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Abstract: The current damage is the most stubborn and difficult fault of high-power motor bearings
because its vibration characteristics are easily confused with those of ordinary bearing mechanical
faults. If it is discriminated as an ordinary mechanical fault without electrical insulation protection, the
current damage of bearing shafts will still repeatedly appear. Aiming at the problem that it is difficult
to identify the bearing current damage fault under variable working conditions, a bearing shaft
current damage identification method based on multiscale feature label propagation and manifold
metric transfer (MFLP-MMT) is proposed. Firstly, the multiscale sub-band signal is obtained by
wavelet packet decomposition, and the multiscale sub-band fuzzy entropy is obtained by calculating
its fuzzy entropy. Then, according to the extracted features, a neighbor graph is constructed on the
source domain of the known fault label to obtain the pseudo label of the target domain sample, and
the source domain label information is gradually diffused by way of the graph label propagation. The
multiscale sub-band fuzzy entropy of the sample is mapped to the low-dimensional manifold space
by locality preserving projections (LPP), and the source domain samples close to the target domain
are given higher weights by cross-domain density ratio estimation to solve the problem of domain
offset. Combined with the label samples of the target domain in label propagation, the manifold
distance metric is learned to minimize the intra-class distance and maximize the inter-class distance
in the domain and eliminate the overlapping phenomenon in the domain. By increasing the range of
label propagation after each iteration, the label propagation error of the leading graph is gradually
reduced, and unsupervised metric transfer learning is realized. The experimental results show that
the new method is superior to the semi-supervised transfer learning method in fault identification
ability; the highest fault identification accuracy can reach 100% and it has a good robustness.

Keywords: current damage; transfer learning; multiscale feature; label propagation; manifold space

1. Introduction

With the wide application of pulse width modulation inverters in motors, bearing
current damage has become an important concern for high-power motors. When the motor
is running, due to the fast change of the frequency of the variable frequency drive and
the high pulse voltage, it is easy to generate the threshold voltage of the lubricating oil
film at both ends of the shaft, which exceeds the threshold voltage of the bearing, and the
tip discharge occurs on the contact surface between the bearing raceway and the rolling
element, causing the shaft current damage and causing safety accidents. In high-end
equipment, such as high-speed rail trains, large wind turbines, and new energy buses,
the power of the generators and motors is increasing, the frequency conversion control
system is becoming more and more complex, and the bearing current damage is increasing,
resulting in a sharp reduction in the life of the batch bearings relative to the design life.
At present, the monitored bearing fault signal is often misjudged as ordinary fatigue
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wear or other mechanical damage. Simply replacing the bearing without taking electrical
insulation maintenance measures is palliative. If the fault type of the motor bearing cannot
be accurately identified, the same fault type will repeatedly appear, delaying the best
maintenance time of the motor system, causing huge safety hazards and economic losses.
Therefore, the accurate identification of motor bearing faults is crucial [1].

At present, there are much research on the current damage of motor bearings, including
the mechanism and key influencing parameters of the bearing current, the circuit model
of the bearing current and the damage to the bearing performance [2,3]. Chen et al. [4]
proposed corresponding improvement measures for the wind turbine mechanism in view
of the problem of shaft voltage and shaft current of the wind turbine. Xu et al. [5] analyzed
the mechanism of shaft current generation and the method of shaft current suppression in
a hydro-generator. Adabi et al. [6] analyzed the causes of the shaft voltage of induction
generator and proposed the suppression measures of the shaft current. Some scholars have
studied the generation mechanism and damage characteristics of shaft voltage and shaft
current from an electrical point of view for specific generators and motors. For example,
Prashad et al. [7] established a charge accumulation and discharge energy model with the
time period, corrosion pit size, and bearing capacitance as the parameters, so as to determine
the shaft voltage and diagnose the bearing failure caused by corrosion pits. Liu et al. [8]
analyzed the electrical discharge machining, wrinkling, and its characterization caused by
bearing current from the perspective of tribology. Picot assumed that the premature failure
of the bearing was caused by the high-frequency current passing through the bearing. A
Weibull cycle statistical method based on the stator current was proposed to construct a
stable, normalized fault index [9]. Liu et al. [10,11] established an equivalent electrical
model of the bearing, simulated the process of the bearing breakdown and recovery, and
proposed measures to suppress the bearing current of small generators and motors. There
are also scholars from the statistical point of view using current monitoring data and
vibration monitoring data to establish the identification model of bearing current damage
and detect fault in bearing current damage. For example, Kempski proposed an electrostatic
discharge statistical model of induction motor bearings generated by inverters, which can
be used as a research basis for bearing damage risk of different drive devices [12]. Houssin
proposed a stator current parameter spectrum estimation method to detect induction
motor bearing faults. The effectiveness of bearing fault detection is verified by simulation
analysis [13]. Based on a collaborative filtering algorithm and manifold learning algorithm,
Wang et al. [14,15] studied the fault identification and state prediction of bearing current
damage. Chen et al. [16] proposed a lifting wavelet fractal strategy to extract the impact
fault features reflecting bearing faults from multi-component coupled vibration signals,
which has a more comprehensive ability to analyze the current damage characteristics of
motor bearings. Through the above literature review, it is clear that the problem of motor
bearing current damage is common in high-power motors. The research on current damage
mechanism, current suppression method, and current fault detection have always been a
hot spot. However, most of the current research on the current damage of motor bearings
summarize and analyze the causes of bearing current from the results of shaft current
damage or establish a corresponding equivalent physical model to simulate the process of
bearing damage. These research methods have high diagnostic accuracy for motor bearing
current damage, but their applicability is not wide, and the cost is high. There are also some
studies based on data, but in the study of bearing current damage, bearing current damage
is greatly affected by factors such as motor speed [17–19], load [20], and grease [21,22].
Different working conditions will lead to different data distribution, thus greatly reducing
the efficiency of the fault diagnosis [23].

