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Abstract: Laser cladding is a new technology for fabricating coatings with good properties, such as
wear resistance, lubrication, and corrosion resistance. Usually, parts of 45 steel are used as a shaft
under conditions of high-speed rotation or friction and wear, and they have a short service life and
sometimes cause accidents. In order to avoid serious accidents, a cladding coating made from a
Ni-based alloy with ceramic particles was fabricated via laser technology on a substrate of 45 steel
in this research. The microstructure and properties were investigated via SEM, EDS, XRD, and a
wear and friction tester. The results show that there was an obvious boundary between the cladding
coating and the substrate. The main phases were γ(Fe, Ni), WC, TiC, Cr2Ti, and Cr23C6. In the
middle of cladding coating, the microstructure was composed of dendrite and cellular crystals, while
the microstructure was composed of equiaxial crystals in the bonding region. Inside the cellular
crystal, the main phase was γ~(Fe, Ni), which occasionally also showed the appearance of some
white particles inside the cellular crystal. Compared with the cellular crystal, the boundary had less
of the Fe and Ni elements and more of the Cr and W elements. The amount of C element around
the dendrite crystal was more than that around the boundary of cellular crystal due to the long
formation time of dendrite. The white particles around the boundary were carbides, such as WC and
Cr23C6 phases. Meanwhile, the segregation of the Si element also appeared around the boundaries of
the crystal. The maximum microhardness was 772.4 HV0.5, which was about 3.9 times as much as
the substrate’s microhardness. The friction coefficients of the 45 steel substrate and Ni-based alloy
coating were usually around 0.3 and 0.1, respectively. The Ni-based coating had a smaller coefficient
and more stable fluctuations. The wear volume of the cladding coating (0.16 mm3) was less than
that of the substrate (1.1 mm3), which was about 14.5% of the wear volume of 45 steel substrate. The
main reason was the existence of reinforced phases, such as γ~(Fe, Ni), Cr23C6, and Cr2Ti. The added
small WC and TiC particles also enhanced the wear resistance further. The main wear mechanism
of the cladding coating was changed to be adhesive wear due to the ceramic particles, which was
helpful in improving the service life of 45 steel.

Keywords: laser cladding; 45 steel; WC; TiC; microhardness; wear resistance

1. Introduction

Laser cladding is a surface modification technology with the advantages of causing no
pollution, and comprising a short process and smart manufacturing, and it is widely used
in the steel, automobile, and aeronautical and space fields [1–3]. Usually, 45 steel parts
are used as the shaft under the condition of high-speed rotation or friction and wear [4–7].
In these harsh conditions, these parts usually have a short service life or cause accidents.
In order to avoid serious accidents, some surface modification technologies are used to
improve the properties of 45 steel parts. Of these, laser cladding is a new technology to
enhance the service life of parts and equipment and is widely used in production [8–12].

Researchers have used lasers to fabricate coatings with different alloy powders, such
as Ni-based, Co-based, and Fe-based alloy powders [13–19], of which the Ni-based alloy
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powder is widely used due to its advantages. Zhang et al. fabricated a Ni60 coating on a
45 steel substrate and investigated the friction and wear behavior of the cladding coating.
The microhardness of the coating was about 2.6 times as much as that of the substrate. The
wear rates of the coating were about 1/6.2 of that of the substrate under the higher load [20].
Zhu et al. used laser cladding technology to remanufacture the broken 45 steel part with
H13 steel powder, which led to a higher hardness and better wear resistance [21]. Liu et al.
prepared a Ni60-Cu composite coating, which was used to enhance wear resistance [22].

In order to enhance the properties of a Ni-based alloy coating, the benefits of the
addition of some ceramic particles, such as WC and TiC, were investigated [23–27]. Liu
et al. prepared four Ni-based alloy coatings with different amounts of WC-TiC ceramic
particles in order to improve the wear resistance and service life of die steel. The result
was that, when the mass fraction of WC particles was 30%, the coating had the minimum
wear volume and demonstrated the best wear resistance [8]. Xiao et al. took WC as the
reinforcing phase particles; the Fe-WC composite coatings with mass fractions 0~60 wt.%
of WC were fabricated on a 15CrNiMo steel cone bit via laser cladding. The result was
that the existing WC and W2C, as well as the presence of precipitated M23C6, M7C3, and η

