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Abstract: This study establishes the geometric model of cycloid–pin gear meshing transmission based
on the multi-tooth meshing characteristics of the cycloid speed reducer. The calculation and analysis
of meshing motion parameters of the cycloid speed reducer are carried out. An integrated calculation
flow is presented for solving the question of the loaded tooth contact of the cycloid speed reducer by
using the elimination clearance method of gradual contact and the quasi-Hertz contact simulation
of the tooth surface under loads. The loaded transmission error is obtained, and both the number
of pins participating in the meshing and the contact area of tooth surfaces are determined. Using
the regression formula of the wear coefficient, the dynamic wear coefficient is quickly solved on
the instantaneous contact line of the tooth surface. Thereby, the wear distribution law of two tooth
surfaces appears. The results show that there is a singular point in the wear of the pin teeth, with a
maximum wear of 100 µm, that seriously affects the meshing accuracy of the tooth surface and thus
affects the accuracy and lifespan of the reducer.

Keywords: cycloid–pin gear reducer; elimination clearance; regression formula; loaded contact
analysis; multi-tooth meshing

1. Introduction

The precision maintenance and reliability of gear reducers are crucial to the operating
performance of robots. At the same time, the manufacturing industry’s current develop-
ment has put forward high requirements for high-precision robot reducers, the precision of
tooth clearance and angle transmission is less than one arc cent, and the rated life is better
than 10,000 h. Because of its multi-tooth meshing characteristics and complex structure, the
mechanism of the impact of tooth surface wear on the life accuracy of a cycloid–pin gear
reducer is not clear.

To improve the service life of the reducer, the wear distribution of the tooth surface
and the influence of tooth modification parameters on its working performance have
been researched.

Xu et al. [1–3] proposed a dynamic analysis method for the multi-tooth meshing
contact of a cycloid speed reducer considering the influence of crank bearing to accurately
predict the number of pin teeth engaged in meshing and the characteristics of the multi-
point contact of crank bearing when considering the assembly clearance. According to
the features of the over-constrained structure of the RV reducer, Yang [4] established
and verified the relationship between the original error and the transmission accuracy.
Li et al. [5] presented an unloaded and loaded tooth contact analysis model of the cycloid–
pin gear. They predicted the load on each part of the reducer with clearance and eccentric
error. Sun [6] designed a new structure China bearing reducer and proposed a parabolic
modification to improve transmission accuracy through tooth contact analysis. Based on
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the minimum energy principle analysis method, Li [7] obtained the load characteristics in
line with reality and determined the number of pin teeth involved in meshing.

According to the meshing principle of the tooth surface, Song and Li [8,9] established
the model of the sliding speed and sliding coefficient of the meshing point and determined
the relevant parameters from the point of view of improving anti-gluing ability and trans-
mission efficiency. Yi [10] derived the general formula for calculating the slip rate using the
conjugate contact curve of the tooth profile and concluded that the slip rate of the line–face
meshing pair was significantly lower than that of the face–face meshing pair. Wang [11]
investigated the change in the sliding speed of the meshing point in the cycloid–pin wheel
transmission process and compared the roller’s effect on sliding loss. Ji [12] analyzed the
meshing process of the cycloid speed reducer, discussed the influence of the motion state
of the pin on the slip coefficient, and then evaluated the wear of the cycloid gear tooth
profile. Xu [13] studied the slip ratio of the new cycloid gear transmission and analyzed
the influence of transmission parameters on the slip ratio. Zhang [14] proposed a new
method to calculate the parameters of the quasi-hyperbolic pitch cone, which simplified
the calculation process and used two kinds of characteristic functions to calculate the point
slip characteristics of the meshing tooth surface.

The wear changes the tooth surface and load distribution, increases the transmission er-
ror, reduces the transmission precision, and causes vibration and noise, which will seriously
induce or accelerate gear failure [15,16]. The main wear form of gears is adhesive wear [17].
The Archard wear model agrees well with the observed results [18]. Anderson [19,20]
extended Archard’s wear formula and proposed a single-point observation method to cal-
culate the wear of involute spur and helical gears. Flodin [21] estimated the wear of helical
gears using the slicing method, which simplified the helical gears into multiple thin-slice
spur gears stacked along the axis and rotated in turn at small angles. Janakiraman [22]
determined the wear coefficient under different operations and surface conditions through
experiments and gave a regression formula to estimate the wear coefficient. Considering the
effect of oil film thickness on the wear of tooth profile, refs. [23,24] proposed an approximate
analytical model of the wear coefficient. Terauchi and Feng [25,26] calculated the change in
gear meshing stiffness with uniform wear, dynamic cumulative wear, micro-pitting, and
macroscopic pitting.