The traditional data-driven rolling bearing fault diagnosis method requires two basic
premises: the distribution of the training data and test data is the same; there are enough
available training samples [24]. In view of the need for a large number of samples, many
studies have effectively alleviated the problem of insufficient numbers of labeled samples
through the construction of semi-supervised learning frameworks [25,26]. The same dis-
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tribution of data requires the same environmental conditions when collecting the bearing
vibration signals. In the context of the Internet of Things and big data, most machine
learning will collect data in various parts of the machine that may fail [27] and will train
multiple fault diagnosis models. This method can also solve the problem of different
data distributions, but it will consume huge manpower and material resources and is
expensive. The transfer learning emerges as the time requires. The transfer of existing
knowledge solves the learning problems that are difficult to obtain for the label samples in
the target domain. The method of applying the knowledge learned in a domain (source
domain) to different but related domains (target domain) is called transfer learning [28].
Transfer learning also has many applications in the field of bearing fault diagnosis [29–31].
Considering that the bearing vibration data under variable working conditions will have
similar fault characteristics, minimizing the cross-domain distribution distance has become
a hot issue to be solved in the field of bearing fault diagnosis. Lan et al. [32] proposed a
cross-domain bearing fault classification method based on transfer component analysis
(TCA), which significantly reduces the inter-domain distribution distance by minimizing
the maximum mean difference between the source domain and the target domain and
achieves cross-domain edge distribution alignment. The manifold embedded distribution
alignment (MEDA) method is a transfer manifold learning method with dynamic distribu-
tion adaptability, proposed by Wang et al. [33] on the basis of joint distribution adaptation
(JDA) [34], which achieves better domain adaptation by quantitatively evaluating the rel-
ative importance of the edge distribution and conditional distribution. Zhang et al. [35]
proposed a small sample bearing fault diagnosis method based on transfer learning, using
a sufficient number of the source domain samples to train the network to prevent network
overfitting, and using 1% of the target domain training set data to fine-tune the model
classification ability. Zhao et al. [36] used bidirectional gated recurrent units to generate
auxiliary samples for the source domain of MEDA, so that excellent fault identification can
be maintained in the case of a small number of labeled samples.

However, the above research focuses on the alignment of the edge distribution and the
conditional distribution. As a cross-domain alignment, these two distribution alignments
ignore the internal structure information of the domain, and the shaft current damage
characteristics of the motor bearing and the common fault characteristics are easily con-
fused, resulting in category overlap in the domain. In view of the internal structure of the
field, many scholars have applied metric learning to better learn the distance or similarity
between samples. By changing the original sample distribution, the intra-class dispersion
and inter-class similarity are reduced, and the recognition ability of the classifier is im-
proved [37]. Xu et al. [38] combined transfer learning with metric learning to improve the
accuracy of the fault feature clustering by minimizing the correlation alignment loss, nar-
rowing the distribution difference between the source domain and the target domain, and
maximizing the similarity between the input feature and the center feature. Zhao et al. [39]
used triplet loss to measure the distance between various faults, so that the distance be-
tween similar fault features is very small, and the distance between heterogeneous fault
features is very large. However, the above deep metric transfer learning applied to bearing
fault diagnosis focuses on the Euclidean distance between the classes in the alienation
domain, which leads to the neglect of spatial cross-domain tilt and manifold structure
mining. As the acquisition of the equipment status information becomes more and more
difficult, the amount of fault data is small, and it is impossible to effectively label all work-
ing condition data, so the label samples are very precious [40]. In order to make efficient
use of the existing fault data and fully exploit the manifold similarity between data under
the diversity, time-varying, and strong nonlinearity of the working conditions, it is very
important to pay attention to cross-domain tilt and intra-domain alienation.

In view of the extreme service environment and complex working load of motor
bearing, the damage state signal of motor bearing presents the characteristics of weak and
nonlinear and is often submerged in strong background noise and interference signal. Its
common features are difficult to fully characterize as the shaft current damage of motor
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bearing, and the recognition effect under variable working conditions is poor. A method of
shaft current damage identification of motor bearing under variable working conditions
based on multiscale feature label propagation and manifold metric transfer is proposed.
Firstly, the sensitive feature set of bearing current damage is constructed by extracting the
multiscale sub-band fuzzy entropy features of the signal, which can better identify the
bearing current damage. Then, according to the proposed features, the weighted graph is
constructed on the source domain of the known fault label, and the source domain label
information is gradually diffused by graph label propagation, which solves the limitation
that the semi-supervised metric transfer learning needs supervised samples. At the same
time, the LPP algorithm is used to map the multiscale sub-band fuzzy entropy of the sample
to the low-dimensional manifold space, and the manifold distance metric is learned to
align the source domain and the target domain. The intra-class distance is minimized, and
the inter-class distance is maximized to eliminate the overlap in the domain and realize
unsupervised metric transfer learning. In the case of no target domain label samples, the
problem of poor bearing current damage identification under different working conditions
is solved. The proposed method mainly has the following four advantages: (1) This method
belongs to the unsupervised transfer learning method, which breaks the limitation that the
traditional metric transfer learning needs the target domain sample label. (2) This method
considers the manifold relationship between data samples, mining the manifold structure
between data. (3) The proposed method takes into account the problems of domain tilt,
excessive inter-domain distance, and intra-domain overlap, which are neglected in the
current damage identification of motor bearing shaft under variable working conditions.
(4) The multiscale sub-band fuzzy entropy extracted by this method can dig deep into the
essential information of the vibration information and can accurately identify the current
damage fault of the motor bearing.

2. Multiscale Sub-Band Fuzzy Entropy and Metric Transfer Theory
2.1. Multiscale Sub-Band Fuzzy Entropy

Fuzzy entropy is a measure of the complexity of time series. It describes the informa-
tion contained in time series samples more accurately by introducing the fuzzy membership
function. However, when the sequence is too complex, the ordinary fuzzy entropy ex-
traction cannot dig deep into the internal information of the data. In order to solve this
problem, we put forward the concept of multiscale sub-band fuzzy entropy. Firstly, the
signal is decomposed into multiscale sub-band signals by wavelet packet, and, finally, the
fuzzy entropy of each multiscale sub-band signal is obtained. Because this method can go
deep into the data and decompose and mine the eigenvalues and eigenvectors of the data
layer by layer, it can effectively and accurately extract the fault features of complex weak
data. The specific steps of multiscale sub-band fuzzy entropy are:

(1) The vibration signal X(t) is decomposed and reconstructed by N layer wavelet
packets, and 2N wavelet packet decompositions and reconstruction sequences S(N, k)
(k = 0, 1, 2, · · · , 2N − 1) are obtained. S(N, k) is the kth sub-band sequence of the N layer
decomposition of signal X(t) by the wavelet packet.

