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Abstract: The development results of a single-point contact system set up as a pendulum to study
the laws of rolling resistance to contacting bodies at a distance significantly reduced compared to
the elastic contact spot size. The designed device uses a physical pendulum sustained by only one
ball on a flat polished surface. The problem of stability of the pendulum swing plane is solved.
A phenomenological theory of rolling resistance is described. The surface tension of solids on the
contact zone, parameters of the frequency-independent internal friction and the pressure of the
adhesion forces are found.
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1. Introduction

Rolling friction models have attracted the attention of engineers and researchers
since the wheel invention. As a common rule, rolling friction is mostly studied under the
condition of constant rolling speed. Many publications have emerged in this area allowing
basic laws derived to describe the reliance between the rolling resistance moment and
the magnitude of the load, the driving conditions and various other influencing factors.
Interest of this topic is confirmed by an almost unlimited number of publications that is
still growing, just to cite the recently appeared ones [1–4].

These fundamental problems are solved for the sake of understanding and imme-
diately for specific advanced applications revolving around pre-rolling and rolling. In
achieving high accuracy of rolling motion control and ultra-precision positioning through
rolling systems, knowledge of the laws of rolling resistance at the pre-rolling in forward
motion and when reversing the motion is required. This also led to the need to study the
laws of rolling friction at low loads, low speeds, and small displacements of the rolling
body. It was found that under these conditions, the main mechanisms of rolling friction are
associated with the elasticity of the contacting bodies, relative slip and internal hysteretic
friction, as well as adhesion [5,6]. “Pre-rolling” is a special name given to displacements
in a friction pair, in which rolling friction has a nonstationary character. Here, the depen-
dence laws of the rolling resistance moments on displacements are of a specific nonlinear
character, which is still unknown [3,7–10].

The development of micro- and nanotechnology has led to the need to study the
adhesion forces, as the reason for the reciprocal sticking of individual MEMS elements
that disturb their work [11]. The sticking factor due to adhesion forces should also be
considered when using micro- and nano-manipulators in the technique [12,13].

Despite the practical importance of the above problems, “empirical procedures for
measuring and representing the laws of friction” [4] with high sensitivity and accuracy in
the nano- and micro range of values have not yet been developed.
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This paper presents the development results of the empirical procedure for measuring
and representing the rolling friction law, in a particular case when the displacement of
the rolling body is significantly less than the radius of the contact spot. We will call this
rolling region of deep pre-rolling (DPR). This works aims to describe the design of the
single-contact ball pendulum device developed and experienced by the authors. In this
device, the physical pendulum with one ball rests on the flat surface of the test specimen
allowing free swings with a stable swing plane. In addition, the description of a special
technique for measuring rolling resistance forces with high sensitivity and accuracy in DPR
mode is given.

2. Review of Pendulum Devices for Studying the Surface of Solids
2.1. Pendulum Devices with One Supporting Ball

The devices that use the free swing method of a physical pendulum rest upon a flat
surface through a rolling body (balls, rollers, edge of a prism (or knife)) have long been
used to measure the hardness and strength of materials and products [14–25]. The hardness
and strength of the sample pads in these devices is being associated with a decrease in the
pendulum swing amplitude as a function of time.

Mendeleev D.I., apparently, was the first who conducted a thorough study (1895–1898)
of the influence on the error of weighing the nature of the damping of the swing of the
pendulum, which rested on the platform with a prism edge. He made, in particular,
the following conclusion; the time of an individual oscillation decreases with decreasing
amplitude of the oscillation itself much faster than, according to well-known formulas, the
dependence of the oscillations period of a mathematical pendulum on amplitude [14].

From the point of view of the possibility of calculating the bodies’ deformations during
their elastic contact, the contact of the ball and the flat surface is the simplest. This part of
the elasticity theory is the most developed [6]. Several researchers have made attempts to
build a pendulum device on one ball. However, when working with such a (single-contact)
pendulum, the researchers faced the problem of instability of its swing plane, since the
pendulum on one ball has three rotational degrees of freedom, which leads to instability of
the swing plane and significantly complicates the research.

