morphological study of the metal surface by scanning electron microscope (SEM) and energy
dispersive X-ray (EDX) confirmed the effective protection of the carbon steel by the inhibitors against
corrosion through the formation of a protective film on its surface. The adsorption characteristics of
investigated compounds on carbon steel were assessed at microscopic level using Density Functional
Based Tight Binding (DFTB) simulation, which revealed the formation of covalent bonds between
inhibitors’ atoms and Fe atoms. Furthermore, additional insights into the compounds’ reactivity and
adsorption configurations on steel surface were obtained from global reactivity descriptors and Monte
Carlo simulation. The present work’s outcomes are interesting for further design and performance
evaluation of effective organic corrosion inhibitors for acid environments.

Keywords: spiro-isoxazoline; carbon steel; corrosion inhibition; molecular dynamics; density functional
theory; density functional based tight binding

1. Introduction

Steel is one of the most used materials in human life since its invention; it finds
its application in various fields such as construction, energy, industry and storage of
chemicals thanks to its low cost, high availability and mechanical properties [1]. However,
the degradation of this material by corrosion in several aggressive environments always
limits its application. Corrosion is defined as the deterioration of a metal through an
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electrochemical or chemical reaction with its surrounding environment, especially in acidic
media [2]. This phenomenon leads to degradation and failure of engineering structures
representing significant economic losses for manufacturers [3]. It has been reported that
the global cost of corrosion is estimated to be about 3.4% of the global GNP [4]. For
this reason, various strategies have attracted attention for the protection against steel
corrosion in acidic mediums such as the choice of the appropriate metal, modification of the
metal surface, and addition of chemical compounds as corrosion inhibitors to modify the
environment [5]. Indeed, the addition of organic compounds as corrosion inhibitors is the
most economical and effective technique used to reduce the impact of corrosion, especially
in some industrial processes where acid solutions are used for cleaning and descaling such
as oil and gas production. Heterocyclic organic compounds have several physicochemical
features that are appealing to corrosion mitigation process of metals. Organic corrosion
inhibitors contain several heteroatoms (N, S, O and P), aromatic rings and π-electrons
with high electron density, which favor their adsorption on the entire metal surface, thus
reducing the corrosion process [6]. One of the main features of heterocyclic compounds
is the possibility of combining different functional groups such as methoxy, hydroxyl,
amino and carboxylic acid in the same molecule, which improve their affinity for the metal
surface [7,8]. According to scientific progress in this field, organic compounds’ inhibitory
action is explained by the formation of a protective layer on the metal surface as a result of
their chemical, physical or physicochemical adsorption, which shields the metal from the
corrosive ions present in the medium [9,10].

Heterocyclic compounds based on isoxazolines with different substituents are among
the candidates that can successfully meet major requirements for effective corrosion in-
hibitors thanks to their chemical composition which includes heteroatoms (N and O) and
delocalized π electrons [11,12]. On the other hand, these five membered heterocycles are
one of the versatile motifs present in many natural products, bioactive compounds, and
pharmaceutically important compounds. Some of the interesting properties of isooxazoline-
containing compounds include antidiabetic, antibacterial, and anticancer activities [13,14].
On the other hand, γ-lactonesare green organic compounds commonly found in food and
can be easily synthesized with moderate to good yields by a one-step process from commer-
cial or easily accessible reagents [15,16]. These characteristics make γ-lactone derivatives
promising compounds for use in corrosion inhibition studies.

On the other hand, organic compounds are “film-forming” chemicals that act by
the adsorption on the metal surface, thus the molecular structure of inhibitors would
have significant effect on their adsorption performance among other factors. Therefore,
understanding the reactivity and adsorption geometries of compounds on the metal surface
would provide valuable information about their corrosion inhibition performance. For
this purpose, several recent studies have been reported on the investigation of molecular,
electronic and structural properties of tested corrosion inhibitors from a theoretical point of
view [17,18]. Global reactivity descriptors provide a general overview of the reactivity of
individual compounds and potential adsorption sites. However, these quantum chemical
parameters are limited in interpreting the adsorption characteristics of compounds on metal
surfaces [19,20]. To overcome this limit, other theoretical approaches such as first-principles
density functional theory (DFT) and Density Functional Based Tight Binding (DFTB) can
be used [21–24]. These methods allow the simulation of inhibitor-metal interactions,
including the possibility of bond formation and breaking. Furthermore, macroscopic
level insights can be obtained from molecular dynamics and Monte Carlo simulations
about the most stable adsorption configuration of compounds on metal surface in presence
of a simulated corrosive solution. Together, theoretical approaches are of paramount
importance in studying the adsorption properties of compounds on the metal surface.
Thus, understanding their corrosion inhibition performance in a more accurate way.

Given the above-mentioned considerations, this paper aims to investigate the corrosion
inhibition behavior of three spiro junction heterocycles, namely 3,4-diphenyl-1,7-dioxa-2-
azaspiro[4.4]non-2-en-6-one (DDA), 3-phenyl-4-(p-tolyl)-1,7-dioxa-2azaspiro[4.4]non-2-en-
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6-one (PDA) and 4-(4-methoxyphenyl)-3-phenyl-1,7-dioxa-2-azaspiro[4.4]non-2-en-6-one
(MDA) on carbon steel in a 1.0 mol/L HCl solution. The experimental study was carried
out using electrochemical methods, such as potentiodynamic polarization curves (PPCs)
and electrochemical impedance spectroscopy (EIS). Theoretically, useful insights into the
reactivity and adsorption characteristics of investigated compounds were obtained from
quantum chemical calculations, Monte Carlo simulation, and Density Functional Based
Tight Binding. The analysis of the steel surface morphology was studied using scanning
electron microscope (SEM), coupled with EDX elemental analysis.

