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Abstract: The wear particle classification algorithm proposed is based on an integrated ResNet50
and Vision Transformer, aiming to address the problems of a complex background, overlapping and
similar characteristics of wear particles, low classification accuracy, and the difficult identification
of small target wear particles in the region. Firstly, an ESRGAN algorithm is used to improve
image resolution, and then the Separable Vision Transformer (SepViT) is introduced to replace
ViT. The ResNet50-SepViT model (SV-ERnet) is integrated by combining the ResNet50 network
with SepViT through weighted soft voting, enabling the intelligent identification of wear particles
through transfer learning. Finally, in order to reveal the action mechanism of SepViT, the different
abrasive characteristics extracted by the SepViT model are visually explained using the Grad-CAM
visualization method. The experimental results show that the proposed integrated SV-ERnet has
a high recognition rate and robustness, with an accuracy of 94.1% on the test set. This accuracy is
1.8%, 6.5%, 4.7%, 4.4%, and 6.8% higher than that of ResNet101, VGG16, MobileNetV2, AlexNet, and
EfficientV1, respectively; furthermore, it was found that the optimal weighting factors are 0.5 and 0.5.

Keywords: wear particle; SepViT; ResNet50; model fusion; weighted soft voting method

1. Introduction

Mechanical equipment condition monitoring is a technology to collect, process, and
analyze the information of mechanical operation status, which has been widely used in
the maintenance of auxiliary equipment [1]. The mature application of this technology can
reduce equipment damage, reduce maintenance costs, reduce productivity loss, and avoid
catastrophic accidents, thus saving a lot of resources for society. The main application fields
include precision and complex mechanical equipment such as aircraft or ship engines, large
machinery with poor operating conditions such as large hydraulic presses, and offshore
drilling platform equipment. Realizing real-time online condition monitoring is of great
significance to ensure the safe and reliable operation of important mechanical equipment,
especially the safe and reliable operation of large ships and aircraft [2].

Many scholars have conducted extensive research on the intelligent recognition of
wear particle images. Fan et al. put forward an online multilabel classification model
WPC-SS for wear particles based on semantic segmentation, which solved the problem
that it is difficult to distinguish tiny wear particles from the background in online images,
but the recognition and classification accuracy of tiny wear particles by WPC-SS needs to
be further improved [3]. Gu Daqiang and others put forward the pattern recognition of
ferrography wear particle analysis based on SVM, which provided an effective method
for the classification of wear particles [4]. This method has high requirements for data
preprocessing and feature extraction and needs to be optimized and improved for each
specific type of wear particle. However, the application process involves a large amount
of data processing and model training, which takes a long time and a large amount of
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computational resources. These studies have carried out the classification and identification
of the manual feature selection of individual particles, but the accuracy is low, the effect
is not obvious, and the result of the algorithm or method is relatively simple. The image
content of the ferrography analysis of wear particles is complex, and different types of
images may have high similarities, such as fatigue wear particles and severe sliding wear
particles [5].

The classification of wear particles involves categorization based on the morphology,
size, chemical composition, and mechanical properties of the wear particles. However, the
complexity of wear particle classification arises from the fact that wear outcomes often
stem from a combination of different wear mechanisms, making the classification process
highly intricate [6]. To gain a comprehensive understanding of wear results, it is essential to
employ a comprehensive approach that integrates multifeature fusion, feature selection and
dimensionality reduction, and an ensemble of multiple classifiers, as well as deep learning
strategies [7]. These methods effectively address the combined effects of different wear
mechanisms, thereby improving the accuracy and robustness of wear particle classification
systems, and are of significant importance for research into wear-related issues.

With the application of CNN in the intelligent identification and classification of fer-
rography wear particle images, this method has gradually become a substitute for manual
and traditional machine learning identification. Scholars have solved many problems in
the traditional wear particle classification method by applying CNN to the wear particle
classification task through research. Wang et al. linked an image recognition model based
on a convolutional neural network with wear particle analysis and proposed a two-stage
wear particle recognition model [8]. Based on the above research results, using CNN to
identify and classify wear particle images can greatly improve work efficiency. However,
it is still necessary to further study and speed up the real-time model identification and
classification, reduce computational complexity and improve accuracy, and solve the prob-
lems of large-scale data training, superparameter adjustment, and data imbalance under
actual conditions.