In 1923, Herbert, E developed a pendulum device to measure the hardness of metals
(Figure 1) [15,21]. In this device, the pendulum rested on the test sample with a single steel
or ruby ball of 1 mm in diameter inserted into the tip. The total weight of the pendulum
was 4 kg, its center of gravity should have been located above the fulcrum, but below the
center of the ball by 0.1 mm [17]. After installing the pendulum on the test sample surface,
the pendulum was deflected to an initial position of several degrees, and the time of the
first swing was measured, which was multiplied by 10, and this parameter was used as an
estimate of the test material hardness [18].
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There is a problem with the stability of the swing plane in Herbert’s pendulum.
Therefore, in the instructions for the use of Herbert’s pendulum, it was recommended to
deflect the pendulum from the equilibrium position “using a feather” [16]. Subsequently,
this device was modified by other researchers so that the pendulum had less weight and
rested not on one ball, but on one roller (Figure 2). The roller had a diameter of 2 mm
and a length of 12 mm as stated in [19]. This solved the problem of stability of the swing
plane and allowed the use of the device to assess the hardness of brittle, viscoelastic, and
biological materials [19–21]. In [22], hardness measurements of Herbert pendulums using
various weights are described.
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Figure 2. The Herbert pendulum device with one roller support [19].

Kuznetsov V.D. (1929) developed a pendulum device in which the pendulum was
supported by one or two sharpened needles, or, two balls with a diameter of 0.5 mm
(Figure 3), and the pendulums themselves had different shapes and weights. Sharp needles
were used to study the strength of crystals whose surface has been damaged by these
needles during the swing of the pendulum, but the balls were used to measure the hardness
of materials [23].
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Due to the instability of the swing plane of the pendulum in this device (Figure 3), the
amplitude of the pendulum deviation was measured here using a system of dials. The use
of two pendulum support points in the Kuznetsov device made it possible to stabilize the
swing plane of the pendulum [24].

Kuznetsov’s two-contact pendulum [25] is widely used in modern commercially
produced pendulum devices by Koenig and Persos (Figures 4 and 5), which formed the
basis of standards measuring for the plastics and coatings hardness [26]. The surface
hardness here is estimated as the ratio of the pendulum swings number on the test surface
and on a calibrated glass plate.
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Figure 5. Persosa pendulum [25].

The problem with these previous one ball system is that they are too heavy with balanc-
ing issues, furthermore, no theory has been published publicly to describe the phenomena.

2.2. Pendulum Devices with Two Supporting Balls

G.A. Tomlinson was apparently, the first to use a physical pendulum with two sup-
porting balls for systematic studies of the molecular nature of rolling friction at low swing
amplitudes. In his experiments carried out in 1929, a pendulum in the form of a disk was
mounted on a cylindrical axis and rested on two rolling bodies (two cylinders, or two
half-cylinders, or two balls). One version of the experiment to measure the rolling friction
of a cylinder along a plane is shown in Figure 6. The amplitude of the disk oscillation was
approximately in the range of 221 to 6 arc minutes. The rolling friction coefficient was
found by calculating the damping of the swing amplitude of the disk under the assumption
that the damping decrement remains constant [27]. In his article, Tomlinson, among other
things, concluded that the rolling friction coefficient is practically independent of speed.
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Figure 6. Tomlinson’s device [27].

Previously, the authors of this work developed a two-contact pendulum device in
which a physical pendulum made free damping swings with an amplitude substantially
smaller than the angle of elastic contact, resting on two identical balls on a test flat surface
(Figure 7) [28]. The pendulum mass center was on ball’s contact spot [29]. It was suggested
that under loads referred to the field of elastic deformation and low rolling speeds, the
balls movement was similar to pure rolling. In this case, the main mechanism of rolling
resistance is the adhesion forces and the forces of frequency-independent internal friction
arising from the deformation of the contacting bodies. A phenomenological theory of
rolling resistance was constructed in the DPR mode, and it was shown that with this device
it is possible to study the laws of rolling resistance on the nano—and microscale with high
sensitivity and accuracy.
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Figure 7. Model of the two-contact pendulum [28].