phases, were significant in the improvement of the wear resistance of WC-Fe composite
coatings [28]. Chen et al. investigated the effect of WC particles on the corrosion properties
of laser cladding composite coatings. The experimental results showed that better corrosion
properties were obtained owing to the synergistic effect of the excellent performance
and fine microstructures of the composite coatings with the ultrafine WC particles of a
nano-size [29]. Although 45 steel parts have been improved using Ni-based alloy powder,
the Ni-based alloy with ceramic particles WC and TiC has not been investigated on the
substrate of 45 steel. The higher properties of 45 steel parts are also required due to the
harsh operating conditions. The effect of different WC and TiC particles on a Ni-based alloy
coating was not clear, which restricted the improvement in the wear and friction properties
of the Ni-based alloy coating. Therefore, it is of great significance to fabricate a coating with
ceramic particles on the substrate of 45 steel, which is helpful in obtaining good properties
for, and improving the service life of, 45 steel parts.

In this paper, laser cladding technology was used to fabricate a coating. The Ni-
based alloy powder was selected, and some ceramic particles of WC and TiC were added
to this powder, which was used to fabricate a coating on the substrate of 45 steel. The
microstructure and properties were investigated via SEM, XRD, a Vickers microhardness
meter, and a wear and friction tester. The research focused on the effect of different WC
and TiC particles on a Ni-based alloy coating.

2. Materials and Methods
2.1. Materials

A 45 steel plate was selected as the substrate (Dongzhuang Mould Co., Ltd., Shanghai,
China). The length, width, and height were 80, 50, and 20 mm, respectively. The chemical
composition is included in Table 1. The mass fraction of the C element was approximately
0.42–0.5%. The mass fraction of the Mn element was approximately 0.5–0.8%. The mass
fraction of the Si element was approximately 0.17–0.37%. The mass fractions of the S and P
elements were less than 0.035%. The remainder was represented by Fe.

Table 1. The chemical composition (wt.%) of 45 steel.

Element C Mn Si S P Fe

Mass fraction (%) 0.42–0.5 0.5–0.8 0.17–0.37 ≤0.035 ≤0.035 Bal.

The Ni-based alloy powder was selected as the cladding material (Zhuoyue Metal
Products Co., Ltd., Shandong, China). In order to enhance the properties of the cladding
coating, ceramic particles of WC and TiC were added. The chemical composition is included
in Table 2. The mass fractions of the C, Si, B, and Fe elements were about 0.65, 4.2, 4.6, and
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6.3%, respectively. The mass fractions of WC and TiC were 10 and 10%, respectively. The
remainder was represented by the Ni element.

Table 2. The chemical composition (wt.%) of Ni-based alloy powder.

Element C Si B Fe Cr WC TiC Ni

Mass fraction (%) 0.65 4.2 4.6 6.3 17.5 10 10 Bal.

2.2. Experimental Methods

Laser cladding was a technology where the laser was used as the energy source. Before
the beginning of the experiment, the cladding material would be put on the surface of
a 45 steel substrate. The laser moved on this surface with the robotic arm or a mobile
machine tool. Then, the cladding material melted with the energy of laser, and it became
a molten pool. After a few seconds, the molten pool cooled and solidified, and it became
a coating.

In this research, a CO2 laser was used to fabricate the coating (DL-HL-T2000). The
wavelength was 10.6 µm. In order to obtain a good coating, the laser power was set
as 1700 W, and the scanning speed was set as 100 mm/min during the process of laser
cladding. The spot diameter was 2.1 mm. The laser cladding coating would be cut into three
pieces, and they were investigated using instruments. The microstructures were observed
via scanning election microscopy (SEM, FEI Quanta 200), and the element distribution
was analyzed via energy dispersive spectrometer (EDS, 10 kV voltage). The phases were
detected via X-ray diffraction (XRD, TD-3500). The microhardness was tested via a Vickers
microhardness meter (HXD-1000TMC/LCD) with a load of 500 gf at 15 s. The first point
was 0.1 mm away from the surface of the cladding layer. The distance of subsequent points
was 0.1 mm. The points of three rows were measured on the surface of samples. Then, the
average value was calculated and its standard error was also calculated. The friction and
wear properties were tested via a reciprocating fatigue friction and wear tester (MGW-02).
The GCr15 ball was used to connect the sample surface. The tip force and friction frequency
were 10 N and 2 Hz, respectively. The scratch would appear on the surface of the cladding
coating under the function of tip force and friction frequency.