Ning [27] proposed the coupling calculation model of adhesive wear and EHL lubrica-
tion. Utilizing substituting the wear amount into the dynamic model as the backlash, he
calculated the dynamic meshing force and wear amount under different meshing times.
Shen [28] adopted an analytical modeling method to quantitatively study the influence rule
of gear wear on time-varying meshing stiffness and dynamic parameters of unload static
transmission error. Su [29] established the wear calculation method of a cycloid–pinwheel
using the discrete approach of a tooth profile. Zhang [30] discussed the influence of wear
dynamic evolution on the degradation of the core transmission performance, transmission
error, and meshing torsional stiffness of an RV reducer. Reference [31] calculated the in-
fluence of input speed and torque on efficiency under four different loads. Reference [32]
analyzed the influence of damping on transmission efficiency. Zhou and Wang [33–35]
established an adhesive wear model of helical and double-helical gears in line contact
hybrid EHL lubrication. They proposed a wear life prediction model to evaluate their
wear resistance.

Much research has focused on the friction and wear of simple tooth profiles. However,
there are few studies on the wear of cycloid–pin gear transmission and few on the impact
of tooth surface wear on the accuracy and life of the transmission system. Therefore, it is
necessary to study the loaded contact analysis of the cycloid speed reducer, the roll–slip
mechanism of the cycloid–pin gear, and the wear evolution of the two tooth surfaces to
solve the problems of poor accuracy retention and a short service life. Therefore, this
paper establishes the bearing contact analysis model of a cycloid–pin gear and proposes
the eliminating method to solve the problem of multi-tooth contact. Using the empirical
regression formula of wear coefficient, the instantaneous wear coefficient of the tooth
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contact line is determined, avoiding the problem of low efficiency in determining wear
coefficient through the equivalent test. The wear distribution of the two tooth surfaces in
the load-bearing process is analyzed based on the classical wear model. The influence of
the movement state of the needle teeth on the wear distribution of the two tooth surfaces is
compared, and the influence mechanism of tooth surface wear on the life precision of the
reducer is further determined, which lays a foundation for the subsequent complete life
cycle design.

2. Construction of Cycloid Gear Tooth Profile Equation

In the process of cycloid–pin gear transmission, the cycloid gear both revolution and
rotation. According to the principle of relative motion, giving the whole mechanism an
angular speed equal to the crankshaft speed and opposite to the direction ωH, the relative
motion relationship between the cycloid gear and the pin gear remains unchanged,
and the whole mechanism is transformed from a planetary mechanism to a fixed-axis
mechanism. In the conversion mechanism, the cycloid gear and the pin gear are internally
engaged transmissions.

As shown in Figure 1, sf(xf − yf−zf) is fixed to the frame in a fixed coordinate system,
and of is the coordinate origin; s1(x1 − y1−z1) and s2(x2 − y2 − z2) are fixedly connected
with the pin gear and cycloid gear, respectively, which is the dynamic coordinate system;
o1 and o2 are the origin of the corresponding coordinate system; o1 coincides with of; the
distance o1o2 is the eccentricity e; point M is the meshing contact point; θ is the angle
parameter of M on the pin tooth; ϕ1 and ϕ2 are the angles of the pin gear and cycloid gear
relative to the rotary arm o1o2.
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The formula of the transmission ratio of a fixed-axle gear train is

i12 =
ω1

ω2
=

ϕ1

ϕ2
=

zc

zp

where zc and zp are the numbers of teeth of the cycloid gear and pin gear, respectively.
The position vector of the pin tooth profile in the coordinate system s1 is

r1(θ) =

 rrpsin θ
rp − rrpcos θ

1

 (1)

where rp is the radius of the distribution circle of the pin tooth, and rrp is the radius of the
pin tooth.
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After coordinate transformation, the theoretical tooth profile of the cycloid gear in the
coordinate system s2 can be expressed as