In this device, the initial pendulum swing amplitude did not exceed 300 arcsec, and the
final pendulum swing amplitude was 2 arcsec. We used polycrystalline sapphire balls with a
diameter of 10 mm, and the pendulum weight was about 1.2 kg. Depending on the material
of the supporting surface (tempered steel, hard glass, electrotechnical silicon), the angle of
elastic contact was in the range of 37 to 47 arcmin. During the experiments, the amplitude
and time of each swing were measured allowing the construction of the amplitude vs.
time and period vs. the number of swings or time. The constructed mathematical models
made it possible to approximate with high accuracy these experimental dependences with
analytical dependences as presented below.
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However, a two-contact pendulum has an obvious drawback: it can only be used if
there are two identical test samples, placed under each ball, or one sample with a relatively
large uniform surface. This significantly reduces the range of materials tested. In addition,
there is a problem of identity, both of the balls themselves and of the conditions for their
fixation were not always exactly similar.

3. The Phenomenological Theory of Rolling Resistance in DPR Mode

This theory is built on the assumption that the adhesion forces can be represented
as some force bonds (springs) that connect the contacting bodies. When the pendulum
swings, one part of these forces breaks, and in this case, a certain fraction of the pendulum
energy is spent on the work of tearing off the surface of the ball from the surface under
consideration. Also, part of the pendulum energy must work against the forces of internal
friction during the deformation of the contacting bodies. Under the assumption that these
forces are frequency independent, the friction moment as a function of the pendulum
deflection angle can be written in the form [29] of Equation (1).

M f r = −mgR(c + bϕp)sign
(

dϕ
dt

)
, (1)

where m—the pendulum mass; R—the ball radius; c, b, p—the approximation parameters
determined from the experiment. Here, coefficient c “is responsible” for the adhesive com-
ponent of friction, and the second part on the right-hand side of Equation (1) is “responsible”
for internal friction during the deformation of contacting bodies and capillary forces.

Using Equation (1), we can calculate the specific surface energy in the contact zone as
the ratio of the work At(ϕ) = mgRcϕ performed by the adhesion forces when the surface
of the ball is separating from the surface of the contact spot during its rotation through a
small angle ϕwhen it moves away from the equilibrium position, to S:

σ =
At

S
=

mgc
2a

, (2)

The parameter σ in its physical meaning and dimensions coincides with the similar pa-
rameter γ used in [3], which is referred to by the author as surface energy or surface tension.

The phenomenon of a sharp decrease in the period of the pendulum during its swings
is associated with the action of the same elastic bonds between the surfaces of the contacting
bodies that do not break as the pendulum swings. The dependence of the moment of these
forces on the ball rotation angle, based on some physical considerations, can be written in
the form [29]

Mel(ϕ) ≈ 2γa2R|ϕ|n+1
(

π

2
− R

a
ϕ

)
· sign(ϕ), (3)

where a is the contact spot radius; γ, n are the approximation parameters determined from
the experiment. In our opinion, the parameter γ characterizes the elastic pressure of the
adhesion forces acting between the ball surface and the test surface. In [3], the author, in
the case of the Van-der-Waals forces action denoted as σ, calls the similar parameter as
Van-der-Waals stress.