Wear particle image classification plays an important role in the field of mechanical
equipment fault diagnosis and early warning. Classical deep learning models such as
ResNet101 [9], VGG16 [10], MobileNetV2 [11], EfficientNetV1 [12], and AlexNet [13] have
achieved significant success in other image classification tasks. ResNet101 is a deep residual
network that solves the problem of gradient vanishing by introducing residual connections,
but it has high model complexity. The VGG16 model uses multiple 3 × 3 convolution
layers for feature extraction and exhibits excellent performance in terms of classification
accuracy, but it consumes significant computational resources. The MobileNetV2 model
improves the lightweight nature of the model by using depthwise separable convolution,
making it suitable for applications on mobile devices, but it falls short of 70% accuracy in
wear particle recognition. The EfficientNetV1 balances the width, depth, and resolution
of the network to achieve a better trade-off between performance and computational cost
related to wear particle recognition. However, it still fails to address the issue of low wear
particle recognition accuracy. AlexNet is one of the earliest deep learning models applied
to image classification, combining the advantages of convolutional neural networks and
SVM classifiers, but it cannot recognize similar and overlapping wear particles.

Additionally, new algorithms have been developed to improve the task of mechanical
equipment fault diagnosis and early warning. Yeping Peng et al. integrated transfer
learning and SVM into a convolutional neural network model, successfully establishing a
model for identifying different types of faults [14]. However, this model cannot recognize
new class wear particles that were not encountered during training. Given the limitations of
existing algorithms in mechanical equipment fault diagnosis and early warning tasks, this
paper proposes a novel deep learning algorithm called SV-ERnet. This algorithm combines
the characteristics of ResNet50 and SepViT models and introduces the XAI Grad-CAM
method to explain the reasoning process of the model. Through comparative experiments
and result analysis, we will demonstrate the superiority of SV-ERnet over traditional
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models in the field of mechanical equipment fault diagnosis and early warning, providing
new ideas and methods for research and application in this domain.

In recent years, Vision Transformer (ViT) has been widely used in the field of com-
puter vision by using a pure transformer structure and has achieved great success in the
traditional visual classification task by using its self-attention mechanism and strong global
modeling ability [15]. More and more scholars have made improvements on this basis.
For example, Hao Xu and others put forward a fine-grained classification algorithm based
on a compact Vision Transformer [16], which reduces the dependence on data volume,
cancels the use of classification tokens, and reduces the computational complexity; Jiang
Lei and others put forward a fine-grained classification algorithm of a visual Transformer
based on a circular structure [17], which can greatly improve the performance of the visual
Transformer without changing the parameters. Yuan Yuan and others put forward the re-
search of fundus image classification based on an integrated convolutional neural network
and ViT [18] and obtained better classification results by using two completely different
methods to extract the features of fundus images. The above research provides multiangle
contributions to the field of image classification, but its application in the ferrography image
classification of wear particles needs further study. According to the principle analysis,
ViT may perform better in wear particle classification tasks than CNN. For small wear
particle images, the traditional convolutional neural network needs to reduce the resolution
to keep the information, but this may lead to the loss of information and the decline of
classification accuracy. ViT does not need to subsample or crop the image but can pay
attention to the whole image, thus making full use of the image information. For large
wear particle images, CNN may encounter memory limitations, but ViT is not subject to
this restriction. It divides the image into several sub-blocks for processing, and the results
are finally summarized. This method improves the efficiency of processing large images
without losing information. When designing CNN, it pays attention to the spatial locality
of images and ignores the correlation between different regions. ViT adopts self-attention
mechanism to learn the correlation between different regions in the image, thus improving
the classification accuracy.

To sum up, ViT has superior image processing efficiency, comprehensive information
utilization ability, and strong relevance learning ability when dealing with the classification
of wear particles. These characteristics make it possible to use ViT to achieve a better
performance in wear particle classification. Therefore, further research is needed. On the
basis of ViT, this paper takes into account efficiency, accuracy, and learning ability. SepViT:
Separable Vision Transformer has made the following contributions:

(1) To solve the problem of the low resolution of wear particle images, an ESRGAN is
applied to generate high-resolution images [19].

(2) Combined with the depth, separable convolution [20] has the characteristics of sepa-
rating parameter parameters and reducing parameters and parameters. The depth
SepViT [21] is applied to the classification of wear particles.

(3) Combined with the convolutional neural network, the strong ability to capture local
features can solve the problems of sparse wear particle images and inconspicuous
features, so this paper proposes to apply ResNet50 to wear particle classification.

(4) The optimal weight is calculated by an adaptive weighted fusion algorithm [22], and
the SV-ERnet model is integrated using the weighted soft voting method [23]. The
model can extract the features of ferrography wear particle images in two completely
different ways, so as to achieve a better classification effect and effectively solve
the problems of the complex background, irregular shape, different sizes, and high
similarity of wear particle images.