3. Results and Discussion
3.1. Phases

Figure 1 shows the X-ray diffraction pattern of the Ni-based alloy cladding coating
with WC and TiC ceramic particles. It can be seen that the main phases are γ~(Fe, Ni),
WC, TiC, Cr2Ti, and Cr23C6. The Ni and Fe elements formed γ~(Fe, Ni) solid solution, and
the Cr and C elements in the Ni-based alloy powder formed the Cr23C6 phase. The γ~(Fe,
Ni) and Cr23C6 were the typical phases in the Ni-based alloy powder, and they formed
the basic properties, such as microhardness, wear and corrosion resistance. Some added
ceramic particles of WC and TiC existed in the coating as the original pattern. The others
decomposed under the high laser energy. It also can be seen that there were some Cr2Ti
formed in the coating.

3.2. Microstructure

Figure 2 shows the SEM images of the whole and bonding region of the laser cladding
coating. In Figure 2a, the whole layer was smooth and had no crack, which had a good
quality, however, it can also be seen that there were some holes. The bonding region
between the cladding layer and substrate was obvious. In Figure 2b, it can be seen that
the layer was connected with the substrate, which had a metallurgical bonding. The layer
also had some smaller crystals than the bonding and substrate. Some dendrite crystals
appeared at the bottom of layer as shown at the location of the arrows, because the cooling
rate was smaller than that of the upper layer; therefore, the crystals had more time to grow.
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Figure 2. SEM images of the whole (a) and bonding region (b) of laser cladding coating.

Figure 3 shows the SEM images in the middle and bonding region of the laser cladding
coating. In Figure 3a, it can be seen that there were many cellular crystals and a few
dendrites. Because the overcooling degree and temperature gradient became smaller in
the middle of laser cladding coating, the direction of crystal growth was not obvious.
Meanwhile, the decomposed ceramic particles WC and TiC also needed some laser energy,
which hindered the crystal growth and formed some small compounds. So there were
more cellular crystals in the middle of the laser cladding coating. When the cooling rate
was small, a few dendrites can also appear in the middle of the laser cladding coating. In
Figure 3b, it can be seen that the crystals in the bonding region were bigger than those in
the middle of the laser cladding coating. The reason was that the bonding region had a
long time to be liquid, which offered the crystal enough time to grow. On the other hand,
the molten pool in the bonding region included more of the Fe element, which formed
more Fe and Ni solid solution. There were a few ceramic particles to form crystal nuclei in
the bonding region. Therefore, a lot of big crystals appeared in the bonding region.

Figure 4 shows the SEM images and elemental distribution of W, Ti, C, Fe and Ni.
In Figure 4a, it can be seen that there were some particles in the background. The size of
the particles was in the range of 0.5 µm to 3 µm. In order to investigate these particles
and background, an elemental distribution was obtained. In Figure 4b–d, the particles
included more W, Ti, and C elements. It can be known that those were WC and TiC particles
combined with analysis of the main phases. The WC and TiC ceramic particles appeared
in the crystals and boundary. Some carbides were smaller than 1 µm, which had the
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function of fine grain strengthening. In Figure 4e,f, the background area had more Fe and
Ni elements, and they formed the Fe and Ni solid solution. Therefore, the crystal took the
Fe and Ni solid solution as the background, and the carbides were uniformly distributed in
the interior and boundary of the crystal. The combination of those phases was helpful in
improving the properties of laser cladding coating.
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Figure 5 shows the SEM images and points 1 and 2 inside the cellular crystal. It can be
seen that the crystals were basically cellular crystals. In order to investigate the elemental
distribution inside the cellular crystals, points 1 and 2 were selected in Figure 5a,b. In
Figure 5a, point 1 was in the cellular crystal, but point 2 was the white particle in the
cellular crystal.
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Table 3 includes the percentage of elemental distribution at point 1 and 2 inside the
cellular crystal. Point 1 had the Fe element of 67.0 wt.% and the Ni element of 14.8 wt.%;
meanwhile, there were some Cr, W, and Si elements. So, the main phase was γ~(Fe, Ni)
in the cellular crystal. Some white particles appeared inside the cellular crystal as shown
with point 2. From Table 3, it can be known that point 2 had the Fe element of 41.6wt.%
and the Ni element of 5.2 wt.%, and there were less than those of point 1. The reason was
that the Cr and C elements increased. Therefore, the white particle may be some carbide,
such Cr23C6 and WC.

Table 3. Percentage of elemental distribution at point 1 and 2 inside the cellular crystal (wt.%).