Under the experimental conditions, when the mass center of the pendulum lies on the
contact spot, and at very small values of its amplitude and angular velocity, the differential
equation of swings of the pendulum practically coincides with the equation of swings of a
mathematical pendulum. Using Equation (1), we have a differential equation in the form

I
d2ϕ

dt2 + mgRϕ = −mgR(c + bϕp)sign
(

dϕ
dt

)
, (4)

where I—the moment of pendulum inertia relative to the mass center.
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The solution of Equation (4) in a first-term approximation of the asymptotic theory of
nonlinear oscillations gives the relationship of the pendulum swings amplitude α on time
in an implicit form [29]:

t(α) = −T
4

α∫
α0

dϕ
1

p+1 bϕp + c
, (5)

where T—the average value of the pendulum swing period.
Using Equation (5) as the regression equation for approximating the experimental

damping curves of the swing amplitudes, we can determine the numerical values of the
parameters c, b, and p.

Similarly, taking into account Equation (3) for the moment of elastic forces, solving the
differential equation of the pendulum swing, in the second approximation of the asymptotic
theory of nonlinear oscillations, we can obtain the dependence of the pendulum swing
period on the amplitude in the form (Equation (28) in [29]).

T(α) = T0

[
1−
√

πγ
a2αn Γ( n

2 + 3
2 )

mg Γ( n
2 + 2)

(
1− 0.55

Rα

a

)]−1

(6)

Using an equation of the form Equation (6) as a regression equation for the experi-
mental dependence T(α), one can find the numerical values of the parameters T0, γ, and n,
which are stable with respect to the choice of initial approximations of the values of these
parameters during calculations in the process of nonlinear approximation.

The total moment of rolling resistance forces can be written as

M(ϕ) = Mfr(ϕ) + Mel(ϕ). (7)

The dependence M(ϕ) with the known dependence ϕ(t) allows us to construct a
phenomenological theory of rolling resistance of adhesion forces in the DPR mode. In par-
ticular, the dependence Mel(ϕ) allows one to construct a skeletal curve and the dependence
Mfr(ϕ) allows one to construct a hysteresis loop around the virgin curve. Examples of such
curves are shown below.

4. Pendulum Device Based on One Ball: Design and Measurement Procedure

As mentioned previously, when using a pendulum device based on one ball, it is
necessary to solve the problem of instability of the pendulum swing plane. The instability
effect enhances when the mass center of the pendulum is close to the contact spot, and the
friction is small. If the pendulum is mounted with one support ball on a hard flat surface, it
will have the ability to swing around two horizontal axes and rotate around a vertical axis.

In our experiments, it was found that in the DPR mode, after careful starting of the
swings, the pendulum rotation around the vertical axis practically did not occur or quickly
stopped due to the spin friction being high. In addition, it was noted, if the pendulum shape
where the moments of inertia of the main horizontal central inertia axes differ significantly
from each other (Figure 8), the swings with a short period around the long axis (the U axis
with a minimum moment of inertia) damps earlier than swings with a large period around
the short axis (V axis with a maximum moment of inertia).

Thus, in order to build a device based on a single-ball pendulum and solve the problem
of holding the pendulum swing plane, it is necessary that the main moments of inertia
of the pendulum around which the swings occur should differ significantly in size as
explained later. In addition, the mass center of the pendulum should be on the contact
spot, which eliminates both the ball slippage during its swings and the influence of base
vibrations on swings [28,29]. The first condition can be fulfilled due to the pendulum
design—it should have the most elongated shape. The second condition can be ensured by
careful balancing. There is no spinning around the vertical axis due to proper balancing.
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Figure 8. The pendulum design with a system for recording the pendulum deviations from the
equilibrium position.

Figure 8 shows a single-ball pendulum specially designed for measurements. In this
pendulum, the ratio of the moments of inertia Iv/Iu is about 25, which experimentally gave
the ratio of the pendulum swing periods Tv/Tu equal to about 5. This has been achieved
with extensive tests. The diameter of the ball was 12.1 mm. The mass of the pendulum was
0.406 kg. The mass center of the pendulum was near the contact spot.