2. SV-ERnet Algorithm Structure

The SV-ERnet image classification method studied in this paper mainly includes the
following three steps. First, the resolution of the image is improved by ESRGAN. Then,
the SepViT and ResNet50 models are trained, respectively, and the optimal weighting
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factor is calculated by the adaptive weighting algorithm and integrates these two models
together to form a more powerful model-Resnet50-SepViT (SV-ERnet) model. Finally, the
trained SV-ERnet model is used to classify the wear particle images, and the performance
of the model is tested to evaluate its classification accuracy and reliability. The schematic
diagram of the overall algorithm structure is shown in Figure 1. The function of each
module and the principle of the algorithm structure is introduced in detail from Section 2.1
to Section 2.4 below.
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2.1. Image Enhancement Algorithm ESRGAN

ESRGAN is a super-resolution algorithm based on GAN, which realizes the super-
resolution of images by learning the mapping from low-resolution images to high-resolution
images. It uses the confrontational learning characteristics of GAN to continuously optimize
the super-resolution effect of the generator in the confrontation between the generator
and the discriminator. Compared with traditional interpolation algorithms, ESRGAN can
generate more detailed high-resolution images. The schematic diagram of ESRGAN is
shown in Figure 2, and its function is to generate high-resolution pictures by inputting a
low-resolution picture. The network is mainly composed of three parts: (1) a shallow feature
extraction network, which is used to extract shallow features. Low-resolution pictures will
go through a convolution +RELU function to adjust the number of input channels to 64;
(2) an RRDB (residual in residual dense block) network architecture comprising n sets of
RDB (residual dense block) dense residual blocks and one residual edge. Each set of RDB
blocks includes five groups of convolutional layers followed by rectified linear unit (ReLU)
activations; and (3) an upsampling network, whose function is to increase the height and
width of the original image by four times and improve the resolution.
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Figure 2. Schematic diagram of ESRGAN. In the figure, the same convolutional blocks and function
operations are depicted in the same color, and the convolution operation arrows starting at the same
step are also in the same color.

2.2. Deep Separable Vision Transformer (SepViT)
2.2.1. Parameter Operation Analysis of Depthwise Convolution Parameters

Depthwise convolution can be divided into two parts, as shown in Figure 3, namely,
depthwise convolution and pointwise convolution, respectively [24]. Different from the
conventional convolution operation, depth separable in the convolution process, one
channel of the feature map is convolved by only one convolution kernel, and the number
of convolution kernels is equal to the number of channels. Therefore, the expression of
depthwise convolution is as shown in Equation (1):

Gi,j,m =
w,h

∑
w=1,h=1

Kw,h,mgXi+w,j+h,m (1)



Lubricants 2023, 11, 530 6 of 24

where G is the output feature graph, K is the convolution kernel with width w and height
h, X is the input feature graph, m is the m-th channel of the feature graph, i,j are the
(i,j) coordinates of the output feature graph on the m-th channel, and w and h are the
convolution kernel weight element coordinates of the m-th channel.
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are used to represent feature maps of different channels.

Point-by-point convolution is basically the same as ordinary convolution, except that
the size of the convolution kernel is set to 1 × 1. The schematic diagram of depth separable
convolution is shown in Figure 3. Firstly, the features of each channel are extracted by the
depth convolution, and then the features are correlated by point-by-point convolution. In
the figure, Df and N are the side length and channel number of the input feature graph,
Dk is the side length of the Dw convolution kernel, and M is the channel number of the
Pw convolution. The depthwise convolution replaces the standard convolution with less
parameters and computation, which is compared with the computation of the standard
convolution, as shown in Equation (2):

P1

P2
=

D2
f D2

k M + D2
f MN

D2
f D2

k MN
=

1
N

+
1

D2
k

(2)

where P1 and P2 are the calculation quantities of depthwise convolution and standard
convolution, respectively.

In the process of feature extraction, the size of the convolution kernel is usually 3 × 3.
Therefore, the amount of calculation and parameters of the depthwise convolution is about
1/9 of that of the conventional convolution. From the comparison of calculation amount,
SepViT, which uses the idea of depthwise convolution, is smaller than the parameters and
parameter operations of ViT, thus learning more deeply.

2.2.2. SepViT Algorithm Principle

SepViT uses conditional position coding. SepViT at each stage has an overlapping
patch merging layer for feature image downsampling, followed by a series of SepViT
blocks. The spatial resolution is downsampled step by step with stride = 4 or stride = 2,
reaching 32 times downsampling, and the channel size is gradually doubled. This operation
comes from PVT(Pyramid Vision Transformer). Compared with ViT, PVT introduces a
pyramid structure similar to CNN. Compared with the traditional ViT, the core optimization
of SepViT lies in the calculation of attention. The internal self-attention mechanism is
redesigned mainly through depthwise convolution, in which Sep-attention consists of
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two parts: depthwise convolution self-attention and pointwise convolution self-attention,
and the depth convolution self-attention is mainly used for feature map extraction. The
principle structure diagram of SepViT is shown in Figure 4.
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SepViT DWA (depthwise self-attention) is a self-attention scheme based on windows,
which simplifies interactive calculation computing between windows by introducing an
independent window token. The token can be initialized to a fixed vector or a learnable
vector. Experiments show that the learnable vector is better than the strategy based on
average pooling and depthwise convolution. Through DWA, the interaction between
the window token and pixel token in the window is realized, so it can be used as the
global representation of the window and perform an attention operation on the sequence
set of all pixel tokens in the window and the corresponding window token and process
the information in a separate window. This operation can regard them as a channel for
inputting the feature map, and these windows contain different information. Therefore,
the window-wise operation here is similar to the depthwise convolution layer, which
aims at fusing the spatial information in each channel. The principle diagram of the deep
convolution self-attention convolution operation is shown in Figure 5.
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The implementation of DWA can be summarized as in Equation (3):