Element Fe Ni C Si Cr W

Point 1 67.0 14.8 1.7 1.3 9.7 5.5
Point 2 41.6 5.2 19.3 0.5 28.5 4.9

Figure 6 shows the SEM images and points 3 and 4 inside the cellular crystal. It can
be seen that the crystals were cellular and dendrite crystals. In order to investigate the
elemental distribution around the crystals, points 3 and 4 were selected in Figure 6a,b. In
Figure 6a, point 3 was selected around the boundary of cellular crystal and point 4 was
selected around the boundary of dendrite crystal.
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Table 4 includes the percentage of elemental distribution at point 3 and 4 around the
boundary of cellular and dendrite crystals. Point 3 had the Fe element of 50.2 wt.%, the Cr
element of 29.0 wt.%, and the Ni element of 5.3 wt.%; meanwhile, there were some C, W,
and Si elements. Compared with point 1, the boundary had less Fe and Ni elements and
more Cr and W elements. It means that the carbides appeared more around the boundary.
Point 4 had the Fe element of 46.7 wt.%, the Cr element of 21.5 wt.%, and the Ni element of
9.6 wt.%; meanwhile, there were some C, W, and Si elements. Compared with point 3, the
amount of the C element was more than that of point 3. It demonstrates that there were
more carbides formed during the formation of dendrite crystals. Because the process of the
dendrite formation was a long time compared to cellular crystals, the carbides had more
time to form.

Table 4. Percentage of elemental distribution at points 3 and 4 around the boundary of cellular and
dendrite crystals (wt.%).

Element Fe Ni C Si Cr W

Point 3 50.2 5.3 2.7 0.3 29.0 12.5
Point 4 46.7 9.6 12.2 0.3 21.5 9.7

Figure 7 shows the SEM images and points 5 and 6 of the white particles around the
boundary. It can be seen that the white particles were usually around the boundary of
crystals. There were also some white particles inside the crystals. Points 5 and 6 were
selected from different positions around the boundary of crystals. In order to investigate
the white particles, the element distribution was detected.
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Table 5 includes the percentage of the elemental distribution at points 5 and 6 of
white particles around the boundary. Point 5 had the Fe element of 27.3 wt.% and the Ni
element of 4.6 wt.% Fe and the amounts of C, Si, Cr, and W elements were 11.9, 6.1, 9.6 and
40.5 wt.%, respectively. The W element had the maximum weight compared with the other
elements. It means that the main carbides were WC phase. Point 6 had the Fe element of
29.6 wt.% and the Ni element of 4.8 wt.% and the amounts of C, Si, Cr and W elements
were 25.5, 16.7, 18.4 and 5.0 wt.%, respectively. Compared with point 5, point 6 of the white
particles around the boundary included more Si and C elements. On the one hand, the
white particles were from some carbides, such as WC and Cr23C6 phases. On the other
hand, the segregation of the Si element appeared around the boundary of crystal.
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Table 5. Percentage of the elemental distribution at points 5 and 6 of white particles around the
boundary (wt.%).

Element Fe Ni C Si Cr W

Point 5 27.3 4.6 11.9 6.1 9.6 40.5
Point 6 29.6 4.8 25.5 16.7 18.4 5.0

3.3. Microhardness

Figure 8 shows the microhardness of the laser cladding coating from the surface to the
bottom. The maximum microhardness was 772.4 HV0.5, which appeared near the surface of
the laser cladding coating. The microhardness of the 45 steel substrate was about 200 HV0.5.
The maximum microhardness of the laser cladding coating was about 3.9 times higher than
the substrate. In the middle of the layer, the error bars were larger than others. It means
that the values of microhardness in the middle had large fluctuations due to the large
amount of the reinforced particles. Along with the increase in the distance from the surface
to the bottom, the microhardness decreased. The reason was that more and more substrate
materials entered into the laser cladding coating, and they caused the decrease of coating’s
microhardness. The microhardness near the bonding region was around 400 HV0.5, which
was less than that of the layer and more than that of the 45 steel substrate. It can be seen
that the phases γ~(Fe, Ni) and Cr23C6 could increase the microhardness of the cladding
coating, and the added WC and TiC ceramic particles made this microhardness increase
further, which formed a cladding coating with better properties.
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3.4. Friction and Wear Resistance

The GCr15 ball was used for the friction and wear test. The ball radius was 6.5 mm.
The length and width of the friction trace on the surface of the coating and substrate were
measured and are included in Table 6. The length and width of the friction trace on the
surface of substrate were 5.58 and 2.48 mm, respectively. The length and width of the
friction trace on the surface of the Ni-based coating were 5.23 and 1.35 mm, which were
less than those of substrate.
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Table 6. The length and width of the friction trace on the surface of coating and substrate.