2. Materials and Methods
2.1. Materials, Inhibitors and Solutions

The compounds used in this study, namely DDA, PDA, and MDA, were synthesized in
our laboratory by condensation of phenylnitroloxide and α-benzylidenyl-γ-butyrolactone
by the microwave oven technique and their structures were characterized using 1H, 13C
NMR and IR spectroscopic analyses according to the procedure reported in our previous
work (Scheme 1 and Figure 1) [25]. After pre-trial tests, compounds were tested atconcen-
trations of 5 × 10−5, 10−4, 5 × 10−4 and 10−3 mol/L. The 1.0 mol/L HCl acid medium
was prepared from commercial HCl (37%). The working electrode was carbon steel, which
consists of %Carbon: 0.2; %Phosphorus: 0.005; %Sulfur: 0.05; %Nitrogen: 0.07; and the
rest is iron. The steel surface is rubbed before each experiment with different grades of
emery paper (400–2000) and washed with distilled water and acetone. All chemicals were
obtained from Sigma-Aldrich and used as received.
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DDA: RMN 1H (300 MHz, DMSO), δ (in ppm): 2.05 (m, 2H, 4CH2); 3.39 (s, H,4
′
CH);

4.31 (m, 2H, 5CH2); 7.30–7.66 (m, 10H, CHunsaturated). PDA:RMN 1H (300 MHz, DMSO),
δ (in ppm): 2.36 (s, 3H, CH3); 2.52 (s, H, 4′CH); 3.23 (m, 2H, 4CH2);4.42 (m, 2H, 5CH2);
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7.30–7.54 (m, 9H, CHunsaturated).MDA: RMN 1H (300 MHz, DMSO), δ (in ppm): 2.52 (s,
H, 4′CH); 3.19 (m, 2H, 4CH2); 3.31 (s, 3H, o-CH3); 4.41 (m, 2H, 5CH2); 7.03–7.60 (m, 9H,
CHunsaturated).

2.2. Electrochemical Measurements

PPCs and EIS measurements were performed using a 3-electrode cell connected
with a potentiostat. A working electrode (carbon steel) with an area of 1.0 cm2, a counter
electrode (platinum) and a reference electrode (Ag/AgCl) were used. The working electrode
was submerged in the 1.0 mol/L HCl solution for 1800 s to reach a steady state of open
circuit potential (Eocp) before each measurement. The electrochemical corrosion tests
were performed by a Biologic SP-150 potentiostat monitored by a computer. The PPCs
measurements were performed in the potential range of −1000 to 0 mV at a slow rate of
1 mV/s. However, impedance measurements (EIS) were performed in the frequency range
of 100 kHz to 10 mHz, with an amplitude of 10 mV.

The corrosion inhibition efficiency values were estimated from PPCs using corrosion
current density of inhibited, icorr and uninhibited, i

◦
corr HCl solution using the following

equation [26]:

ηPPC(%) =
i
◦
corr−icorr

i◦corr
×100 (1)

From EIS, the polarization resistance of blank, R
◦
p and inhibited HCl solutions, Rp are

used to calculate the corrosion inhibition efficiency as follows [27]:

ηEIS(%) =
Rp − R

◦
p

Rp
×100 (2)

2.3. Surface Analysis

The morphology and surface composition of carbon steel were studied using scanning
electron microscope (SEM) coupled with EDX elemental analysis. The analysis was per-
formed on the carbon steel plates after immersion in 1.0 mol/L HCl acid medium without
and with the optimum concentration of each inhibitor(10−3 mol/L) for 20 h immersion time.
The JSM-IT500HR electron microscope (SEM; JSM-IT500HR, Japan) with an acceleration
energy of 0.5 to 30 KV was used to analyze the surfaces.

2.4. Quantum Chemical Calculations

Gaussian 09 software was used to perform quantum chemistry calculations on neutral
molecules in the aqueous phase. Full geometry optimizations and total energy calculations
of tested compounds were carried out using the density functional theory (DFT), B3LYP
functional and 6-311++g(d,p) as basis set [28]. Computed quantum chemical parameters
include the energy of the highest occupied molecular orbital (EHOMO), the energy of the
lowest unoccupied molecular orbital (ELUMO), energy band gap (∆Eg), electronegativity (χ),
chemical potential (µ), the hardness (η), the overall softness (S), the global electrophilicity
index (ω), the electronic charge transfer fraction (∆N) and the associated energy change (∆E).
These quantum chemical reactivity indices are calculated via the following relationships as
previously reported in the literature [29]:

Energy gap : ∆Eg = ELUMO − EHOMO (3)

Electronegativity and chemical potential : χ = −µ = −ELUMO + EHOMO

2
(4)

Hardness : η =
ELUMO − EHOMO

2
(5)

Softness : S =
1
η

(6)
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Electrophilicity index : ω =
µ2

2η
(7)

Charge transfer fraction : ∆N =
χmetal − χmol

2(ηmetal + ηmol)
=

φ− χmol
2ηmol

(8)

Energy change : ∆E = − (χmetal − χmol)
2

4(ηmetal + ηmol)
=

(φ− χmol)
2

4ηmol
(9)

2.5. Monte CarloSimulation

The surface interactions between inhibitor molecules and the metal surface in THE
presence of 600 H2O molecules, 30 H3O+ and Cl−ions were studied using Monte Carlo
simulations as previously described by Znini et al. [27]. For the simulation, Materials studio
7.0 software’s adsorption locator module was employed. The Condensed-phase Optimized
Molecular Potentials for Atomistic Simulation Studies (COMPASS) force field was used to
simulate and optimize the inhibitor molecules. The optimized inhibitor molecules were
used as the adsorbate and made to interact with the surface atoms of the Fe (110) surface.