r2(θ, ϕ1) = M2f(ϕ2)Mf1(ϕ1)r1(θ) =


−rpsin

(
ϕ1
zc

)
− rrpsin

(
θ − ϕ1

zc

)
+ esin zp·ϕ1

zc

rpcos
(

ϕ1
zc

)
−rrpcos

(
θ − ϕ1

zc

)
− ecos zp·ϕ1

zc

1

 (2)

where K1 =
e·zp
rp

, θ = tan−1 K1sin ϕ1
1−K1cos ϕ1

, and M2f and Mf1 are coordinate transformation
matrices. Then, ϕ1 = (0, 2π), the single tooth profile of the cycloid gear is derived by the
enveloping method, where ϕ1 = zc·α, α = (0, 2π), and the equation of the whole tooth
profile of the cycloid gear is obtained as follows:

r2(α) =

−rpsin (α)− rrpsin (θ − α) + esin
(
zp·α

)
rpcos(α)−rrpcos (θ − α)− ecos

(
zp·α

)
1

 (3)

To compensate for manufacturing and installation errors and ensure sufficient lubrica-
tion in a practical cycloid drive, it is necessary to modify the cycloid profile to produce the
essential backlash. The tooth profile equation of the cycloidal gear is given, which includes
equidistant modification, offset modification, and combination modification:

x2 = −(r p + ∆rp) sin(α)− (r rp +∆rrp
)

sin(θc − α)

+esin
(
zp·α

)
y2 = (r p + ∆rp) cos(α)− (r rp +∆rrp

)
cos(θc − α)

−ecos
(
zp·α

) (4)

where θc = tan−1 k1· sin(zc·α)
1−k1·cos(zc·α) , the lower subscript 1 represents the coordinate system s1,

α is the tooth profile parameter of the cycloid gear, ∆rp is the amount of displacement
correction, ∆rrp is the isometric modification amount, and k1 =

e·zp
rp+∆rp

.

3. Tooth Contact Analysis (TCA)
3.1. Unloaded TCA on Cycloid–Pin Gear

According to the engagement relationship of the cycloid–pin gear, the position rela-
tionship is shown in Figure 2, where αi is the tooth profile parameter of a point on the
cycloid gear, βi is the tooth profile parameter of a point on the pin gear,θbi is the angle
between the center of the i pin tooth and the turning arms yf, and λi is the angle between
the common normal of the contact point M and the rotating arm yf. Because of tooth profile
modification, the cycloid gear and pin gear do not mesh at the initial installation position,
and there is a gap between each tooth pair. To make the cycloid–pin gear entangle and keep
the cycloid gear motionless, turn the pin gear and calculate the rotation angle ϕi of each
pin tooth entering the meshing.γmin = min(ϕi) is determined as the initial meshing angle,
and the second pin tooth is the first contact with the cycloid gear profile.

The tooth surface vector r1 and unit normal vector n1 of the contact point M in the pin
gear coordinate system s1 are represented, respectively, as

(βi) =

rrpsin βicos 2πi
zp
− sin 2πi

zp

(
−rrpcos βi + rp

)
rrpsin βisin 2πi

zp
+ cos 2πi

zp

(
−rrpcos βi + rp

)
1

 (5)

n1(βi) =

∂r1
∂βi
× K∣∣∣ ∂r1

∂βi
× K

∣∣∣ (6)
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The vector equation r2 and unit normal equation n2 of the contact point M on the
modified cycloid tooth profile can be expressed in the coordinate system s2 as follows:

r2(αi) =


−(r p + ∆rp) sin(αi)− (r rp +∆rrp

)
sin(θc − αi)

+esin
(
zp·αi

)
(r p + ∆rp) cos(αi)− (r rp +∆rrp

)
cos(θc − αi)

−ecos
(
zp·αi

)
1

 (7)

n2(βi) =

∂r2
∂βi
× K∣∣∣ ∂r2

∂βi
× K

∣∣∣ (8)

According to the principle of coordinate transformation, the pin gear tooth surface
vector r1 and unit normal vector n1 and the cycloid gear tooth surface vector r2 and unit
normal vector n2 are, respectively, expressed in the fixed coordinate system sf through
coordinate transformation: {

rf1(βi, ϕ1) = Mf1(ϕ1)r1(βi)
nf1(βi, ϕ1) = Mf1(ϕ1)n1(βi)

(9)

{
rf2(αi, ϕ2) = Mf2(ϕ2)r2(αi)

nf2(αi, ϕ12) = Mf2(ϕ2)n2(αi)
(10)