DWA(z) = Attention(zgWQ, zgWK, zgWV) (3)

where z is a feature token, which consists of pixels and a window token. WQ, WK, and WV
represent three linear layers, which are used for the general self-attention of query, key, and
value calculation, respectively. Attention refers to the standard self-attention operator that
works on the local window.

PWA builds a cross-window interaction by simulating pointwise convolution for
associated channels, so as to obtain the final feature map. Firstly, the feature map and
window tokens are extracted from DWA, and then the window tokens are used to model
the attention relationship between windows. After LN (layer normalization) and Gelu
(activation function), Q and K are obtained by two independent linear mappings, and an
attention map between windows is generated. At the same time, the previous feature map
is directly regarded as the V of PWA (without additional processing), and the window
dimension is globally weighted to calculate the final output. The schematic diagram of the
point-by-point convolution self-attention operation is shown in Figure 6.
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Formally, the implementation of PWA can be described as in Equation (4):

PWA(z, wt) = Attention(Gelu(LN(wt))gWQ, Gelu(LN(wt))gWK, z) (4)

Group Self-Attention (GSA)

In addition to DWA and PWA, the SepViT’s depth separation from the attention
mechanism also introduces the idea of the grouping convolution of AlexNet [25]. As shown
in Figure 7, the grouping self-attention mechanism splices adjacent subwindows into larger
windows, which is similar to dividing windows into group. Using DWA in a group of
windows, GSA can capture the long-term visual dependence of multiple windows. In terms
of calculation cost and performance gain, GSA has additional cost to DSSA (depthwise
separable self-attention), but it also has better performance. Finally, the block with GSA is
applied to SepViT and runs alternately with DSSA in the later stage of the network.
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2.3. ResNet50 Algorithm Principle

ResNet50 is a deep convolution neural network, which extracts image features through
multiple convolution layers and pooling layers and inputs these features into the fully
connected layer for classification. The whole network structure is divided into five stages
and an output layer. Stage0 includes a convolution layer and a maximum pooling layer for
adjusting image input; Output layer is composed of global average pooling layer and fully
connected layer, which is used to output the classification results of images. Except Stage0
and Output layer, the other four stages adopt residual network structure. The schematic
structure diagram of the ResNet50 network is shown in Figure 8.

In ResNet50, a bottleneck is widely used in the residual network, which is mainly
used to solve the problem of different channels. The bottleneck includes two modes: when
the number of input and output channels is the same, the BTNK2 mode is adopted; when
the number of input and output channels is different, the BTNK1 mode is adopted. The
BTNK2 mode has two variable parameters, C and W, which, respectively, represent the
number and width of channels in the input shape (C, W, W). Let x be input with the shape
of (C, W, W) and let the three convolution blocks on the left side of BTNK2 (and related BN
and ReLU) be the function F(x), then the output of BTNK2 is F(x) + x, and the output shape
is still (C, W, W) after a ReLU activation function. The BTNK1 mode includes a convolution
layer on the right, which turns the input x into G(x) to match the difference in the number
of input and output channels and then performs the summation operation F(x) + G(x).

Specifically, each residual block in ResNet50 includes two paths: one is to directly
transfer the input data to the output, and the other is to perform convolution and activation
function processing on the input data and then add the processed result with the original
input to obtain the output. This design can avoid the problems of gradient disappearance
or explosion during training and help the network learn more complex features. Finally,
ResNet50 can classify the input images efficiently and accurately, so it is widely used in
various image-related tasks.
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2.4. Fusion Integration Model

In this study, an integrated model of prediction results is used to improve the classifi-
cation accuracy. The research shows that the greater the difference among the models, the
better the integrated model performance [26]. SepViT is a new type of ViT, which has the
ability of mining long-distance dependencies and powerful parallel computing, but like ViT,
it lacks the inductive bias of convolutional neural networks, such as translation invariance
and local correlation. On the other hand, ResNet50 is a powerful convolutional neural
network, but its core convolution operation lacks the global understanding of the image,
cannot build dependency between features, cannot make full use of context information
and convolution fixed weights, and cannot dynamically adapt to the changes of input.