2.6. SCC-DFTB Simulation

SCC-DTB were carried out within the framework of spin polarized DFTB using the
DFTB+ code [30]. The exchange-correlation energy was described within the generalized
gradient approximation (GGA) parameterized by Perdew–Burke–Ernzerh (PBE) [31]. The
empirical dispersion correction was used to accurately describe the effect of van der Waals
(vdW) interactions [32]. The Slater–Koster trans3d DFTB parameters were used. SCC
formalism with 10−8 SCC tolerance, Broyden mixing scheme, and 0.01 smearing were used
to speed up the convergence. All convergence thresholds were default “Fine” quality values
in the DFTB+ module. Monkhorst–Pack Brillouin zone k-point grids of (8 × 8 × 8) and
(2 × 2 × 1) were used for the optimization calculation of the bulk lattice parameters and
adsorption models, respectively. The initial lattice parameter of iron was 2.862 Å while the
optimized one is 2.847 Å, confirming that selected methods and models were reasonable.

The surface Fe(110), which has been found to be the most stable iron plane [33], was
built by constructing a periodic multi-slab model with a (5 × 5) supercell and a vacuum
spacing of 20 Å along the z-direction to account for spurious interactions between slabs. The
molecules were placed on the top side of the slab in two initial adsorption configurations.
The two bottom-most atomic layers were fixed to bulk positions whereas all other degrees
of freedom were allowed to relax. A cubic box of 30 Å in size was created for SCC-DFTB
calculations of standalone molecules. The surface coverage(Θ) (in monolayer (ML) unit)
considered in the present work was 1/25 ML. The total energies of isolated molecules
(noted Emol), Fe(110) iron surface (noted Esurf), and molecule/Fe(110) adsorption systems
(noted Emol/surf) were used to determine the interaction energy as:

Einter = Emol/surf − (Emol + Esurf) (10)

3. Results and Discussion
3.1. OCP Measurements

Figure 2 shows the variation of EOCP as a function of time for carbon steel immersed
in 1.0 mol/L HCl acid solution with and without various concentrations of DDA, PDA
and MDA compounds. Results show that for all the three inhibitors, the EOCP potential
increases until it reaches a stable potential after 600 s of immersion, then remains stable.
Additionally, we infer from the potential curves that EOCP goes in the direction of positive
values when inhibitor concentration rises (from −0.474 V for the blank solution to −0.446,
−0.451 and −0.439 V for DDA, PDA and MDA inhibitors at 10−3 mol/L concentration,
respectively). The positive shift in the OCP suggests that inhibitor molecules have increased
the corrosion resistance of the carbon steel, reducing its tendency to corrode [34]. The curves
show some fluctuations with increasing the time of the experiment, which may indicate
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that inhibitor molecules have effectively adsorbed on the steel surface [35,36]. Previously
reported isoxazoline derivatives have showed the same behavior for carbon steel when
added to HCl solutions [37].
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3.2. Potentiodynamic Polarization Curves

The PPCs were used to understand the mechanism of metal dissolution and the effect
of inhibitor addition on the cathodic and anodic corrosion behavior. Figure 3 shows the
potentiodynamic polarization curves of carbon steel in 1.0 mol/L HCl medium without and
with different concentrations (5 × 10−5, 10−4, 5 × 10−4 and 10−3 mol/L) of the inhibitors at
298 K. Electrochemical corrosion variables such as corrosion current density (icorr), corrosion
potential (Ecorr), anodic (βa) and cathodic (βc) Tafel constants, surface coverage (θ) and
corrosion inhibition efficiency (ηPPC(%)) were calculated and listed in Table 1.

Lubricants 2023, 11, x FOR PEER REVIEW 6 of 25 
 

 

퐸 = 퐸 / − (퐸 +  퐸 ) (10)

3. Results and Discussion 
3.1. OCP Measurements 

Figure 2 shows the variation of EOCP as a function of time for carbon steel immersed 
in 1.0 mol/L HCl acid solution with and without various concentrations of DDA, PDA and 
MDA compounds. Results show that for all the three inhibitors, the EOCP potential in-
creases until it reaches a stable potential after 600 s of immersion, then remains stable. 
Additionally, we infer from the potential curves that EOCP goes in the direction of positive 
values when inhibitor concentration rises (from −0.474 V for the blank solution to −0.446, 
−0.451 and −0.439 V for DDA, PDA and MDA inhibitors at 10−3 mol/L concentration, re-
spectively). The positive shift in the OCP suggests that inhibitor molecules have increased 
the corrosion resistance of the carbon steel, reducing its tendency to corrode [34]. The 
curves show some fluctuations with increasing the time of the experiment, which may 
indicate that inhibitor molecules have effectively adsorbed on the steel surface [35,36]. 
Previously reported isoxazoline derivatives have showed the same behavior for carbon 
steel when added to HCl solutions [37]. 

 
Figure 2. OCP–time curves for carbon steel in 1.0 mol/L HCl with and without various concentra-
tions of DDA (a), PDA (b) and MDA (c). 

3.2. Potentiodynamic Polarization Curves 
The PPCs were used to understand the mechanism of metal dissolution and the effect 

of inhibitor addition on the cathodic and anodic corrosion behavior. Figure 3 shows the 
potentiodynamic polarization curves of carbon steel in 1.0 mol/L HCl medium without 
and with different concentrations (5 × 10−5, 10−4, 5 × 10−4 and 10−3 mol/L) of the inhibitors at 
298 K. Electrochemical corrosion variables such as corrosion current density (icorr), corro-
sion potential (Ecorr), anodic (βa) and cathodic (βc) Tafel constants, surface coverage (θ) and 
corrosion inhibition efficiency (ƞ푃푃퐶(%)) were calculated and listed in Table 1. 

 

Figure 3. Polarization curves of carbon steel in 1.0 mol/L HCl with and without various concentra-
tions of DDA (a), PDA (b) and MDA (c) at 298 K.