To measure the amplitude and swing time of the pendulum, an optical recording
system for its oscillations was used, consisting of a semiconductor laser, a focusing device
(not shown in Figure 8), a mirror mounted on the pendulum, and a CMOS matrix. The
computer records the signal from the matrix. This setup allows us to record the beam
displacement path, reflected from the pendulum along the X and Y axes of the coordinate
system of the CMOS matrix. Examples of writing Y (t) and X (t) of a balanced pendulum are
shown in Figures 9 and 10, respectively. The Control over the balancing of the pendulum
was also carried out by constructing its trajectory in the coordinates Y, X (Figure 11)—an
analogue of the Lissajous figure. It is worth noting that measurements are repeatable.

If the pendulum was perfectly balanced, and the optoelectronic system was perfectly
tuned and had no noise, and there was no influence of the vibrations of the basis, the
short-term transverse vibrations of the pendulum should not be excited, and the records in
Figures 10 and 11 should look like a horizontal and vertical line, respectively.

Lubricants 2023, 11, x FOR PEER REVIEW 8 of 15 
 

 

 
Figure 8. The pendulum design with a system for recording the pendulum deviations from the equi-
librium position. 

Thus, in order to build a device based on a single-ball pendulum and solve the prob-
lem of holding the pendulum swing plane, it is necessary that the main moments of inertia 
of the pendulum around which the swings occur should differ significantly in size as ex-
plained later. In addition, the mass center of the pendulum should be on the contact spot, 
which eliminates both the ball slippage during its swings and the influence of base vibra-
tions on swings [28,29]. The first condition can be fulfilled due to the pendulum design—
it should have the most elongated shape. The second condition can be ensured by careful 
balancing. There is no spinning around the vertical axis due to proper balancing. 

Figure 8 shows a single-ball pendulum specially designed for measurements. In this 
pendulum, the ratio of the moments of inertia Iv/Iu is about 25, which experimentally gave 
the ratio of the pendulum swing periods Tv/Tu equal to about 5. This has been achieved 
with extensive tests. The diameter of the ball was 12.1 mm. The mass of the pendulum 
was 0.406 kg. The mass center of the pendulum was near the contact spot. 

To measure the amplitude and swing time of the pendulum, an optical recording 
system for its oscillations was used, consisting of a semiconductor laser, a focusing device 
(not shown in Figure 8), a mirror mounted on the pendulum, and a CMOS matrix. The 
computer records the signal from the matrix. This setup allows us to record the beam 
displacement path, reflected from the pendulum along the X and Y axes of the coordinate 
system of the CMOS matrix. Examples of writing Y (t) and X (t) of a balanced pendulum 
are shown in Figures 9 and 10, respectively. The Control over the balancing of the pendu-
lum was also carried out by constructing its trajectory in the coordinates Y, X (Figure 11)—
an analogue of the Lissajous figure. It is worth noting that measurements are repeatable. 

 
Figure 9. Recording the amplitude of long-periodic Y (t) of the single-ball pendulum. Figure 9. Recording the amplitude of long-periodic Y (t) of the single-ball pendulum.



Lubricants 2023, 11, 88 9 of 15
Lubricants 2023, 11, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 10. Recording the amplitude of short-periodic swings X(t) of the single-ball pendulum. 

 
Figure 11. Trajectory record of the laser ray spot on the matrix during the first two swing periods. 

If the pendulum was perfectly balanced, and the optoelectronic system was perfectly 
tuned and had no noise, and there was no influence of the vibrations of the basis, the 
short-term transverse vibrations of the pendulum should not be excited, and the records 
in Figures 10 and 11 should look like a horizontal and vertical line, respectively. 

5. Measurement and Calculation Results 
In the experiments, a ball of radius R = 6.05 mm made of hard steel was used as a 

pendulum support. As the materials for the test samples were selected next: single-crystal 
silicon (roughness Ra = 0.4 nm, elastic modulus Esi = 1.31·1011 N/m2, Poisson’s ratio νsi = 
0.266), hard steel (Ra = 63 nm, Est = 2.11·1011 N/m2, νst = 0.28) and K8 optical glass (Rz = 40 
nm, Eg = 0.82·1011 N/m2, νg = 0.206). 