In order to solve the problem of abrasive image classification, this paper combines
SepViT and ResNet50 models to distinguish the image differences comprehensively by us-
ing two different feature extraction methods to obtain better classification results. Through
the adaptive weighting algorithm, the optimal weighting factor is determined after testing,
and the improved soft voting method is used to integrate the model. In the process of
classification, an adaptive weighted fusion algorithm is adopted, the core idea of which
is to adaptively find the optimal weighting factor corresponding to each classification
model based on the accuracy of all classifications in order to obtain the optimal fusion
result. There are two classification models in this study, so let the variance of the two
classification models be σ2

1 and σ2
2 , respectively, and the true value to be estimated is S.

The classification accuracy of each classification model is X1 and X2, which are unbiased
estimates of S and independent of each other. The weighting factors of each classification
model are W1 and W2, respectively, so the fused X̂value and each weighting factor satisfy
the following conditions: {

X̂ = W1X1 + W2X2
W1 + W2 = 1

(5)
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Population variance is

σ2 = E
[
W1(S− X1)

2 + W2(S− X2)
2
]
= W1

2σ1
2 + W2

2σ2
2 (6)

According to Equation (6), E represents the expected value, population variance σ2 is a
multivariate quadratic function about each weighting factor W1 and W2 of the classification
model, and there must be a minimum value, and its minimum population variance is

σmin
2 =

1
1

σ1
2 +

1
σ2

2

(7)

The corresponding optimal weighting factors are

W1 =
1

σ1
2
(

1
σ1

2 +
1

σ2
2

) (8)

W2 =
1

σ22
(

1
σ1

2 +
1

σ2
2

) (9)

After calculating the variance and adaptive optimal weighting factor of each classifica-
tion model by using Equations (6)–(9), and then carrying out adaptive weighted fusion on
the data of each classification model, the calculated value after fusion is

X̂ =
2

∑
P=1

WPXP(k) (10)

In Equation (10), WP represents the weighting factor corresponding to the P-th model,
XP is the average of multiple prediction results from the P-th model, and k denotes the
number of predictions. {

σ2 = 1
k
(
W1

2σ1
2 + W2

2σ2
2)

σmin
2 = 1

k

(
1

σ1
2 +

1
σ2

2

) (11)

Equation (11) can be used to calculate the fused population variance and minimum
population variance and evaluate the accuracy after fusion. The calculated weighting
factors are 0.4 and 0.6, and each sample xmn is subjected to binary soft voting under each
category label. The classification probability of each sample xmn under two models of each
category label is

pmn = (p0mn, p1mn, p2mn, p3mn, p4mn) (12)

where P0mn represents the probability that the m-th sample is judged as a positive example
class under the 0-th category label of the n-th model and P1mn, P2mn, P3mn, P4mn, and so on.
After finding Pmn, the output of the SepViT model is the probability of the tag multiplied by
the weighting factor W1, and the output of the CNN model is multiplied by the weighting
factor W2. After adding the two, the predicted output of the sample is the probability of
this label, that is

Pm =
2

∑
n=1

pmn·Wn (13)

Find the final classification probability Pm of the sample xmn under the five categories
of labels, and output the label with the highest probability of the sample under Pm.

3. Experiment
3.1. Experimental Dataset Making

This experiment uses BRUKER’s latest testing machine UMT Tribo Lab to adjust the
type of friction pair, friction distance, and reciprocating frequency and speed by changing
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the form of friction [27]. Table 1 lists the main parameters of the reciprocating module of
the BRUKER testing machine. After many experiments and comparisons, the conditions
for generating different wear particles were found, such as severe sliding wear particles
under the condition of boundary lubrication for 5 h and fatigue wear particles under the
condition of boundary lubrication for 20 h. In addition, serious sliding and fatigue wear
particles can be generated in the rotary pin experiment under the conditions of a pressure of
260 N and a wear time of 10 h, and cutting wear particles can be generated in the four-ball
experiment under the conditions of a pressure of 500 N and a wear time of 1 h. Through
these experiments, we obtained all kinds of images of wear particles and formed a dataset.
As shown in Figure 9, this is a schematic diagram of the experimental process in this paper.

Table 1. Main parameters of the BRUKER testing machine reciprocating module [28].

Parameter Control Range

Loading force range 0.1 mN~1000 N
Loading force accuracy <0.1% maximum range

Maximal friction 500 N
Reverse module range Maximum of 120 mm

The rate of reciprocating motion 0.001~100 mm/s
Temperature control range −35~1000 ◦C

Temperature control accuracy <0.1 ◦C
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Figure 9. Experimental flow chart.

This article explores wear particles’ varied shapes from different observation angles
and employs 3D reconstruction techniques to capture topological images and the morpho-
logical features of their surfaces [29]. We also consider the influence of texture types on the
particles’ surface characteristics by extracting and analyzing texture information, thereby
enhancing the reliability of wear particle classification.