From PPCs, we note that the increase in the concentration of inhibitors induces a
decrease in cathodic and anodic current density. The decrease in the value of corrosion
current density (icorr) reaches lower values at concentrations of 10−3 mol/L. For cathodic
reactions, the addition of the compounds decreases the cathodic branches without changes
in the curve’s shapes indicating no modification of the cathodic reaction mechanism. At the
anodic side, it can be noticed that the anodic current densities decrease with the addition of
inhibitors’ concentration until the potential reaches around −0.350 V. From this potential,
anodic current density values start increasing until reaching values higher than blank
sample at very positive potentials. This shift in anodic curves around −0.35 V potential
is well-known behavior of organic corrosion inhibitors and is interpreted to be directly
associated with desorption of organic molecules at high positive potentials. This potential
is known as “desorption potential” where the significant dissolution of the steel leads to
the desorption of adsorbed inhibitor molecules, thus exposing the steel surface to acidic
solution [38].This further indicates that investigated compounds act by adsorption on the
steel surface forming a protective layer that protects it against corrosion.
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Table 1. Electrochemical parameters of carbon steel in 1.0 mol/L of HCl without and with various
concentrations of DDA, PDA and MDA at 298 K.

Inhibitors C
(mol/L)

Ecorr
(mV vs. Ag/AgCl)

icorr
(mA/cm2)

βc
(mV/dec)

βa
(mV/dec) θ ηPPC(%)

Blank 1.0 −443.37 351.38 130.9 108.6 - -

DDA

5 × 10−5 −437.40 158.02 111.8 96.8 0.55 55.03
10−4 −454.29 114.23 90.4 156 0.67 67.49

5 × 10−4 −456.52 90.23 101.7 165.8 0.74 74.32
10−3 −472.92 83.43 146.1 170.2 0.76 76.26

PDA

5 × 10−5 −460.90 143.55 86.9 104.2 0.59 59.15
10−4 −454.91 102.15 106.9 187.8 0.71 70.93

5 × 10−4 −467.29 87.59 119.5 184.5 0.75 75.07
10−3 −472.95 69.2 124.6 157.5 0.80 80.31

MDA

5 × 10−5 −448.21 103.8 122.8 197.5 0.70 70.46
10−4 −459.26 98.35 108.9 173.6 0.72 72.01

5 × 10−4 −462.92 86.93 108 185.4 0.75 75.26
10−3 −468.03 60.02 124.4 161.6 0.83 82.91

On the other hand, it can be noticed from results in Table 1 that the inhibition efficiency
is concentration-dependent, reaching maximum values of 76.26, 80.31 and 82.91% at a
concentration of 10−3 mol/L of DDA, PDA and MDA, respectively. Previously, Elqars et al.
have prepared an isooxazoline derivative, namely 3-phenyl-isoxoline-carvone (PIC), and
tested it for carbon steel in 1.0 mol/L HCl [39]. Authors found an inhibition efficiency of
95% at 1.49 mmol/L, which is significantly higher than compound under study. However,
the isoxazoline derivatives studied by Nalini et al. for corrosion mitigation of mild steel
in 1.0 mol/L solution showed a relatively lower inhibition efficiency [37]. Authors have
reported inhibition efficiencies between 61% and 88% at 20 mg/L of tested isoxazolines.
Results also show that the corrosion potential (Ecorr) shifts slightly towards the cathodic
direction in the presence of the inhibitors compared to the blank sample. However, this
shift is not significant to the extent that compounds are classified cathodic inhibitors [40].
The corrosion potential values of all concentrations are around the blank sample potential
with only slight negative shift and with remarkable effect on the anodic corrosion branches,
suggesting that tested inhibitors can be classified as mixed type corrosion inhibitors [41].
By comparison with Nalini et al.’s work, it can be stated that isoxazolines showed the same
corrosion potential behavior. While the corrosion potential of blank was reported to be
−474 mV/SCE, the addition of inhibitors has also caused a potential shift towards the
positive values [37].

3.3. Electrochemical Impedance Spectroscopy

EIS is an electrochemical technique widely used to determine the effectiveness and
mechanism of action of corrosion inhibitors on metal surfaces. The Nyquist and Bode
diagrams of carbon steel in inhibited and uninhibited HCl solutions are represented in
Figure 4. The results show that the Nyquist diagrams for the three inhibitors are in the shape
of a semicircle; their diameters increase with increasing concentrations of the inhibitors,
with a similarity between the shapes of the curves at all concentrations. This behavior
can be explained by the ability of the molecules of DDA, PDA and MDA to protect the
surface of the steel in the acid medium without modifying the corrosion mechanism [42]. In
addition, it can be noticed that only a single semicircle is observed at high frequency of at
all concentrations, suggesting a one-time constant characteristic of a charge transfer process.
This behavior is well-observed from Bode-phase plots showing only one maximum phase
corresponding to one time constant, confirming the one-step mechanism [43].
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The constant phase element is used instead of the ideal capacitor to describe the real
iron/acid interface; its impedance function can be represented by the following equa-
tion [38]:

ZCPE = Q−1(jω)−n (11)

where Q is the CPE’s magnitude, ω and n denote the angular frequency and inhomogeneity
parameter, respectively. Under perfect theoretical conditions, n = 1, representing an ideal
capacitor, however, iron/acid interface systems are not ideal because of system’s hetero-
geneity [44,45]. The double layer capacitance values Cdl are calculated using the following
equation:

Cdl =
(

Q× R1−n
p

) 1
n (12)

Table 2 lists the inhibition efficiency ηEIS(%) and other EIS parameters obtained by
fitting impedance curves.

Table 2. EIS parameters for the corrosion of carbon steel in 1.0 mol/L HCl solution in the absence
and presence of DDA, PDA and MDA at 298 K.