Item Ball Radius (mm) Length (mm) Width (mm)

Ni-based coating 6.5 5.23 1.35
Substrate 6.5 5.58 2.48

In order to investigate the wear and friction, the wear volume was also calculated [30].
Figure 9 shows the wear volume of the 45 steel substrate and Ni-based coating for 20 min.
It can be seen that the wear volume of the Ni-based coating (0.16 mm3) was less than that of
the 45 steel substrate (1.1 mm3). The wear volume of the Ni-based coating was only 14.5%
of the substrate’s wear volume, which had a better wear resistance. The main reason was
that the Ni-based alloy powder could form some reinforced phases, such as γ~(Fe, Ni) and
Cr23C6, and the added WC and TiC ceramic particles formed some Cr2Ti phases. There
were still some small WC and TiC particles in the crystals. These phases increased the wear
resistance of the Ni-based coating.
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Figure 10 shows the friction coefficient of the substrate and Ni-based coating for
20 min. The friction coefficient of the 45 steel substrate was in the range of 0.16–0.49, and
it was usually around 0.3. This friction coefficient became stable after 30 s. The friction
coefficient of the Ni-based alloy coating was in the range of 0.02–0.19, and it was usually
around 0.1. After 10 s, the friction coefficient became stable. It can be seen that the Ni-based
coating had a smaller coefficient and more stable fluctuations. The reinforced phases and
small crystals made the friction and coefficient between GCr15 ball and Ni-based alloy
coating smaller.

Figure 11 shows the microscopic morphology on the sliding surface of the substrate
and Ni-based coating. In Figure 11a, it can be seen that there were some spalling zones
with the large area and deep furrows on the sliding surface of the substrate. The main wear
mechanism of the substrate was abrasive and adhesive wear. In Figure 11b, there were
some spalling zones with the small area and shallow furrows on the sliding surface of the
cladding coating. The main wear mechanism of the cladding coating was adhesive wear.
The added WC and TiC ceramic particles provided more hard particles and changed the
wear mechanism. Therefore, the ceramic particles not only increase the microhardness of
the cladding coating, but also offer a good wear resistance.
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Figure 11. Microscopic morphology on the sliding surface of substrate (a) and Ni-based coating (b).

4. Conclusions

(1) A Ni-based cladding coating with the WC and TiC ceramic particles was fabricated
on the surface of a 45 steel substrate. In this coating, some phases were found, such as
γ~(Fe, Ni), WC, TiC, Cr2Ti, and Cr23C6. The added ceramic particles of WC and TiC existed
in the coating as the original pattern. The others decomposed under the high laser energy.
In the middle of the cladding coating, there were many cellular crystals and a few dendrites.
In addition, there were some dendrite crystals that appeared at the bottom of the cladding
layer due to the smaller cooling rate. The bonding region between the layer and substrate
was obvious and had a metallurgical bonding.

(2) Inside the cellular crystal, the main phase was γ~(Fe, Ni), which also had some
white particles appear occasionally. Compared with the cellular crystal, the boundary
had less Fe and Ni elements and more Cr and W elements. The dendrite crystal had a
greater amount of the C element than the cellular crystal. The white particles around the
boundary were carbides, such as WC and Cr23C6 phases. Meanwhile, the segregation of
the Si element also appeared around the boundary of crystal.

(3) The maximum microhardness was 772.4 HV0.5, which was about 3.9 times higher
than the substrate. Along with the increase of the distance from the coating’s surface to
the bottom, the microhardness decreased gradually. The reason was that the proportion
of substrate materials increased gradually along with this distance, and it caused the
decrease of this coating’s microhardness. The phases γ~(Fe, Ni) and Cr23C6 could increase
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the microhardness of the cladding coating, and the added WC and TiC ceramic particles
enhanced this microhardness further.

(4) The friction coefficients of the 45 steel substrate and Ni-based alloy coating were
around 0.3 and 0.1, respectively. The Ni-based coating had a smaller coefficient and more
stable fluctuations. The length and width of the friction trace on the surface of the Ni-based
coating were less than the substrate. The wear volume of the cladding coating (0.16 mm3)
was less than the substrate (1.1 mm3), which was about 14.5% wear volume of substrate.
The main reason was the existence of reinforced phases, such as γ~(Fe, Ni), Cr23C6, and
Cr2Ti, which offered a basic wear resistance. The added small WC and TiC particles also
enhanced this wear resistance further.
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