The calculated contact parameters of the hard steel ball and surfaces for testing are 
shown in Table 1. 

Table 1. Materials contact characteristics 

Surfaces Under Test 
Radius of the 
Contact Spot, 
[micrometer] 

Depth of Ball 
Penetration into the 

Surfaces,  
[micrometer] 

Contact Angle, 
[arcmin] 

Hard steel 54 0.50 31 

Silicon 59 0.60 34 

Glass K8 66 0.70 38 

Figure 10. Recording the amplitude of short-periodic swings X(t) of the single-ball pendulum.
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Figure 11. Trajectory record of the laser ray spot on the matrix during the first two swing periods.

5. Measurement and Calculation Results

In the experiments, a ball of radius R = 6.05 mm made of hard steel was used as a
pendulum support. As the materials for the test samples were selected next: single-crystal
silicon (roughness Ra = 0.4 nm, elastic modulus Esi = 1.31·1011 N/m2, Poisson’s ratio
νsi = 0.266), hard steel (Ra = 63 nm, Est = 2.11·1011 N/m2, νst = 0.28) and K8 optical glass
(Rz = 40 nm, Eg = 0.82·1011 N/m2, νg = 0.206).

The calculated contact parameters of the hard steel ball and surfaces for testing are
shown in Table 1.

Table 1. Materials contact characteristics.

Surfaces Under Test Radius of the Contact Spot,
[micrometer]

Depth of Ball Penetration into the Surfaces,
[micrometer]

Contact Angle,
[arcmin]

Hard steel 54 0.50 31

Silicon 59 0.60 34

Glass K8 66 0.70 38

The initial swing amplitude of the pendulum was chosen equal to α0 ≈ 6·10−4

rad ≈ 124 arcsec, the final amplitude was approximately 2 arcsec, so that the maximum
ball displacement is rmax ≈ 3.63 µm, the minimum ball displacement is rmin ≈ 0,06 µm.
This is limited by the recording equipment’s accuracy.
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It is noticed that the angular and linear displacements of the ball were in the DPR zone.
The results of measuring the dependences of the amplitude α on time t and the period T on
amplitude α obtained for friction pairs by averaging the results of a series of three consecutive
measurements for each contact pair are shown in Figures 12 and 13, respectively.
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The calculation results of the approximation parameters (friction parameters) of the
amplitude versus time are presented in Table 2. The calculation of the average relative
approximation error (ARAE) of the curves of the amplitude dependence on time, given in
this table, was carried out according to Equation (8).

ARAE =
1
k

k

∑
i=0

∣∣∣∣αi − α(ti)

αi

∣∣∣∣, (8)

where αi—the measured values of the amplitude, α(ti)—the calculated values with Formula (5).
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Table 2. Values of friction parameters for several materials.

Friction Parameters
(Initial Amplitude α0 = 124 arc s)

Contact Pair

Hard
Steel/Glass

Hard
Steel/Silicon

Hard Steel/Hard
Steel

p, 10−4 37.330 7.060 7.961

b 0.944 0.815 0.850

c, 10−9 10.510 3.840 6.601

σ, 10−3 J/m2 28.900 13.200 27.300

ARAE 0.008 0.026 0.035

Note that the values of the parameter σ agree in order of magnitude with the values of
“adhesive energy wt-s (~10−3 J/m2)” obtained using an atomic force microscope (AFM) [30].

The values of the elastic interaction parameters obtained from the approximation of
the reliance of the pendulum swing period on the amplitude are presented in Table 3. The
calculation [31] of the average relative error of this approximation given in this table is
carried out according to Equation (9).

ARAE =
1
k

k

∑
i=0

∣∣∣∣Ti − T(αi)

Ti

∣∣∣∣, (9)

where Ti—the measured value of the amplitude, T(αi)—the calculated value of the ampli-
tude in accordance with Equation (6).