Inhibitor C
(M)

Rs
(Ω cm2)

Rp
(Ω cm2)

n Cdl
(µF cm−2) ηEIS (%)

Blank 0 1.8 34.59 0.867 200 -

DDA

5 × 10−5 1.71 79.81 0.848 111.3 56.66
10−4 1.41 111.2 0.846 82.63 68.89

5 × 10−4 2.15 132.5 0.851 50.09 73.89
10−3 1.08 145.1 0.838 16.15 76.16

PDA

5 × 10−5 2.4 83.12 0.844 148 58.38
10−4 2.14 118.2 0.819 81.2 70.74

5 × 10−4 1.61 136.6 0.837 51.03 74.68
10−3 1.22 172.7 0.823 11.32 79.97

MDA

5 × 10−5 2.72 111.9 0.859 70.23 69.09
10−4 0.22 124.9 0.839 71.64 72.30

5 × 10−4 2.65 141.4 0.828 13.55 75.54
10−3 1.87 187.5 0.832 10.43 81.55

The value of Rp increases with increasing concentration for all three inhibitors, and
vice versa for the value of Cdl. The variation of these values can be attributed to the in-
hibitor molecules’ adsorption on the metal surface, creating a barrier between the corrosive
medium and the metal [46]. The higher the thickness of the protective layer the lower is
the double layer capacitance [47]. This signifies that the addition of compounds to the HCl
solution has a considerable effect on the surface state of the carbon steel given the fact that
at higher inhibitor concentrations, the double layer capacitance values decrease to very
low values. For instance, at 10−3 mol/L of MDA, the double layer capacitance reaches
10.43 µF cm−2 compared to 200 µF cm−2 of blank sample. A further inspection of results
indicates that n values do not show a significant variation after the addition of inhibitors,
indicating no remarkable changes in the surface heterogeneity of the carbon steel. The
reported inhibition efficiency ηEIS(%) from the impedance measurements reveals that MDA
has the best corrosion inhibition performance of 81.55%, followed by PDA at 79.97% and
DDA in the third position at 76.16%. These results match those obtained from the PPCs.
The MDA compound differs from the DDA only by the additional methoxy group attached
to the phenyl ring while the PDA compound has a methyl group instead of methoxy group.
These structural changes seem too simple considering the molecular structure, however,
they have significant effect on the electron density distribution, and thus the adsorption
characteristics of each compound. These effects are well-explained at molecular level in
theoretical sections.
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3.4. Adsorption Isotherm

The protection of steel against corrosion by organic inhibitors has been explained by
the adsorption of their molecules on the metal surface [48]. Information on the adsorption
mechanism of DDA, PDA and MDA inhibitors on the steel surface can be evaluated
via adsorption isotherm models. The values of the surface coverages (θ = η(%)/100)
for different inhibitor concentrations are deduced from the data of the potentiodynamic
polarization technique (Table 1). These values were used to test different types of isotherms
(Langmuir, Frumkin, Temkin and Freundlich) [49]. Among these adsorption isotherms, the
Langmuir isotherm is found the best with a linear regression coefficient (R2) equal to 0.999,
0.999 and 0.997 for DDA, PDA and MDA, respectively (Figure 6). The Langmuir isotherm
is defined by the following equation [50]:

C
θ
=

1
Kads

+ C (13)

where C denotes the concentration of the inhibitor, θ is the surface coverage and Kads is the
equilibrium constant obtained from the Langmuir plot [30].
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The free energy of adsorption values ∆G
◦
ads were calculated by the following relation-

ship [51]:
∆G

◦
ads = −RT ln(55.5× Kads) (14)

With R is the constant of perfect gases and T is the absolute temperature.
The thermodynamic adsorption parameters (Kads and ∆G

◦
ads) are shown in Table 3, from

which it can be noticed that the three inhibitors exhibit high equilibrium constant values
attributed to their strong adsorption capacity on the steel surface [52]. According to the
reported free energy of adsorption values, the adsorption of inhibitor molecules can be
classified as physicochemical process [53]. Moreover, the negative values of ∆G

◦
ads confirm

the spontaneous adsorption process of the inhibitors on the steel surface [46]. However, it
must be noted that the simple correlation and fitting of experimental data to adsorption
isotherms is not a trustworthy way to judge whether an adsorption isotherm is suitable
for describing the actual adsorption process or not because of the challenge in meeting all
adsorption models criteria and the fact that correlation does not imply causation [54,55].
With this in mind, it is well-documented that organic compounds, when used in iron/acid
interface, act on the iron surface, first by physical interactions between protonated inhibitor
molecules and pre-adsorbed chloride ions before chemically interacting with vacant d-orbitals
of iron by charge transfer [56,57].
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Table 3. Thermodynamics parameters adsorption of inhibitors DDA, PDA and MDA on carbon steel
in 1 M HCl.

Inhibitors R2 Kads
(L/mol)

∆G◦ads
(KJ/mol)

DDA 0.999 41,557.0599 −36.28
PDA 0.999 36,745.7926 −35.98
MDA 0.997 35,402.6163 −35.88

3.5. Surface Characterization

To get more insight into the protection of the steel surface by DDA, PDA and MDA
inhibitors, surface morphological analysis was performed for carbon steel after immersion
in HCl without and with the 10−3 mol/L of inhibitors for 20 h. The results show that in
the case of immersion in 1.0 mol/L HCl solution without inhibitors (Figure 7a), the SEM
image shows that the surface of the steel is strongly damaged by the aggressive attack of
the acidic solution. On the contrary, in the presence of inhibitors DDA, PDA and MDA
(Figure 7b–d), the steel surface is smoother with several clean areas. This improvement
in surface morphology is attributed to the adsorption of inhibitor molecules on the steel
surface, increasing its corrosion resistance.
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Figure 7. SEM images and EDX data for steel surfaces: (a,e) after immersion in 1.0 mol/L HCl, (b,f) after
immersion in 1.0 mol/L HCl + 10−3 mol/L DDA, (c,g) after immersion in 1.0 mol/L HCl + 10−3 mol/L
PDA, (d,h) after immersion in 1.0 mol/L HCl + 10−3 mol/L MDA at 298 K.