After high-temperature testing, wear particles may adhere to the worn surface [30]. To
address this, we utilize scanning electron microscopy (SEM) to directly collect and observe
the morphology and composition of these particles. The high-resolution imaging capability
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of SEM enables the accurate classification and identification of different types of wear
particles based on characteristics such as morphology, size, color, and composition [31].

The present study classifies and identifies various types of wear particles, includ-
ing cutting wear particles, severe sliding wear particles, fatigue wear particles, oxidation
wear particles, and spherical wear particles, as shown in Figure 10. A total of 4435 im-
ages of these wear particles was captured using experimental equipment with dimen-
sions of 2568 × 1912 pixels. The dataset was processed and enhanced using the image
enhancement algorithm ESRGAN. Subsequently, the images were resized to a dimension
of 640 × 640 pixels to create a comprehensive dataset for further analysis. The image
data were appropriately organized into corresponding folders based on their classification.
Detailed information regarding the dataset can be found in Table 2 below.
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Table 2. Wear particle dataset.

Type of Wear
Particles

Number of
Training Set

Number of
Validation Set

Number of
Test Set

Total Number
of Images

Cutting 537 179 179 895
Fatigue 684 228 228 1140

Oxidation 462 154 154 770
Slide 552 184 184 920

Spherical 426 142 142 710

The SV-ERnet integrated model is employed in this study for the classification and
recognition of wear particle images. The collected dataset is divided into a training set,
verification set, and test set with proportions of 60%, 20%, and 20% respectively. Ten
separate experiments are conducted while keeping the training set, verification set, and
test set unchanged, with the average value from these experiments considered as the
final result.

3.2. Experimental Parameter Setting

In this paper, the experimental environment uses an Intel (R) Core (TM) i7-9700k CPU
@ 3.60 GHz, with 32.0 GB of memory and GPU NVIDIA Geforce RTX3090. The open source
pytorch framework is adopted in the software environment to build the network model
and carry out experiments. Because there are few samples collected, this paper uses the
Augmentor data enhancement method in Python to enhance the dataset and improve the
generalization of the training model.

3.3. Evaluation Indicators

The test set is divided into five categories, which can be defined as t = (t1, t2, t3, t4, t5).
In the test set, the prediction class p = (p1, p2, p3, p4, p5) is obtained. In order to compare
the performance with other models, this study uses five indicators as evaluation criteria:
A (accuracy), P (precision), R (recall), S (specificity), and F1-Score. Firstly, TP, FP, TN, and
FN are defined. TP is defined as the number of pictures that the predicted tag matches the
target tag, as shown in Equation (14):

NTP,i = |Pi ∩ Ti|, i = 1, 2, 3, 4, 5 (14)
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FP is defined as the number of pictures that the predicted tags do not match the real
target tags, as shown in Equation (15):

NFP,i = |Pi\Ti|, i = 1, 2, 3, 4, 5, (15)

FN is defined as the number of pictures that do not belong to the target tag but are
wrongly predicted, as shown in Equation (16):

NFN,i = |Ti\Pi|, i = 1, 2, 3, 4, 5; (16)

TN is defined as the number of pictures that do not belong to the target label and are
predicted correctly and are not classified, as shown in Equation (17):

NTN,i = ∑
d∈C,d 6=c

|Td| (17)

Therefore, the calculation equations of A, P, R, S, and F1-Score are as follows:

A =

5
∑

i=1
NTP,i

5
∑

i=1
(NTP,i + NFP,i + NFN,i + NTN,i)

, i = 1, 2, 3, 4, 5 (18)

P =
NTP,i

NTP,i + NFP,i
, i = 1, 2, 3, 4, 5 (19)

R =
NTP,i

NTP,i + NFN,i
, i = 1, 2, 3, 4, 5 (20)

S =
NFP,i

NTN,i + NFP,i
, i = 1, 2, 3, 4, 5 (21)

F1− Score =
2× P× R

P + R
(22)

In Equations (18)–(22), i represents the sample label category. If the accuracy and
precision are closer to 1, the model is more reliable.