Table 3. Values of parameters for elastic rolling resistance.

Parameters of Elastic Rolling
Resistance,

(Initial Amplitude α0 = 124 arc s)

Contact Pair

Hard
Steel/Glass

Hard
Steel/Silicon

Hard Steel/Hard
Steel

n 0.092 0.552 0.461

T0, s 4.071 4.072 4.049

γ, 106 N/m2 28.97 290.69 95.46

ARAE 0.002 0.002 0.004

In Figure 14, graphical smoothing has been applied using least-squares smoothing
according to the rule of s-nearest neighbors, in which s is selected adaptively [32].

The practical coincidence of the smoothing curve, which does not imply the use of any
physical models, and the curve constructed on the basis of the dependence model T(α),
proposed in [29,33] and leading to Equation (6), can be considered a justification for the
objectivity of these models.

Graphs displayed in Table 4 show the dependences of the moments of rolling resistance
forces with the angle of pendulum deviation within one swing cycle at an amplitude of
3.1 arcsec, constructed according to Equations (1), (3) and (7) and taking into account
the values of the parameters obtained by approximating the experimental data for three
different materials. It also shows the results of calculating the work of the adhesion forces
4At (rectangle set off in with dashed lines) and the work of dissipative forces (adhesion to
tear off and internal friction) 4A (the area of the whole figure), calculated for one period or
four deviations from the equilibrium position of the pendulum.
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Table 4. Dissipative motion for one cycle of the swing (If amplitude α = 3.1 arc s).

Dissipative Component
Moment (nN·m) vs. Angle (arc s)

Equation (1)

Elastic Component
Moment (nN·m) vs. Angle (arc s)

Equation (3)

The Total Moment of Resistance
Moment (nN·m) vs. Angle (arc s)

Equation (7)

Glass
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Table 4. Cont.

Dissipative Component
Moment (nN·m) vs. Angle (arc s)

Equation (1)

Elastic Component
Moment (nN·m) vs. Angle (arc s)

Equation (3)

The Total Moment of Resistance
Moment (nN·m) vs. Angle (arc s)

Equation (7)
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6. Conclusions

In the displacement zone where the dimensions are significantly reduced than the
dimensions of the contact spot and under elastic loads, the “deep-pre-rolling” (DPR) zone,
rolling resistance is determined by:

• dissipative adhesion forces, when parts of surface bodies that are in contact, leaves
each other; in addition, rolling resistance is determined by the frequency-independent
internal friction forces, arising during elastic deformations of contacting bodies.

• also, this rolling resistance is determined by the elastic adhesion forces that create
negative pressure between the surfaces of the contacting bodies.

In the DPR zone, the spin friction around the vertical axis has a maximum value
compared to the swing friction around the horizontal axes. Swing friction around horizontal
axes decreases with decreasing swing speed. These friction features allowed us to build a
pendulum device based on one ball with a stable swing plane. In this device, the pendulum
must have a shape in which the horizontal moments of inertia differ significantly from each
other reaching between 25 to 30 as a key condition. Here, the swing of the pendulum with
a maximum period has a stable swing plane.

In the DPR zone, there is an effect of a sharp decrease in the swing period of the
pendulum with a decrease in the swing amplitude. In this case, the rolling friction also
decreases and tends to its minimum final value, determined by the work of adhesion forces
on separation. In the study of rolling resistance in the DPR zone, it is necessary to measure
not only the reliance of the swing amplitude on the time, but also the reliance of the swing
period of the pendulum on time.

The developed phenomenological theory and measurement procedure allowed us for
the first time to build a simple instrument for direct measurements with high sensitivity
and accuracy of the surface energy density of the adhesion forces (or surface tension) in the
case of a solid body, and the parameters of internal frequency-independent friction and the
pressure generated by adhesion forces. Key applications are found in precision positioning
at a small scale or telescopes at a large scale and also any trials for balancing mechanical
devices around a single ball.
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