The EDX analysis of blank (Figure 7e) and inhibited solutions (Figure 7f–h) shows
high percentages for Cl, O and C elements for the steel exposed to the acid solution without
inhibitor, which is in agreement with the literature [42] while the opposite is observed in
the presence of the inhibitors. In addition, the spectra indicate the presence of characteristic
peaks of nitrogen, as a constituent of the inhibitors on the surface of the steel with no
significant decrease in O percentages. This can be a result of the inhibitor molecules
adsorbed on the metal surface [58]. The element mapping analysis (Figure 8) also confirms
the increase in the percentage of iron and nitrogen in the presence of inhibitors.
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3.6. Global Reactivity Descriptors

To explain the experimental results and determine the potential active sites of the
inhibitors, theoretical studies were performed by DFT for the three inhibitors DDA, PDA,
and MDA. In this context, several quantum chemical parameters have been calculated.
Optimized structures, Mulliken atomic charges, the electrostatic potential map (ESP) and
the HOMO and LUMO localization of inhibitors are shown in Figure 9, and the values of
molecular and electronic parameters are listed in Tables 4 and 5.

Figure 9 shows that the HOMO electron densities of the inhibitors DDA and PDA
are distributed on the carbon-carbon double bonds of phenyl and on isoxazoline, on the
other hand, for the inhibitor MDA the HOMO densities are distributed on the phenyl
double bonds and the methoxy group, while the LUMO of these inhibitors is located on
the carbon atoms of isoxazoline and on the phenyl. Overall, it can be observed that all
compounds exhibit a wide distribution of both HOMO and LUMO iso-densities, suggesting
their potential ability to act as electron-donating and electron-accepting when interacting
with the carbon steel surface.

The ESP presents the charge distribution on DDA, PDA, and MDA molecules, where
the nucleophilic center (negative region) in red colors is located on the Nitrogen and Oxygen
atoms, while the electrophilic center in blue colors represents the most positive regions [59].
From these results, it can be concluded that O and N atoms and carbon–carbon double
bonds can positively favor the adsorption of inhibitors on the surface of carbon steel [60].

Mulliken charges in Table 4 show that the oxygen (red), nitrogen (blue) and some
carbon atoms of the inhibitors DDA, PDA and MDA have negative values, which suggests
that they can actively participate in donor–acceptor interactions with carbon steel surface.
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Figure 9. Optimized structures, HOMO and LUMO iso-densities and ESP of inhibitors DDA, PDA
and MDA obtained by DFT/B3LYB.

Table 4. Mulliken atomic charges of inhibitors DDA, PDA and MDA.

Atoms DDA PDA MDA

1 C −0.555680 −0.622185 −0.458684
2 C 0.337767 0.443252 0.397635
3 C 0.214206 0.343435 0.294192
4 N −0.565198 −0.593659 −0.544043
5 O 0.285610 0.310972 0.282805
6 C 0.898736 1.093186 0.838113
7 C 0.260993 0.347017 0.277495
8 C −0.455695 −0.445829 −0.417968
9 C −0.126592 −0.148791 −0.115754

10 C −0.181017 −0.198834 −0.136307
11 C −0.264764 −0.492874 −0.282585
12 C 1.140272 0.995259 0.686477
13 C 0.061893 −0.117591 −0.175991
14 C −0.226879 −0.389585 0.147142
15 C −0.168224 0.307614 −0.617954
16 C −0.241291 −0.321524 −0.163799
17 C −0.471165 −0.444933 −0.046391
18 C 0.168083 0.193856 0.151601
19 O −0.054074 −0.058607 −0.051422
20 C −0.060601 −0.057089 −0.045683
21 C 0.329729 0.316278 0.312156
22 O −0.326108 −0.322670 −0.328247
37 C - −0.136699 -
37 O - - −0.192714
38 C - - 0.189926
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Table 5. Molecular and electronic parameters of inhibitors DDA, PDA and MDA.

Quantum Parameters DDA PDA MDA

EHOMO (eV) −6.69 −6.66 −6.45
ELUMO (eV) −1.89 −1.89 −1.86

Dipolar moment µ (debye) 8.85 9.55 10.32
σ (mollesse) 0.42 0.42 0.44

I (eV) 6.69 6,66 6.45
X (electronegativity) 4.29 4.28 4.15

A (eV) 1.89 1.89 1.86
η (hardness) 2.40 2.38 2.29

ω (electrophilicity index) 3.84 3.83 3.76
∆E (gap) (eV) 4.80 4.77 4.59

Table 5 represents the values obtained for the different molecular and electronic
parameters. The reactivity of the molecules is a crucial factor for their corrosion inhibition
performance, and some initial insights can be obtained from quantum chemical parameters.
The literature shows that high values of EHOMO, dipole moment, polarizability, overall
softness (S) and ∆N, signify a strong tendency to electron surrender by the molecules of
inhibitors, and the ability of the inhibitor molecules to replace the water molecules and
to be adsorbed on the surface of the carbon steel [61]. On the other hand, the low values
of ELUMO indicates that the compounds tend to accept electrons [62] while a low energy
band gap (∆Eg) means low stability and thus stronger ability to interact with carbon steel
surface [63]. In addition, the low values of electronegativity (χ) and global electrophilicity
index (ω), indicate that the electron donating tendency of the inhibitor is high, and these
values refer to a good nucleophilicity of the molecules, consequently, good adsorption
tendency [64]. The values of these parameters in Table 5 can be compared for the three
inhibitors, which shows that the compound MDA has a high reactivity, followed by PDA
and DDA. These results are interesting; however, the interacting metal should be considered
to get more accurate information about molecules’ reactivity and adsorption sites, which
will be considered in the following sections.