(2) Taking the sub-band S(N, 0) as an example, given the dimension m = 2, the sub-
band signal S(N, 0) is composed of a set of m dimensional vectors, according to the serial
number, namely:

S(N, 0)(i) = [S(N, 0)(i), · · · , S(N, 0)(i + m− 1)] (1)

where i = 1, 2, 3, · · · , B−m + 1 and B is the length of the sub-band sequence.
(3) The distance is calculated between each sequence and the remaining sequences dij:

dij = d[S(N, 0)(j)− S(N, 0)(i)] = max
∣∣S(N, 0)(j + l)− S(N, 0)(i + l)

∣∣ (2)

where l = 0, 1, 2, · · · , m− 1
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(4) Given a threshold r = 0.2Std (Std is the standard deviation of the original data),
ambiguity τ = 2, through the fuzzy membership function µ

(
dm

ij , τ, r
)

, the distance matrix
is redefined:

Dm
ij = µ

(
dm

ij , τ, r
)
= exp

−
(

dm
ij

)τ

r

 (3)

(5) The average of all memberships is found:

φm(τ, r) =
1

B−m

B−m

∑
i=1

(
1

B−m− 1

B−m

∑
j=1,j 6=i

Dm
ij

)
(4)

(6) The dimension is increased to m + 1, steps (2)–(5) are repeated to obtain φm+1.
(7) The fuzzy entropy of S(N, 0) is:

FuzzyEn(m, τ, r, B) = ln φm(τ, r)− ln φm+1(τ, r) (5)

(8) Steps (2)–(7) are repeated and the fuzzy entropy of sub-band S(N, 0), S(N, 1),
S(N, 2), · · · , S(N, k), respectively, is calculated.

(9) In this paper, the sub-band sequences S(N, k)(N = 5) k = 0, 1, 2, · · · , 31 are calcu-
lated, respectively, and the characteristic matrix is constructed. The multiscale sub-band
fuzzy entropy of the fault signal is F:

F = [c(5, 0), c(5, 1), c(5, 2), c(5, 3) . . . . . . c(5, 31)] (6)

2.2. Metric Transfer Learning

Metric learning can adaptively learn metrics from raw data with the same distribution,
change the distribution of the original samples, reduce the distance between similar sam-
ples, and dissimilate heterogeneous samples to greatly improve the efficiency of machine
learning. Metric transfer learning reduces the difference of the sample distribution caused
by different data distributions and maintains better classification ability when data are
distributed differently.

For a given sample set X = [x1, x2, . . . xn] ∈ Rn×D, the core goal of metric learning is
to find an optimal learning metric A, under which the samples of the same class are more
aggregated in space and alienated into different classes. Therefore, Jin et al. formulated the
following regular objective functions [41]:

min
A

{
1
2
‖ A ‖2

F +
2

n(n− 1) ∑
i<j

`
(

δij

[
1− ‖ xi − xj ‖2

A

])}
(7)

where A is a positive semidefinite matrix; `(·) denotes the loss function; δij is the indicator
matrix within and between classes. When two samples are of the same class, δij = 1,
otherwise δij = −1.

According to the above objective function, a distance metric A can be obtained. Under
this metric, the distance between sample xi and sample xj can be expressed as:

dij =
√(

xi − xj
)TA

(
xi − xj

)
(8)

Traditional distance metric learning is based on the premise that all samples obey
the same distribution. When the distribution of samples in the space is inconsistent, the
effect of metric learning will decline or even fail. Therefore, after the metric transfer
learning [42] introduces sample cross-domain information in the metric learning, the loss
function becomes:

`(A, ω̂, Ds, Dt) = `w(A, ω̂)− `b(A, ω̂) (9)
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where ω̂ is the sample weight; `w(A, ω̂) and `b(A, ω̂) represent the loss functions within
and between classes. The specific expressions are as follows:

`(A, ω̂) = ∑ ω̂(xi)ω̂
(
xj
)
δij‖xi − xj‖2

A (10)

Metric transfer learning solves the domain offset problem by assigning different
weights to the labelled samples, and clustering and alienating samples in the field on the
basis of cross-domain alignment, and maximizes the class spacing to obtain the distance
metric A.

3. Label Propagation and Manifold Metric Transfer Learning Algorithm

Due to the difference of spatial distribution between the source domain and the target
domain, simple feature normalization in the domain cannot solve the problems of domain
offset and domain tilt. When the number of source domain samples of known labels is
scarce, the effect of the source domain and the target domain alignment often decreases
greatly, and the existing transfer learning methods pay more attention to the overall cross-
domain alignment of the domain and less attention to the distribution within the domain.
In the motor bearing shaft current damage identification, the similar features between
the shaft current damage and ordinary fault leads to different types of overlap. Many
machine learnings directly measure the similarity between data in the original Euclidean
space, ignoring the hidden manifold structure relationships in the sample space. Therefore,
in order to mine the manifold similarity between data, pay attention to the structural
information between and within the domain, and get rid of the dependence on the label
samples of the target working condition. An unsupervised transfer learning method based
on multiscale feature label propagation and manifold metric transfer is proposed, aiming
at eliminating the domain overlap and intra-domain overlap in the manifold space.

3.1. Graph-Based Label Propagation

The core idea of graph-based label propagation (GLP) is that similar samples will have
similar label graphs. Label propagation propagates samples with known labels to predict
unknown labels through connected edges [43]. Commonly used graphs have weighted
graphs. Each sample can be regarded as a node. The connection weight of Node i and
Node j can be expressed as:

Gij =

exp
(
−|xi−xj|2

α2

)
, xi ∈ Np

(
xj
)
orxj ∈ Np(xi)

0, others
(11)

where Np(xi) represents the p nearest neighbor set of point xi. The loss function of cross-
domain label propagation from the source domain to the target domain is defined as follows:

JLp =
ns+nt

∑
i,j=1

Gij‖Fi − Fj‖2
F = tr

(
FT(D−G)F

)
= tr

([
Fs
Ft

]T[Lss Lst
Lts Ltt

][
Fs
Ft

])
= tr

(
FT

s LssFs
)
+ tr

(
FT

t LttFt
)
+ 2tr

(
FT

t LtsFs
)

(12)

where, Fs is the label matrix of the source domain Fs ∈ Rns×C. Ft is the label matrix of the
target domain, and the same value is initialized. L = D−G represents the Laplace matrix
of the graph, D is a diagonal matrix, and its diagonal elements are the sum of the column
elements of the G matrix.