4. Results Analysis
4.1. Visual Interpretation of Intelligent Classification Results and Models

Through the analysis of experimental data, it can be seen that the two subnetwork
models have a high accuracy improvement speed in the first 20 rounds of iteration. At
20 rounds, the accuracy of both models can be improved to about 80%. With the increase
in iteration times, the training accuracy of SepViT gradually exceeds that of ResNet50,
and the verification accuracy is similar. As shown in Figures 11b and 12b, during the first
20 iterations of the two models, both the training loss and the verification loss showed a
rapid downward trend. With the increase in iteration times, the training loss and verification
loss of ResNet50 decreased almost synchronously, while the loss gap of SepViT became
wider and wider. The training loss was lower than that of ResNet50, and the verification
loss was higher than that of ResNet50, as shown in Figures 11a and 12a.
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Through the analysis of experimental data, it can be seen that the trained model draws
the confusion matrix on the test set. From the results of confusion matrix, it can be seen that
compared with ResNet50, the SepViT model is better than ResNet50 in identifying cutting
wear particles, fatigue wear particles, oxidized wear particles, and spherical wear particles.
However, SepViT did not perform well in feature recognition between severe sliding wear
particles and fatigue wear particles, with 41 misjudgments, the data indicated by the two
red arrows in Figure 13b. In contrast, ResNet50’s residual convolution neural network
enables it to better understand and classify the characteristic differences between severe
sliding wear particles and fatigue wear particles. ResNet50 has only 25 misjudgments
of severe sliding and fatigue wear particles, the data indicated by the two red arrows in
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Figure 13a. This shows the advantages of SepViT in global feature capture wear particle
analysis and the defects in local feature capture. Therefore, in terms of feature capture, it can
be analyzed that the processing methods of ResNet50 and SepViT will have an important
impact on the results, as shown in Figure 13a,b.
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In addition, we compared the integration model SV-ERnet proposed in this paper with
other deep learning methods such as ResNet101 [32], VGG16 [33], MobileNetV2 [34], Effi-
cientV1 [35], and AlexNet. Table 3 shows the recognition results of the different models on
the datasets. The results show that our method is superior to other methods in recognition
accuracy and has achieved a competitive performance. Specifically, the depth separable Vi-
sion Transformer (SepViT) we use improves the recognition accuracy by 1.8–6.8% compared
with some conventional networks.
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Table 3. Comparison of the test accuracy of different models.

Model Accuracy/%

ResNet101 92.3
VGG16 87.6

MobileNetV2 89.4
EfficientNetV1 89.7

AlexNet 87.3
SV-ERnet 94.1

In order to further understand the advantages of the integrated model in this paper,
the proposed SV-ERnet and other models evaluated the classification effect of each kind of
wear particle in detail. The specific details are shown in Figure 14a–d, which, respectively,
correspond to the performance indices of each model for identifying different wear particles,
namely, precision, recall, specificity, and F1-Score. From the histogram results, it can be seen
that SV-ERnet has more comprehensive advantages than other models and has the best
effect in the task of wear classification.
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Figure 14. (a) Comparison of the precision in wear particle identification for each model. (b) Compar-
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4.2. Ablation Experiment

In order to better explore the performance data of each network category in model
fusion, we designed the following steps of an ablation experiment:

(1) Select SepViT as the experimental model and record its experimental results.
(2) Select ResNet50 as the experimental model and record its experimental results.
(3) Conduct a model fusion experiment with the trained ResNet50 and the trained SepViT

and record the experimental results.

The confusion matrix diagram shows the test results of the integration model on the
test set, as shown in Figure 15. Compared with the test results in Figure 13a,b, the total
number of mistakes for severe sliding wear particles and fatigue wear particles is 29, the
data indicated by the two red arrows in Figure 15. The comparison results show that
the integrated model SV-ERnet is more stable than ResNet50 and SepViT, and the data
prediction results are more uniform and reliable. This perfectly takes into account the
advantages of the residual convolutional neural network and Vision Transformer.
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In order to better analyze the differences of classification effects among ResNet50,
SepViT, and SV-ERnet for different wear particles, we recorded Tables 4–6 for the test set,
which, respectively, correspond to the classification and identification performance indices
of ResNet50, SepViT, and SV-ERnet for different wear particles. These tables provide
the identification A, R, F1 score, and other indicators of each model on various types of
wear particles.

Table 4. ResNet50 test set results (accuracy = 92.1%).

Precision/% Recall/% Specificity/% F1-Score/%

Cutting 93.3 93.9 98.3 93.6
Fatigue 93.0 87.7 97.7 90.3

Oxidation 94.2 9.48 98.8 94.5
Slide 84.4 94.0 95.4 88.9

Spherical 98.5 91.5 99.7 94.9
Average 92.7 92.4 98.0 92.4

Table 5. SepViT test set results (accuracy = 92.3%).

Precision/% Recall/% Specificity/% F1-Score/%

Cutting 95.7 98.3 98.9 97
Fatigue 86.8 92.1 95.1 89.4

Oxidation 96.1 89.6 99.2 96.1
Slide 89.9 82.1 97.6 85.8

Spherical 96.4 94.4 99.3 95.4
Average 93.0 92.6 98.0 92.7

Table 6. Test set results of SV-ERnet (accuracy = 94.1%).

Precision/% Recall/% Specificity/% F1-Score/%

Cutting 97.8 97.8 99.4 97.8
Fatigue 92.1 92.1 97.1 91.9

Oxidation 96.2 97.4 99.2 96.8
Slide 88.5 91.8 96.9 90.1

Spherical 99.2 91.5 99.9 95.6
Average 94.7 92.4 98.5 94.4

From the analysis of the results, although the model SV-ERnet is not superior to
ResNet50 or SepViT in the recognition accuracy of some specific wear particles, on the
whole, the overall performance of the integrated model SV-ERnet is stable and powerful,
and it can always maintain a high accuracy and stable performance for complex multi-
class wear particle classification tasks. This shows that model fusion can improve the
comprehensive performance while maintaining the advantages of each individual model.