3.7. Monte Carlo Simulations

Monte Carlo simulation is a very important theoretical tool to investigate the ad-
sorption configurations of inhibitor molecules in the presence of a simulated solution.
Interestingly, adsorbed inhibitor molecules can be adsorbed on metal surfaces through
different modes, such as in parallel, perpendicular and tilted orientations [65]. As shown in
Figure 10, DDA is adsorbed perpendicular to the Fe (110) surface, however, PDA and MDA
are very similarly adsorbed with nearly parallel orientation increasing thus the contact
and surface coverage. In these adsorption geometries, molecules adsorbed on the iron
surface through the spiro-isoxazoline lactone and the methoxy group. All molecules tend
to interact through their heteroatoms; however, no bond formation is observed, which is
one of the limitations of this simulation. Another limitation of this method is the overesti-
mation of the interaction energy values. For instance, the interaction energies of the three
molecules are estimated to be thousands of kcal/mol, which is not possible. The simulation
results are useful to investigate the adsorption configuration of molecules in the presence of
solvent particles, which makes the adsorption more competitive than vacuum state. A close
inspection of the three adsorption configurations reveals that inhibitor molecules cannot
exhibit a clear parallel adsorption through their aromatic rings because of the geometry of
the molecular structures. This can act positively by physically hindering the diffusion of
corrosive particles from reaching the metal surface and at the same time bonding to metal
surface through heteroatoms.
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3.8. DFTB Simulations
3.8.1. Adsorption Geometries

The adsorption is the main mechanism responsible for the effectiveness of organic cor-
rosion inhibitors. To form a protective film on the metal surface, inhibitor molecules interact
with metal’s atoms through their active sites. Density functional-based simulations of these
interactions can reveal useful insights into the adsorption mechanism and therefore corro-
sion inhibition performance. To this end, in this section, DFTB simulations were carried
out to simulate inhibitor-Fe(110) interactions. In the present work, two initial adsorption
orientations were considered for DFTB simulations. Figures 11 and 12 represent the DFTB
optimized adsorption geometries of the first and second adsorption configurations of the
three compounds on Fe(110) surface. Inspecting results of the optimized adsorption ge-
ometries, one can notice that, in the first configuration, the isoxazoline undergoes N–O
ring-opening that leads to the formation of bonds between O and N atoms of compounds
and Fe atoms. In addition, the non-substituted phenyl bonds with the iron atoms through
its carbon atoms. However, no bond-breaking is observed in the second orientation, and
molecules tend to bond with the metal atoms with their oxygen and carbon atoms. Looking
at bond distances of the first adsorption configuration (Figure 11), it can be observed that
the three molecules have nearly the same bond lengths. While the Fe-N and Fe-C bonds
have, respectively, lengths of 2.261–1.262 and 1.717–1.718 Å, the Fe-O bond shows a small
decrease going from DDA molecule (2 Å) to PDA (1.998 Å) and MDA (1.997 Å). In the
second adsorption configuration (Figure 12), it can be noticed that MDA molecule forms
several bonds with iron atoms through its carbon and oxygen atoms. The same can be said
for the PDA and DDA molecules, which also show high affinity to bind with iron atoms. In
the three optimized geometries of the second adsorption configuration, the bond distance
for Fe-O is between 2.05 and 1.88 Å while that of Fe-C is ranging from 2.09 and 2.29 Å. The
nature of these formed bonds can be discussed in terms of the sum of covalent radii of the
interacting atoms. The sum of the covalent radii value for Fe-C (rC + rFe), Fe-N (rN + rFe)
and Fe-O (rO + rFe) are reported to be 2.08, 2.03 and 1.98 Å, respectively [66]. By comparison
with bond distances, it can be concluded that all bond distances are within the sum of
covalent radii of interacting atoms. It highlights that formed bonds are mostly covalent in
nature. The 2-isoxazoline ring system is known for the low thermochemical stability of its
N-O bond, which makes it very reactive especially when interacting with reactive chemical
species [67]. This can be very beneficial when interacting with iron atoms, favoring the
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formation of strong covalent bonds and therefore strengthening the molecule’s adsorption.
It should also be noted that inhibitor molecules demonstrated high coordination ability
with iron atoms in different orientations.
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The strength of molecules’ adsorption can also be evaluated energetically by calculat-
ing the adsorption energy for each inhibitor-Fe(110) systems. The energetical analysis of op-
timized adsorption systems for the first adsorption configuration reveals that MDA-Fe(110),
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PDA-Fe(110), and DDA-Fe(110) adsorption systems have adsorption energies of −2.124,
−2.074, and −1.984 eV, respectively. For the first adsorption configuration, MDA-Fe(110),
PDA-Fe(110), and DDA-Fe(110) adsorption systems have adsorption energies of −2.897,
−1.945, and −2.321 eV, respectively. In both adsorption configurations, the three molecules
exhibit a higher negative adsorption energies, indicating their stable and strong adsorp-
tion abilities over Fe(110) surface [68–70]. Furthermore, the structural difference between
investigated molecules seems to influence their interactive force with iron atoms as ob-
served from experimental results. The molecule with methoxy group exhibits the highest
magnitude of adsorption energy, followed by methyl-substituted molecule, and parent
molecule having the low adsorption energy magnitude. However, this adsorption strength
trend seems to be different in the second adsorption configuration. Compounds with
electron-donating functional groups such as methoxy are known for their outstanding
adsorption and inhibitive properties, which is not surprising in the present study. The
unique feature from these simulations is the bond-breaking characteristics of interacting
molecules with iron atoms, which could be an additional useful property that increases the
corrosion inhibition performance of these compounds.