L =

[
Lss Lst
Lts Ltt

]
(13)
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The label matrix Ft of the target domain can be obtained by minimizing the loss
function of label propagation. Because the target domain does not provide the supervision
information of labels, there are errors in cross-domain label propagation, and then we
gradually reduce the label errors by iterative method.

3.2. Locality Preserving Projections

In the original space, the sample distribution is different because of the different data
acquisition environment between the source domain and the target domain. Many machine
learning methods use Euclidean distance to measure the similarity between samples or
transfer the source domain and the target domain directly in Euclidean space, which do
not consider that the nonlinear manifold structure between the samples may not achieve
the ideal transfer effect. Therefore, we use the locality preserving projection in manifold
learning to mine the hidden manifold structure in Euclidean space and to find the similarity
between samples, which is difficult to obtain.

The LPP algorithm [44] breaks the limitation of traditional methods such as PCA,
which have difficulty in mining the nonlinear manifold of data and can obtain low-
dimensional projection more easily. LPP is also a graph-based manifold learning method.
For the data set X = [x1, x2, . . . xns+nt ] ∈ R(ns+nt)×D in the original space, let
Z = [z1, z2, . . . zns+nt ] ∈ R(ns+nt)×d be the data in the original space and map it to the
data in the low-dimensional manifold. By constructing a weighted graph G of the sample,
the connected points in the weighted graph remain connected after the manifold mapping,
and the error is minimized as the objective function:

min JLPP = ∑ns+nt
i,j=1

1
2
‖ zi − zj ‖2 Gij (14)

The objective function is simplified:

min JLPP =
ns+nt

∑
i,j=1

1
2 ‖ zi − zj ‖2 Gij

=
ns+nt

∑
i,j=1

1
2 ‖ RTxi −RTxj ‖2 Gij

= tr
(
RTX(D−G)XTR

)
= tr

(
RTXLXTR

)
(15)

where D is a diagonal matrix whose diagonal elements are the sum of the corresponding
column elements in G.

By adding constraint RTXLXTR = I, the target function is converted to:

mintr
(

RTXLXTR
)

s.t.RTXLXTR = I (16)

The optimization problem of the above formula is solved according to Lagrange mul-
tiplier method, which solves the eigenvalue and eigenvector problems of the generalized
eigenequation of the following formula [45]:

XLXTR = λXDXTR (17)

The transformation matrix R = [r0, r1, . . . rl−1] ∈ Rn×l is composed of eigenvectors
corresponding to the first l minimum eigenvalues of the above formula.

3.3. Label Propagation and Manifold Metric Transfer Learning

The label propagation and manifold metric transfer learning aims to find a manifold
distance metric that can make the same kind of samples more clustered and the different
kind of samples more dispersed in the domain, with the smallest inter-domain offset by
label diffusion and metric learning on the graph of low-dimensional manifolds.
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3.3.1. Cross-Domain Alignment Based on GLP

Because of the differences in the spatial distribution of data samples, there will be
differences in similarity between the source domain samples and the target domain samples.
We first map the samples in the original space to the low-dimensional manifold space and
then give higher weights to the samples similar to the source domain and the target domain,
which cannot only minimize the cross-domain manifold distance but also eliminate the
cross-domain tilt phenomenon. Firstly, the prior weight of all labelled samples in the source
domain is assumed to be ω0

(
zs

i
)
∈ Rns×1, and then a more accurate source domain sample

weight ω
(
zs

i
)

is obtained by introducing a regularization term to minimize the difference
between the source domain and the target domain. The regularization term is expressed as:

ψ(ω) = ‖ω−ω0‖2 (18)

where ω0
(
zs

i
)
=

Pt(zs
i )

Ps(zs
i )

is the density ratio estimation of the source domain sample zs
i , which

is used to express the weight of the samples in the cross-domain transfer. The higher the
value of ω0

(
zs

i
)
, the more similar the source domain sample zs

i is to the target domain
sample, and the more important it is to measure the cross-domain manifold distance.

We use the method in reference [46] to estimate the density ratio of samples in the
source domain. The density ratio can be approximately considered as a combination of
some basic linear functions:

ω0(zs
i ) =

nL
t

∑
j=1

αjφj(zs
i ) (19)

where φj represents a predefined Gaussian kernel function; αj is the parameter correspond-
ing to the basis function. Because different basis function φj settings will affect the result of
the density ratio estimation, sample cj is selected from the target domain as the center of the
Gaussian function (these samples are selected by GLP). The basis function φj of Gaussian
kernel is:

φj(z) = exp

{
−
‖z− cj‖2

σ2

}
(20)

Therefore, the weight ω0
(
zs

i
)

of the source domain samples can be solved by minimiz-
ing the KL-divergence between Pt

(
zs

i
)

and ω0
(
zs

i
)

Ps
(
zs

i
)
.

According to the above, it can be summarized as the following optimization objectives:

max
α

∑
zi∈Dt

log
nL

t
∑

i=1
αjφj

(
zs

i
)

s.t. ∑
zi∈Ds

nl
i

∑
j=1

αjφj
(
zs

i
)
= ns, andα > 0 (21)

For the above convex optimization problem, we can obtain the optimal solution by
the gradient convergence method.

In the above formula, the cross-domain transfer weights ω0
(
zs

i
)

of all samples in the
source domain are obtained. In order to make the source domain samples with high weight
as close to the target domain as possible, semi-supervised metric transfer learning usually
requires providing some supervised samples in the target domain. We select the supervised
samples based on the GLP method, estimate the reconstruction density ratio ω0 to ω̂0, and
give the target domain samples a weight of 100%:

ω̂0(zi) =

{
ω0(zi)

1 ,
,

zi ∈ Ds

zi ∈ Dpl
t

(22)

where Dpl
t denotes a subset of samples learned according to the auxiliary metrics selected

in the target domain, whose labels are pseudo labels.
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3.3.2. Optimization Goal of Intra-Domain Alienation

In order to fully explore the similarity between the sample data in manifold space and
LPP, a manifold mapping method is used based on the graph. Therefore, we introduce a
regularization term Φ(G) of graph:

Φ(G) =
ns+nt

∑
i,j=1

Gij ‖ zi − zj ‖2
A=

ns+nt

∑
j=1

Gij
(
zi − zj

)TA
(
zi − zj

)
= 2tr

(
AZLZT

)
(23)

where L = D−G, D is the diagonal matrix of the graph matrix G.
Combined with metric learning, we can obtain the following overall optimization goals:

min
A,

.
ω̂

J = λψ(ω̂) + r(A) + σ`(A, ω̂, Ds, Dt) + γΦ(G)