Mf1(ϕ1) =

cos ϕ1 −sin ϕ1 0
sin ϕ1 cos ϕ1 0

0 0 1

 (11)

Mf2(ϕ2) =

cos ϕ2 −sin ϕ2 0
sin ϕ2 cos ϕ2 e

0 0 1

 (12)

For any instant, the geometric coordination condition of the contact between the
cycloid gear and the pin gear is that the position vector is equal to the unit normal vector;
that is, {

rf1(βi, ϕ1) = rf2(αi, ϕ2)
nf1(βi, ϕ1) = nf2(αi, ϕ2)

(13)

According to the tooth profile equation, meshing motion, and geometric position
relationship of the cycloid–pin gear, the position relationship of each meshing point is
derived. For the convenience of the solution, the parameter value of each meshing point
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without modification is taken as the initial value of the iteration of the parameter value
of each meshing point after modification, and the position shown in Figure 2 is taken as
an example. 

ϕ0
2 = ϕ1·

zp
zc

α0
i = 2π·i−θbi

zc
β0

i = π ∓ λi − θbi

where λi = cos−1 (rp·s1)
2
+(a·zp)

2−r2
p

2·(rp·s1)·(a·zp)
, s1 =

√
1+ k2

1− 2k1cos θbi, θbi =
2πi
zp

+ ϕ1, 0 < θbi < π is

negative, and π < θbi < 2π is positive.
At the initial meshing position, let ϕ1 = γmin ± ∆ϕ, calculate a series of position

parameters of meshing points, and obtain the corresponding cycloid gear rotation angle
ϕ2 at every instantaneous pin gear rotation angle ϕ1. The transmission error of cycloid–
pinwheel is obtained.

In the process of continuous transmission, each pin tooth participates in meshing
successively, so the geometric transmission error curve is a curve that changes periodically.
Based on this, the transmission error curve of each pin tooth and the cycloid gear is
expressed in the same coordinate system, and the comprehensive transmission error curve
can be obtained.

3.2. Loaded Contact Analysis (LTCA) of Cycloid–Pin Gear

According to the meshing information and contact parameters obtained by the above
unloaded TCA, the performance of load distribution can be further determined by the
method of LTCA.

When not loaded, only a pair of teeth contact; the other teeth, due to the existence
of backlash, do not engage. When the load Tc is applied, for any ith pair of teeth, if the
relative displacement δi caused by the elastic deformation between the gear pairs exceeds
its initial clearance di, the teeth participate in contact.

After modification, the tooth profile of the cycloid gear is no longer conjugated with
that of the pin gear, the instantaneous transmission ratio changes with the angle of rotation,
and node P changes with the angle of rotation. Therefore, the traditional calculation formula
of force arm and backlash is no longer suitable for modified cycloid–pin gear transmission.
The procedure for calculating the accurate contact force arm is given in reference [7].

Li(αi) =

∣∣−n2x·e + n2x·r2y − n2y·r2x
∣∣√

n2
2x + n2

2y

(14)

where
(
r2x, r2y

)
is the coordinate of a point on the cycloid tooth profile and

(
n2x, n2y

)
is the

common normal direction of the engaging point of the cycloid–pin gear.
Literature [36] uses the heuristic optimization method to determine the actual gap

between components of the cycloid–pin gear reducer considering machining error. Litera-
ture [7], through analysis of the traditional calculation method of initial meshing clearance,
uses the method of combining geometric analysis and TCA to obtain the side clearance di
at any meshing position as follows:

di =

√
(x1i − x2i)

2 + (y1i − y2i)
2 − rrp (15)

where (x1i, y1i) is the coordinate of the center of the ith pin tooth and (x2i, y2i) is the coordinate
of the corresponding point on the cycloid tooth profile meshing with the pin tooth.
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3.2.1. Hertz Contact Analysis

According to Hertz contact theory, the contact half-width ai and the total contact
deformation δi can be expressed as [5]:

ai =

√
4Fi ·|ρi |

πb ·
(

1−µ2
1

E1
+

1−µ2
2

E2

)

δi =
2Fi
πb

 1−µ2
2

E2

(
ln 4·|ρ2i |

ai
− 0.5

)
+

1−µ2
1

E1

(
ln 4·rrp

ai
− 0.5

)
 (16)

where b is the tooth width of the cycloid gear, Fi is the normal contact force, µ1 and µ2
are the Poisson’s ratio of the pin gear and cycloid gear, respectively, E1 and E2 are the
elastic modulus, ρ2i is the radius of the curvature of the meshing point on the modified
cycloid gear, and ρi is the comprehensive curvature radius of the engagement point of the
cycloid–pin gear.