In the above experiments, the analysis shows that the integrated model SV-ERnet
has the best effect, but considering different weighting factors may further improve the
performance of the model, so a radar chart is used to compare the accuracy of the integrated
model under different weighting factors. The results show that the best effect is 94.1%
when the weight of ResNet50 is set to 0.5 and the weight of SepViT is set to 0.5, the data
indicated by the red box and arrows in Figure 16 is optimal. After analysis, it is found that
the accuracy of the integrated model is even lower than that of the submodel in the case of
a large difference in weight setting. Therefore, it is analyzed that the recognition weight of
the low-weight model will cause some interference to the recognition and classification of
another high-weight model in the case of a large difference in weight.
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4.3. The Visualization and Analysis of Grad-CAM Results

Interpretability is very important for the task of wear particle image classification.
Therefore, in this paper, the weighted gradient-like activation thermography (Grad-CAM)
method is adopted to analyze the feature importance of wear particle image features [36].
The interpretability of the model allows classifiers to locate feature regions more efficiently
and make effective judgments. As shown in Figure 17, two important types of abnormal
wear particles, fatigue and severe sliding wear particles, were selected. The darker color in
the activated heatmap indicates that the integrated model SV-ERnet, due to the utilization of
depthwise separable convolutions and self-attention mechanisms, focuses more accurately
on the regions during feature extraction and recognition compared to ViT and SepViT. It
exhibits higher attention and learns more deeply than ViT and SepViT, leading to higher
accuracy in recognition and classification.
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4.4. t-SNE Clustering Results

In order to analyze the distribution of the training set data more clearly and intuitively,
we use the trained ResNet50, SepViT, and SV-ERnet to analyze the clustering results of the
training set image data through the t-SNE algorithm, and the clustering results are shown
in Figure 18a,b. In the figure, each color represents different kinds of wear particles, and
there are five kinds. The distribution positions of the characteristic clusters of the same kind
of wear particle are different, mainly because the characteristic shapes of different wear
particles are different, and the background complexity is also different. The classification
in the three pictures is different, which shows that there are great differences between the
three models in their understanding of the same wear characteristics. From the overall
clustering results, the SV-ERnet model proposed in this paper has strong robustness for the
identification of wear particles with different characteristics under different background
conditions. This shows that the SV-ERnet model has extracted the features conducive to
wear particle identification and classification in the training set. Therefore, the effective-
ness of the ResNet50, SepViT, and SV-ERnet models in the multifeature recognition and
classification of different wear particles in a complex background has been verified.
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5. Conclusions

The proposed SV-ERnet integration model combines the optimized network structure
of ResNet50 and SepViT. A convolutional neural network (CNN) takes a convolution kernel
as its core and has inductive bias characteristics such as translation invariance and local
sensitivity. It can capture local spatiotemporal information, but it lacks a global understand-
ing of images. Compared with CNN, the Transformer’s self-attention mechanism is not
limited by local interaction, which cannot only mine long-distance dependencies but also
calculate in parallel. In this study, ResNet50 is selected as the CNN model and SepViT as
the main model. The optimal weighting factor is calculated by an adaptive weighted fusion
method, and the model is integrated by the weighted soft voting method. Experiments
show that the two models are integrated, and applied to wear particle image classification,
the accuracy of the integrated model is improved by 2.0 and 1.8%, the accuracy is improved
by 1.7% and 2.0%, and the specificity is improved by 0.5%. From the curve results, it can be
seen that the training accuracy of SepViT always shows an upward trend, which indicates
that the effect of the model will be further improved if more time and cost are invested.
If the model is applied to the fault diagnosis of mechanical equipment, it can improve
the working efficiency of inspectors, effectively alleviate the problems of a long waiting
time and the difficult classification of wear particles, and obtain better results in the online
analysis and fault diagnosis of oil.

The proposed SV-ERnet model, combined with the XAI Grad-CAM visualization
method, has broad potential for industrial applications. In the future, it can play a positive
role in fields such as diagnosing and the early warning of faults in the maritime and aviation
industries, medical image analysis, and industrial product defect detection.
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Abbreviations
The following abbreviations are used in this manuscript:

ESRGAN Enhanced Super-Resolution Generative Adversarial Network
SepViT Separable Vision Transformer
SVM Support Vector Machine
ViT Vision Transformer
ResNet50 Residual Network 50
DWA Depthwise Self-Attention
PWA Pointwise Self-Attention
GSA Group Self-Attention
t-SNE t-Distributed Stochastic Neighbor Embedding
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