= λ ‖ ω̂− ω̂0 ‖2 + 1
2 ‖ A ‖2

F +
σ(`w(A, ω̂)− `b(A, ω̂)) + 2γtr

(
AZLZT)

= λ ‖ ω̂− ω̂0 ‖2 + 1
2 ‖ A ‖2

F +
σ ∑

i,j
ω̂(zi)ω̂

(
zj
)
δij ‖ zi − zj ‖2

A +2γtr
(
AZLZT)

(24)

where δij is the indicator matrix within and between classes:

δij =

{
1,
−1,

zi, zj ∈ c
zi ∈ c, zj /∈ c

(25)

In order to solve the optimization problem of the objective function, it is necessary
to converge A and ω̂ while satisfying constraints ∑ns

i=1 ω̂(zi) = ns, andω̂(zi) ≥ 0, so the
Lagrange multiplier is introduced to transform the objective function into:

min
A,

.
ω̂

J = λ‖ω−ω0‖2 + 1
2

‖ A ‖2
F +σ ∑

i,j
ω̂(zi)ω̂

(
zj

)
δij ‖ zi − zj ‖2

A +2γtr
(
AZLZT)

+ρ((ω̂TI− ns)2 +
ns

∑
i=1

(max(0,−ω̂(zi)))
2)

(26)

where I is the label field indication matrix for distinguishing the selected samples of the
source domain and the target domain:

I =
{

1,
0,

i ≤ ns

ns < i ≤ ns + npL
t

(27)

The objective function obtains partial derivatives of A and ω̂, respectively:

∂J
∂ω̂

= 2λ(ω̂− ω̂0) + 2σ ∑
i,j

ω̂
(
zj
)
δij‖zi − zj‖2

A + ρ
(

2
(

ω̂TI− ns

)
I + ω̂2ξ

)
(28)

∂J
∂A

= A + 2σ ∑
i,j

ω̂(zi)ω̂
(
zj
)
δijA

(
zi − zj

)(
zi − zj

)T
+ 2γtr

(
ZLZT

)
(29)

where ξi = sign(max(0,−ω̂(zi))), sign is a symbolic function.
The values of A and ω̂ are then alternately updated using a gradient descent to obtain

the cross-domain manifold distance metric A when the convergence condition, Formula
(32), of the formula is satisfied.

ω̂t+1 = ω̂t − u1
∂J
∂ω̂
|ω̂t (30)

At+1 = At − u2
∂J
∂A
|At (31)
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|J (At+1, ω̂t+1)−J (At, ω̂t)| < ε (32)

Because the distance metric A is a positive semidefinite matrix, we can decompose
A = MTM. For simplicity, the distance between sample zi and sample zj can be expressed as:

d2
ij =

(
zi − zj

)TA
(
zi − zj

)
=
(
Mzi −Mzj

)T(Mzi −Mzj
)

(33)

Under this manifold distance measure, it can be regarded that the samples after the
LPP dimension reduction are mapped to a common subspace in the manifold space, where
the sample distribution data in this space has the smallest cross-domain distance and the
smallest cross-domain tilt, and the alienation between the clusters of the same class in the
domain is obvious: {

Znew
s = ZsM

Znew
t = ZtM

(34)

4. Shaft Current Damage Mechanism and Vibration Signal Characteristics of
Motor Bearings

During the normal operation of the high-power motor, there is a lubricating oil film
between the bearing rolling element and the raceway, which plays an insulating role. Both
ends of the spindle will only produce a lower shaft voltage. When there are problems
in the design and adjustment of the motor, the failure of the electrical system makes the
shaft voltage increase, the insulation oil film between the bearings is destroyed, or the
stable lubricating oil film is not formed in the bearing when the motor is just started, the
electric potential difference between the inner and outer rings of the bearing exceeds the
breakdown voltage that the lubricating oil film can withstand; the shaft voltage can easily
break the oil film and discharge, resulting in shaft current. Because the contact point
between the bearing raceway and the rolling element metal is very small, the skin effect
phenomenon is generated on the surface of the bearing raceway, so the current density of
these points increases, and the high temperature is instantaneously generated, so that the
local melting or gasification of the bearing is caused. The molten bearing metal particles
splash on the surface of the bearing raceway due to the radial load grinding pressure, so
that the electric erosion occurs on the bearing ball and the raceway, resulting in small pits
and pitting. Under the combined action of the current and mechanical load, the electric
erosion area of the bearing continues to expand, and a typical bearing current damage
morphology of a ‘washboard‘ shape is gradually formed, as shown in Figure 1.
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Figure 1. Corrosion spots and rubbings formed by shaft current damage.

According to the principle of shaft current damage of bearing, the bearing current
damage experiment is carried out by using the bearing current damage test bench. The
programmable current source intermittently loads the current of the experimental bearing,
continuously loads the current of 2 A for 15 min, stops the current loading in the next 5 min,
and so on. The rotational speed used in the bearing current damage experiment is 1200 rpm
and the load size is constant at 1000 N. The experimental bearing is a 6205 deep-groove
ball bearing with an inner diameter of 52 mm, an outer diameter of 25 mm, and with
9 balls. The characteristic frequency of the outer ring fault is fo = 71.7 Hz, the characteristic
frequency of the inner ring fault is fi = 108.3 Hz, and the characteristic frequency of the
rolling element fault is fb = 47.17 Hz. The time domain diagram and envelope spectrum
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of the vibration signal of the shaft current damage bearing in different time periods are
shown in Figures 2–4.
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From Figure 2 to Figure 4, it can be seen that the fault characteristic frequency of the
shaft current damage is 72 Hz at 40 h, which is characterized by the fault characteristic
frequency of the outer ring of the bearing, and the double frequency amplitude is also
relatively large. At 60 h, the characteristic frequencies of 47 Hz, 72 Hz, and 108 Hz can be



Lubricants 2023, 11, 69 12 of 23

found in the spectrum diagram, which are the fault characteristic frequencies of the bearing
balls, bearing outer rings, and bearing inner rings. In 80 h, the characteristic frequencies of
72 Hz, 147 Hz, and 108 Hz can be found in the spectrum, which are the double frequency,
double frequency, and inner ring fault characteristic frequency of the outer ring fault. It can
be concluded that in the shaft current damage experiment, 40 h is the initial wear stage of
the bearing current damage. The initial wear pitting grooves have appeared on the bearing
raceway and the ball surface, and the characteristic frequency of the outer ring fault has
appeared. With the advancement of time, the bearing current damage has entered a sharp
rise stage, and the fault characteristic frequency is manifested as a composite modulation
form of multiple faults.