3.2.2. Static Balance and Deformation Compatibility Conditions

When the cycloid–pin gear is driven by load, there are n teeth involved in the meshing,
and the sum of the moments produced by the n teeth should satisfy the static equilibrium
condition. Although the deformation caused by the force of each tooth is different, the
relative angular displacement si of the cycloid–pin gear is equal everywhere, which is
the loaded transmission error. Therefore, the coordination equations of deformation δi,
meshing clearance di, and force arm Li can be determined as follows:Tc = 2·

n
∑

i=1
Fi·Li

si =
δi+di

Li

(17)

3.2.3. Determination of Contact Load and Meshing Tooth Logarithm by Clearance Method

After modification, the contact order of the potential meshing pairs is determined by
the ascending arrangement according to the size of the initial backlash. When the contact
deformation δ1 produced by the initial meshing teeth is greater than the clearance d2 of the
adjacent teeth, the second tooth engages in meshing, the energy superpositions until the
sum of the torques generated by the number of teeth in contact are equal to the load torques,
and the coordinate balance Equation (17) is satisfied. Then, the tooth number, load-bearing
transmission error, contact mark, and related mechanical parameters are determined.

3.3. Determination of Motion Parameters

As shown in Figure 1, the cycloid gear meshes with the pin teeth, and the instantaneous
meshing point in the diagram is M. To obtain the velocity vector of meshing point M along
the meshing line, it is necessary to solve the meshing line equation formed by the meshing
point in the fixed coordinate system, which is expressed as

rF = MF2r2

The velocity vector of the contact point M on the pin gear is ω1 × r1, and the velocity
vector of the M point along the pin tooth profile is dr1

dt

drF
dt

=
dr1

dt
+ ω1 × r1

Similarly:
drF
dt

=
dr2

dt
+ ω2 × r2
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The vector v1r of the motion speed of the meshing point M relative to the tooth profile
of the pin gear in the fixed coordinate system sf is:

v1r = Mf1
dr1

dt

Similarly:

v2r = Mf2
dr2

dt
The relative motion speed v12 of the cycloid gear and the pin gear at the meshing point

M is:
ν12 = Mf2

dr2

dt
−Mf1

dr1

dt
For cycloid–pin gear planetary transmission, the sliding coefficient σ1 of the cycloid

gear tooth profile is:

σ1 =
v12

v2r

Then, the sliding coefficient σ2 of the tooth profile of the pin gear is:

σ2 =
−v12

v1r

4. Adhesive Wear Calculation Model
4.1. Archard Adhesive Wear Calculation Model

The calculation of adhesive wear was proposed by Archard, and the formula is

V
s
=

k
3
· W

H
(18)

where V is the wear volume, s is the slip distance, k is the dimensionless wear coefficient, H
is the soft contact surface hardness, and W is the contact surface load.

Anderson [15–17] further extended Archard’s wear formula and proposed a single-
point observation method (discretizing the contact tooth surface into a finite number of
observation points) by calculating the wear depth of discrete points to characterize the
wear distribution of the tooth surface. The method assumes that the contact pressure
of the discrete points remains constant and the sliding distance is constant during a
meshing period.

hp,n = hp,n−1 + k0 · pp,n · sp (19)

This paper focuses on the study of the contact tooth surface wear depth of a cycloidal–
pin gear under the conditions of multi-tooth engagement, dynamic wear coefficient, time-
varying contact pressure, and transient slip distance. It provides the theoretical basis for
the anti-friction and anti-wear design of a cycloid–pin gear reducer.