3.8.2. Projected Density of States

The geometrical analysis of the optimized adsorption geometries revealed that investi-
gated compounds can form covalent bonds with iron atoms. However, more assessment is
needed to clarify the characteristics of the formed bonds and nature of charge distribution
between molecules and Fe atoms. For this purpose, the projected density-of-states plots
were extracted from optimized isolated molecules, adsorbed far from the iron surface, and
from the optimized adsorption systems of both configurations, to compare the changes
in the chemical states before and after the adsorption of molecules. Figure 13 represents
the PDOSs of isolated molecules while Figure 14 represent the PDOS of molecules after
the adsorption on the iron surface. From Figure 13a–c, one can notice that PDOSs show
well-defined chemical states with intense peaks within the energy range of iron 3d orbital
electronic states. By inspecting the PDOSs plots for the adsorbed systems in Figure 14, it
can be observed that the intensity of peaks decreases, and they exhibit broadening induced
by interactions between molecules’ atoms and iron atoms. These remarks indicate that
inhibitor molecules participate in strong interactions with iron atoms through charge trans-
fer that is validated by the strong hybridization of p-states of the inhibitor molecules as
evident in the PDOS plots [23,24]. This strengthens and confirms the conclusions made
from the adsorption geometry systems of adsorbed molecules.
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3.9. Mechanism of Adsorption and Inhibition

The theoretical and experimental studies presented in this work show the effect of
the molecular structure of the various components present in solution on the nature of the
interactions between the inhibiting molecules and the metallic surface and consequently
on the adsorption mechanism. Indeed, the adsorption of the inhibitor on the metal sur-
face could take place physically or chemically or as a combination of both. In an acid
medium (1.0 mol/L HCl), the surface of the steel becomes positively charged after having
lost the electrons following rapid oxidation, which favors the fixation of the negatively
charged counter-chloride ions (Cl−) thus carrying an excess of negative charge on the metal
surface [29,71]. At the same time and with the presence of heteroatoms and functional



Lubricants 2023, 11, 141 20 of 24

groups, inhibitors can also exist in protonated and neutral forms. Figure 11 illustrates the
mechanism of adsorption of organic corrosion inhibitors on the steel surface in a 1.0 mol/L
HCl medium.

Figure 15 shows that the proposed inhibition mechanism of different inhibitory
molecules on the steel surface in acid medium occurs through three types of phenom-
ena: chemisorption, physisorption and retro-donation. Indeed, physisorption can be
explained on the basis of electrostatic interactions between the negatively charged metallic
surface and the protonated inhibitory molecules. However, chemisorption occurs through
donor-acceptor interactions between electrons from lone pairs of heteroatoms, i.e., certain
number (n) of electrons associated with heteroatom’s non-bonding electrons or lone pairs,
π electrons from double bonds as well as phenyl groups with vacant d-orbitals from Fe
atoms. Parallel to this, a process known as “back-donation” occurs in which electrons
are transferred back from the metal surface to the open molecular orbitals of the inhibitor
molecules, improving the adsorption of the inhibitor molecules on the metal surface [18].
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On the other hand, it is found that the substitution of the phenyl ring has consider-
ably improved the corrosion inhibition performance of the studied compounds, which is
reflected in the increase in the inhibition efficiency from 76% (DDA) to 80% (PDA) and 82%
(MDA). However, it can be noticed that methyl and methoxy functional groups lead to a
relatively similar inhibition efficiency. This behavior can be explained by the Hammett
sigma constants, which are an approximate measure of the ability of a substituent to donate
electron density to the parent molecule [72–74]. The Hammett sigma constants of methyl
and methoxy are σ =−0.17 and σ =−0.22, respectively [75]. Electron-donating substituents
have a positive effect on the electron density over the active sites responsible for interactions
with metal surface, and therefore increases the inhibition efficiency [56]. However, methyl
and methoxy groups have similar Hammett constants, and then exhibit similar corrosion
inhibition properties.

4. Conclusions

In the present work, three 2-isoxazoline-γ-Lactone derivatives, DDA, PDA and MDA,
were evaluated as corrosion inhibitors for carbon steel in 1.0 mol/L HCl acid solution by
electrochemical and computational methods. The PPCs results showed that the inhibitory
efficiency increased as a function of concentration to reach a maximum of 76.26, 80.31 and
82.91%, for DDA, PDA and MDA, respectively, at a concentration of 10−3 mol/L and that
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these inhibitors were of mixed type (with a slight cathodic predominance). Electrochemical
impedance spectroscopy results showed that the investigated molecules adsorbed effec-
tively on the metal surface increasing the polarization resistance of the carbon steel and
simultaneously leading to a considerable decrease in the electrical double layer capacitance.
The study of surface morphology also confirmed the effective protection of the steel by
tested inhibitors as evidenced by the smoother surface morphology of samples immersed
in inhibited solutions. Quantum chemical calculations were used to evaluate the reactivity
of individual molecules and their electronic parameters, which have predicted a reactivity
trend similar to the experimental results. The MDA compound showed outstanding theo-
retical and experimental results thanks to its additional methoxy group compared to PDA
(with methyl group) and the parent DDA compound. Inhibitor-iron simulations through
DFTB method revealed the formation of covalent bonds between oxygen and nitrogen of
inhibitors with iron atoms with bond-breaking of the N-O bond of the 2-isoxazolinemoiety
of the three compounds. This contribution is expected to shed more lights on the applica-
tion of 2-isoxazoline derivatives for the corrosion protection of metals in acidic mediums.
The interesting theoretical results from DFTB simulation can open new opportunities for
the development of more effective derivatives from this organic class of compounds.
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