Although the bearing mechanical damage and bearing current damage bearing vi-
bration signal characteristic frequencies in a certain correlation, because of the complexity
of the bearing vibration signal of bearing current damage, only by the ordinary spectral
analysis method is it difficult to effectively distinguish the bearing fault of bearing current
damage and bearing mechanical damage.

5. Shaft Current Damage Identification Model of Motor Bearing Based on MFLP-MMT

Aiming at the characteristics of non-stationary, non-linear, and weak bearing fault
signals, this paper proposes a fault diagnosis method combining multiscale sub-band fuzzy
entropy and label propagation manifold distance metric. The multiscale sub-band fuzzy
entropy can find the essential features of weak damage signals. At the same time, combined
with the proposed label propagation manifold distance metric method, the distribution
differences of the fault samples of motor bearings under different working conditions can
be reduced, and bearing faults can be diagnosed and identified efficiently and accurately.

Based on the manifold distance metric of the graph label, the shaft current damage
of motor bearing under variable working conditions is identified. Firstly, the GLP model
is constructed using the samples with known fault types to obtain the pseudo labels of
the unlabeled samples in the target condition. Locality preserving projection is performed
on the source domain and the target domain samples and all samples are mapped to a
low-dimensional manifold space. In the manifold space, by combining the labeled samples
in the target domain obtained in GLP, the density ratio estimation is performed on the
source domain samples to solve the sample weights, and the intra-domain metric learning
is performed to obtain the optimal manifold distance metric in the manifold space. Under
this metric, the samples in the source domain and the target domain can be transformed
into the common subspace with the smallest cross-domain distance, the same sample
clustering in the domain, and the alienation of different sample distributions, so that the
differences of the sample distribution under variable working conditions can be eliminated.
Finally, the fault samples are accurately classified according to the sample distribution in
the manifold space.

Since this shaft current damage identification method belongs to an unsupervised
transfer learning, the fault samples to be identified in the target domain are unlabeled.
In the process of learning, there is a certain error in the obtained target domain label.
Therefore, we will gradually reduce the identification errors of the target domain samples
by increasing the label propagation range in the iteration. The overall process of motor
bearing shaft current damage identification proposed in this paper is shown in Figure 5.
The specific process can be divided into the following six steps:
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Step 1: The bearing vibration signal with known label in one working condition is
taken as the source domain Ds and the signal data with an unknown label in another
working condition is taken as the target domain Dt. The vibration signal samples in the
source domain and the target domain are extracted by multiscale sub-band fuzzy entropy
as input.

Step 2: Based on GLP, transmits of the label information of the source domain samples
to the target domain are used to obtain the pseudo label ŷt of the target domain. Based

on the result of label propagation, a small part of the sample Dl
t = ((xi

t, ŷi
t)

nl
t

i=1) with the
richest label information in the target domain is retained, that is, the sample closest to
the source domain on the weighted graph. This part of the sample has a relatively small
label error, and we retain this part of label information to obtain a new target domain

Dt = ((xi
t, ŷi

t)
nl

t
i=1) ∪ ((xj

t, ?)nt
j=nl

t
) with partial labels.

Step 3: According to the source domain sample Ds and the target domain sample Dt,
the source domain and the target domain sample X =

[
Xs; Xl

t; Xu
t

]
are projected locally,

and the data in the original space is mapped to the D-dimensional manifold space to obtain
Z =

[
Zs; Zl

t; Zu
t

]
.

Step 4: The cross-domain density ratio estimation of the source domain samples is
calculated as a priori of the transfer weight ω0

(
zs

i
)
∈ Rns×1. In order to obtain more reliable

results, the samples with smaller label errors in the target domains are given 100% weight
in the cross-domain transfer to obtain ω̂0 ∈ R(ns+nl

t)×1, and a more accurate sample weight
ω̂ in the source domain is obtained by regularization.

Step 5: Based on `(A, ω̂, Ds, Dt) = `w(A, ω̂)− `b(A, ω̂), a manifold metric A is found,
which can minimize the distribution difference between the source domain and the target
domain in manifold space and eliminate the overlap between classes in the domain. Under
this metric, the manifold regularization term Φ(G) is constructed and the manifold struc-
ture in the space is fully excavated, so that the cross-domain distance is smaller and the
distinction between different classes is more obvious: Znew

s = ZsM and Znew
t = ZtM.

Step 6: The pseudo-label ŷt(z) is updated according to the new sample distribution.
After each iteration the label propagation range is increased and steps 2 to 6 are repeated
until the results converge.
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6. Experiments for Validation
6.1. Experiment on Shaft Current Damage Identification of Motor Bearing under Variable
Working Conditions

In order to verify that the proposed method has better recognition ability for the
typical faults of motor bearings under variable working conditions, the proposed method
is compared with several popular transfer learning methods to evaluate the performance
of the proposed method.

In this paper, the algorithm validation of a motor bearing shaft current damage simula-
tion test bench is shown in Figure 6. The test bearing used in this experiment is a detachable
deep groove ball bearing whose model is 6205 EKA. Three different working conditions
(500 N/1800 rpm, 1000 N/1200 rpm, 1500 N/600 rpm) were set in the experiment, and
the sampling frequency was 16,384 Hz. The data used for verification have eight health
states: normal (NO), outer ring fault (OF), inner ring fault (IF), rolling body fault (BF), and
shaft current damage (SCD). There are 100 samples in each state of bearing, each sample
contains 2048 data points, and each sample set has 500 samples in total. Three sample sets
under different working conditions are obtained by labelling the data sets, and two data
sets form a transfer task, so that six transfer tasks of damage identification under variable
conditions can be obtained.
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Load bolts.

The data set is shown in Tables 1 and 2.

Table 1. Shaft current damage data set description of bearing.

Data Set Working Condition Num of Sample Class

A 500 N/1800 rpm 500 5
B 1000 N/1200 rpm 500 5
C 1500 N/600 rpm 500 5

Table 2. Type description of bearing data set.