4.2. Dynamic Wear Coefficient k0

Dynamic wear coefficient is affected by material properties, surface roughness, lubri-
cation conditions, and operating conditions. Based on the influence of oil film thickness on
the wear of the tooth profile, Priset and Taylor put forward an approximate solution model
of the wear coefficient, and this brings difficulty to the solution of the wear coefficient.
JANAKIRAMAN [22], through the experiment, carried on the statistical analysis of the
influence wear coefficient factor and obtained the following regression formula:

k0 =
3.981× 1029

Eq
L1.219G−7.377S1.589 (20)
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where L, G, S are dimensionless load, dimensionless lubrication pressure–viscosity coeffi-
cient, and dimensionless comprehensive roughness considering the influence of meshing
point curvature, respectively

L =
qj

EqRbj
G = αEq S =

Rc
α

Rbj

1
Eq

=
1− v2

1
E1

+
1− v2

2
E2

Rc
α =

√
Rα1 + Rα2

Based on this, the instantaneous wear coefficient of each point on the contact tooth
surface can be calculated in a meshing and meshing interval.

4.3. Slip Distance

The slip distances s1 and s2 of point M on the cycloid gear tooth profile are calculated
by the following formula: {

s1 = 2aH · |σ1|
s2 = 2aH · |σ2|

(21)

4.4. Calculation of Tooth Surface Wear

By using Formulas (20) and (21), the tooth surface wear distribution of the cycloid–pin
gear in a meshing period can be obtained:

∆h1,2 = k0 · py · s1,2 (22)

If the cumulative wear of the tooth surface is minor, the tooth surface morphology
and load remain almost unchanged. To ensure the efficiency of calculation, this paper
reconstructs the tooth profile by setting the worn threshold when the cumulative wear of
the tooth surface exceeds the threshold, obtains the geometric parameters and the pressure
distribution after the wear, recalculates the relevant parameters, and proceeds to the next
iteration until the total cumulative wear amount reaches the wear failure value (the wear
amount of one side profile should not exceed 5% of the tooth thickness); then, the iteration
is completed. The flow chart of the whole analysis process is as follows in Figure 3.
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5. Simulation Results and Analysis

The design parameters of the cycloid–pin gear are shown in Table 1.

Table 1. Basic parameters of cycloidal pin gear pair.

Parameter Value

Number of cycloid gear teeth 39
Number of pin teeth 40

Radius of pin position (mm) 66
Poisson ratio 0.3

Radius of pin teeth (mm) 3
Tooth modification parameter for pin center distance (mm) 0.05

Tooth modification parameter for pin radius (mm) 0.03
Cycloid gear width (mm) 10

Roller gear (mm) 22
Elasticity (GPa) 206

Eccentricity (mm) 1.3
Input torque (Nm) 400

Surface roughness of cycloid gear and pin teeth (µm) 0.4

5.1. Calculation Results of TCA

The results of UTCA and LTCA are shown in Figure 4. Locally magnified figure A
shows no load, only one pair of teeth participate in the meshing, and the transmission
error varies periodically from −0.018′′ to 0 to 0.018′′. The part below the TE curve does
not participate in the meshing. The interval between the pin teeth meshing to the meshing
is (−0.03959, 0.1177) rad, and the period T is 0.1571 rad. According to the error curve of
single-tooth transmission, given any pin gear angle ϕ1, the unique meshing parameters
(ϕ2, α, β, i) can be determined. The curvature radius of side clearance, contact force arm,
and cycloid gear can be further determined.
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When the load is 400 Nm, more teeth are engaged, the interval between the pin teeth
meshing to the meshing is (−0.985, 0.4193) rad, and the formula is calculated according to
the effective coincidence degree

ε =
0.985 + 0.4193

T
= 8.94

This indicates that at least eight pairs of teeth are involved in meshing.
Based on the LTCA analysis of the full-meshing period, the movement and load of the

No. 4 pin from meshing to meshing are calculated, as shown in Figure 5. From Figure 5, the
tooth profile range and the change law of meshing and meshing load contact force in the
process of the cycloid–pinwheel drive can be clearly defined, which lays a foundation for
calculating the wear depth of two tooth surfaces when No. 4 pinwheel tooth participates in
the meshing drive.
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5.2. Dynamic Wear Coefficient

According to the distribution law of the wear coefficient in Figure 6, the wear coefficient
first increases and then decreases from the top of the tooth to the root of the tooth. According
to Formula (20), the wear coefficient increases with the rise of the load and the roughness
of the tooth surface, and the influence of parameter G is the greatest. The wear coefficient
and the tooth surface contact stress change trend are consistent.
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5.3. Hertz Contact Stress and Contact Half-Width