Class 1 2 3 4 5

Type NO OF IF BF SCD

Furthermore, part of its signal spectrum is shown in Figure 7. We can find that
the spectrum of the same fault type varies greatly under different working conditions,
especially the spectrum of shaft current damage, making it difficult to identify faults under
variable working conditions.
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Figure 7. Signal spectrum of motor bearing fault data Set. (a) Spectrum of NO under Working
Condition A, (b) Spectrum of NO under Working Condition C, (c) Spectrum of OF under Working
Condition A, (d) Spectrum of OF under Working Condition C, (e) Spectrum of IF under Working
Condition A, (f) Spectrum of IF under Working Condition C, (g) Spectrum of BF under Working
Condition A, (h) Spectrum of BF under Working Condition C, (i) Spectrum of SCD under Working
Condition A, (j) Spectrum of SCD under Working Condition C.

6.2. Experimental Results

In order to reflect the effectiveness of the proposed method, we present the superiority
of the proposed method from two aspects: One is to compare the multiscale sub-band fuzzy
entropy with the ordinary time domain and frequency domain features (here we extract 24-
dimensional time domain and frequency domain features, such as effective value, standard
deviation, kurtosis, and average frequency). The second is to compare the proposed method
with other machine learning algorithms and compare two typical traditional algorithms:
KNN and SVM. There are two mainstream transfer learning methods, including one
unsupervised transfer learning method, MEDA, and one semi-supervised metric transfer
learning method, SSMTL [47]. The transfer learning methods all use the KNN algorithm
to obtain weak labels for the target domain. The initial subspace dimension is set to 10,
and the same hyperparameters involved in the other algorithms are set to the same value.
The regularization parameters in the algorithm are determined by optimizing from 0 to
1: ρ = 1, λ = 1, γ = 0.01, σ = 1. The subspace dimension d = 10, gradient descent step is
set to a smaller value: u1 = 10−5, u2 = 10−5, gradient convergence threshold ε = 0.01, and
iteration times T = 8, The motor bearing fault identification results of five classification
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algorithms under different transfer tasks are obtained as shown in Table 3, which is the
result of all tasks.

Table 3. Recognition accuracy of different methods for motor bearing fault under variable conditions.

Feature Method
Task

A→B A→C B→A B→C C→A C→B Average Std.

Time domain and
frequency

domain feature

KNN 94.80 66.20 96.40 80.80 74.40 82.80 82.57 10.64
SVM 95.80 73.20 99.00 81.80 95.40 96.00 90.20 9.39

MEDA 99.00 78.40 99.60 79.80 94.00 82.60 88.90 8.90
SSMTL * 92.93 78.59 98.18 82.63 86.26 87.47 87.68 6.43
LP-MMT 99.80 83.40 100.00 94.60 79.00 100.00 92.80 8.51

Multiscale
sub-band fuzzy

entropy

KNN 97.20 84.00 98.00 95.80 87.20 93.80 92.67 5.25
SVM 99.80 84.60 100.00 94.40 90.40 94.20 93.90 5.34

MEDA 92.80 92.80 93.80 93.80 98.00 98.00 94.87 2.25
SSMTL * 99.19 86.26 100.00 98.18 93.94 96.16 95.62 4.64

MFLP-MMT 100.00 99.80 100.00 100.00 100.00 100.00 99.97 0.07

* Represents semi-supervised metric transfer learning and the proportion of supervised samples is 1%.

Comparing different features, when the extracted features are the time domain and
frequency domain features, the average recognition rate of the migration task of the pro-
posed method is higher than that of other algorithms under variable working conditions.
When the extracted features are multiscale sub-band fuzzy entropies, it can be seen that the
accuracy of all methods is greatly improved compared with the ordinary time domain and
frequency domain features. The MFLP-MMT method in this paper has the highest accuracy
in all migration tasks, the average recognition rate is 99.97%, the standard deviation is the
lowest, and the stability of the algorithm is the highest. It is proved that the proposed
multiscale sub-band fuzzy entropy feature can deeply explore the essential characteristics
of bearing vibration signals and can more clearly distinguish between the common bearing
faults and current damage faults.

As one of the most basic classification methods, KNN does not change the original
distribution of the classification samples and only measures the Euclidean distance be-
tween samples, so its average accuracy is always the lowest. As a widely used traditional
classification method, the SVM method uses the inner product kernel function instead of
the nonlinear mapping to the high-dimensional space, and the idea of maximizing the
classification margin is the core of the SVM method. Therefore, SVM performs well in
the sample classification of ordinary time-frequency domain features. However, when
we extract multiscale features, the transfer learning method still has obvious advantages.
As a metric transfer learning method, the SSMTL method measures and eliminates the
distribution difference between the source domain and the target domain through the
target domain supervision sample, so it can also have higher accuracy. The reason is that
the different distributions of the variable condition samples are key problems that need to
be solved by transfer learning.

Comparing the results of the transfer tasks A→C and C→A with those of the other
tasks, it can be seen that the larger the span of the variable working conditions of the
bearing, the worse the fault diagnosis effect. The reason is that the two sets of data with
different working conditions have different spatial distributions, and the original space
in which they are located covers its manifold characteristics. The larger the span of the
working conditions, the greater the difference in the spatial distribution. In particular,
for the transfer tasks A→C and C→A with a large span of variable working conditions,
the recognition rate is also increased from about 80% to nearly 100%, which can better
reflect the superiority of multiscale features. At the same time, the proposed MFLP-MMT
method is used to fully mine the internal relationship of the data in the manifold space.
Considering the inter-domain data offset, the source domain training samples are weighted.
Further adjusting the distance between the classes in the domain can effectively avoid the



Lubricants 2023, 11, 69 17 of 23

overlap in the domain and adjust the spatial distribution of the data through iteration.
The results show that the proposed method can effectively and accurately identify the
multiple fault types of motor bearings under variable working conditions, and has a good
performance, which is about 5% higher than the widely used unsupervised transfer learning
method MEDA. The SSMTL method has high accuracy in tasks with a small migration
span, but it is not effective when the working condition span is too large, so this is also its
deficiency. As an unsupervised transfer learning algorithm, this method does not need to
supervise the samples of the target working conditions, and all the damage identification
tasks under variable working conditions are close to 100%, which reflects the superior
performance of this method in the damage identification of bearing shaft current under
variable working conditions.

6.3. Experimental Analysis
6.3.1. Comparison between Manifold Space and Linear European Space

In order to reflect the importance of manifold mapping in this method, we compare the
manifold mapping method LPP used in this method with the traditional linear dimension-
ality reduction method principal components analysis(PCA). By changing the dimension
of the target projection space, the extracted multiscale sub-band fuzzy entropy features
are implicitly projected into the target space to show the necessity of low-dimensional
manifolds, and the experimental results are shown in Figure 8.
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From the figure, it can be seen that after the dimension reduction by LPP manifold,
the fault recognition rate in all dimensions is higher than that of the traditional linear
dimension reduction method PCA, and the advantage is more obvious when the spatial
dimension is lower. In theory, the common fault of the same part of the motor bearing is very
similar to the bearing current damage fault in the original space. As the spatial dimension
changes, it can be found that the low-dimensional manifold space contains more sample
information than the low-dimensional Euclidean space. As the spatial dimension changes,
it can be found that the low-dimensional manifold space contains more sample information
than the low-dimensional Euclidean space. When the manifold space dimension is about
eight, the fault recognition accuracy is basically the highest. Using the linear dimension
reduction PCA method, the fault recognition accuracy is positively correlated with the
spatial dimension, indicating that the low-dimensional original space will lose sample
information, indicating that the low-dimensional manifold mapping can indeed mine
the hidden manifold structure in the original space. At the same time, the space with
lower dimensions can reduce the complexity of the subsequent algorithm and reduce the
computational cost.
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6.3.2. Convergence Analysis of Algorithm

In order to study the convergence of the proposed method in the iterative process, we
analyze the convergence of the algorithm for all variable working condition transfer tasks
in the motor bearing fault data set and compare the two characteristics of the ordinary time
domain frequency characteristics and multiscale sub-band fuzzy entropy. The results are
shown in Figure 9.
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(b) multiscale sub-band fuzzy entropy.

It can be seen from the figure that when the proposed features are the time domain
and the frequency domain, some transfer tasks with small operating ranges can achieve
more than 90% or even 100% accuracy through iteration. For the task A→C and task C→A
with the large cross-domain transfer, because the ordinary time-domain and frequency-
domain features cannot reflect the essential information of the vibration signal, when
the operating conditions of the bearing are too different, the external information will be
reflected. The characteristics of the vibration fault signal are then submerged, which makes
the recognition rate of the fault classification method decrease significantly.

We analyze the recognition results of task A→C and task C→A through the confusion
matrix. As shown in Figure 10, we can see that the shaft current damage fault recognition
rate of the motor bearing is the lowest in both transfer tasks. This is due to the damage
process of the bearing current. It is a gradual evolution process. In the early stage of the
damage, it is difficult to identify the shaft current damage fault of the bearing because the
fault signal is too weak and the working condition changes too much. With the aggravation
of the shaft current damage fault, the shaft current will form an electrical damage fault
on the outer ring, ball, and inner ring of the motor bearing successively. Because the fault
characteristics are not obvious, it is easy to confuse this kind of electrical damage fault with
other common faults, which affects the maintenance and the repair of the equipment in the
subsequent engineering practice.
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Figure 10. Identification results after extracting time domain and frequency domain features: (a) task
A→C; (b) task C→A.

When the proposed feature is multiscale sub-band fuzzy entropy, the accuracy of
the small part of the transfer task in the source domain and the target domain can reach
more than 98% in the first iteration. Only one iteration can obtain a better recognition
performance, and the recognition rate can be improved to about 100% after 2–3 iterations.
Even if the sample label error after the first iteration is large, it can quickly converge to
100% during the iteration, as shown in Figure 11 which is the transfer task C→B iterative
convergence process. Furthermore, for all the transfer tasks in the iterative process, there is
no significant decline in the identification accuracy, indicating that the proposed method
has a good convergence.
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6.3.3. Visual Analysis

In order to observe the distribution of the data more intuitively, t-distribution stochastic
neighbor embedding (t-SNE) algorithm is used to visualize the distribution of the fault
types of tasks A→C and C→B and present the effect of the manifold measurement in the
form of a two-dimensional scatter graph. As shown in Figure 12, “�” represents the source
domain sample and “×” represents the target domain sample.
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C→B); (d) MFLP-MMT (Task: C→B).

It can be seen from the figure that, in the original space, the distribution of the fault
type data under variable working conditions is quite different, and the overlap of the
different types of motor bearing faults is serious. If the traditional machine learning
algorithm is directly used for fault classification, it is easy to confuse the different fault
types, especially for the motor bearing shaft. The recognition effect of the current damage
is very poor. The proposed method can effectively reduce the cross-domain offset, while
the same class of data narrows the distribution distance, achieving the effect of clustering
and the distribution of different classes of samples of alienation, eliminating the overlap
between classes within the domain, and achieving accurate identification of motor bearing
shaft current damage.
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7. Conclusions

In this paper, a method based on multiscale feature label propagation and manifold
metric transfer is proposed to identify the shaft current damage of motor bearings under
variable working conditions. By extracting multiscale sub-band fuzzy entropy, the essential
characteristics of the weak damage signal of the motor bearings are deeply excavated. At
the same time, it makes up for the shortcomings of the existing transfer learning methods
in the fault diagnosis of bearing under variable working conditions, such as only the cross-
domain distribution alignment, ignoring the distribution relationship between classes in
the domain, and ignoring the label information in the domain. It solves the problems that
the existing metric learning methods only focus on the metric of the original space and
do not take into account the manifold relationship between the samples, and breaks the
limitations of the need to supervise the samples in the process of the metric. By finding
the manifold metric with the smallest cross-domain distance and obvious alienation of
heterogeneous samples in the manifold space, the intra-domain overlap phenomenon of
typical damage types of motor bearings is solved. Based on the graph label propagation
method, the limited label information is gradually diffused in the manifold space to realize
the cross-domain propagation of labels, and the problem of the low recognition accuracy
of motor bearing shaft current damage under variable working conditions is solved. The
experimental results show that the proposed method has a good recognition ability for
typical faults of motor bearings and a strong convergence. The average accuracy of the
diagnosis model is close to 100%. In industrial practice, different maintenance measures are
taken, respectively, through the accurate diagnosis of the common faults and shaft current
damage faults of the motor bearings. Moreover, the high accuracy of the fault diagnosis
under variable working conditions greatly reduces the cost of the training diagnosis model.
Only a labeled sample under one working condition can be collected, and the samples
under other different working conditions can be efficiently identified.

In future work, we will continue to explore the recognition ability of MFLP-MMT in
motor bearing current damage identification such as bearing current damage diagnosis for
different types of motors.
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