The contact analysis results of the whole meshing area are shown in Figure 7. It can
be seen from the graph that, in the entire meshing period, the cycloid gear enters meshing
from the top tooth area, the contact stress and the contact half-width first increase and then
decrease, and the change in the contact stress is smooth. There is no abrupt change and the
two exist at the extreme point at the flat point of the tooth profile. The contact half-width
increases sharply at first and then decreases rapidly near the mesh area (tooth root).
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5.4. Slip Ratio and Slip Distance

The change in the velocity curve in Figure 8 shows that the rolling velocity of the
cycloid tooth is positive, which shows that the movement along the tooth surface is always
in one direction during the meshing process. The rolling speed of the needle tooth is
positive and negative. When the velocity is 0, the slip coefficient appears infinite, the
sliding wear is severe, and the tooth surface is easily glued.
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The change in the slip coefficient in Figure 9 shows that the cycloid tooth’s slip
coefficient changes significantly. The needle tooth changes the velocity direction when
the direction of the meshing line changes, which results in a sudden change in the slip
coefficient. In Figure 9, the positive and negative indicate the slip direction, and the slip
coefficient is small at other meshing positions. The change in the slip distance in Figure 10
shows that the slip distance of the cycloid tooth increases first and then decreases, and
there is an extreme value at the flat point of the tooth profile, and the slip distance of the
needle tooth increases first and then decreases; as a result of the abrupt change in the slip
coefficient, the slip distance also has a sudden change point.
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5.5. Wear Depth

The wear coefficient obtained by experiments in reference [30] is consistent with the
wear coefficient obtained by the regression formula in this paper, and the influence of the
curvature radius of the cycloid wheel is considered in this paper. This paper describes in
detail the calculation of sliding coefficient and sliding distance in the load-bearing meshing
section of the cycloid–pin gear, fully considers the particularity of the cycloid tooth profile,
and calculates the wear of the load-bearing tooth surface. Reference [30] calculates the
wear distribution of the complete tooth profile, but, in practical application, only part of the
tooth profile participates in meshing. Therefore, the calculation results are slightly different
from this paper.

This study calculates the cycloid and pin gear’s wear depth distribution when the
driving gear rotates 3.0× 106 times. Figure 11 shows that the wear depth of the cycloid
gear increases first and then decreases from the tooth tip to the tooth root, which is
consistent with the trend of wear coefficient and contact stress. Due to the change in
the velocity direction in the process of meshing, the distribution of pin tooth wear has a
sudden change in the slip coefficient, which leads to the same law of the slip distance.
It is easy to cause the gluing of the tooth surface, thus affecting the service life of the
cycloid–pin gear. A comprehensive comparison of the wear distribution of the cycloid
gear and needle gear shows that the maximum wear of the cycloid gear is 60 µm in the
whole meshing range. The wear of pin teeth is 100 µm. The wear of pin teeth near the
sudden change in speed is greater than that of cycloid teeth, and the wear of cycloid
teeth at other meshing parts is greater.
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The above analysis is based on the theoretically fixed condition of the pin teeth: the
cumulative wear amount is 2.1 mm, and the average wear amount is 21 µm. The self-
rotational movements of the pin teeth can make the wear reduce unevenly. The uniform
distribution of the wear amount is 4.69 µm, significantly reducing the wear amount. This
content is beyond this study’s scope and can be discussed in future literature.

6. Conclusions

This study establishes the wear calculation model of the loaded contact tooth surface of
the cycloid–pin gear. The complete calculation process is presented on the wear distribution
of the contact tooth surface of the cycloid–pin gear from tooth contact analysis to loaded
tooth contact analysis and wear loaded tooth contact analysis. The main conclusions are
made as follows:

(1) The load-bearing contact analysis of the tooth surface determines the coincidence
degree of cycloidal pin gear meshing transmission and then determines the meshing
interval of a single cycloid tooth, which lays the foundation for the wear analysis of
the load-bearing tooth surface.

(2) Through the motion analysis of cycloidal pin gear drive, the distribution of the sliding
coefficient of two tooth surfaces is determined. Because the speed vector is positive
and negative during the meshing process of the gear teeth, the slip coefficient suddenly
increases at the speed zero point.

(3) In the whole meshing area, the wear of pin teeth is relatively large at the speed zero
point, and the wear in other meshing areas is relatively uniform. The wear of cycloidal
gear teeth depends on the contact stress distribution of the tooth surface.
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