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Abstract: The research on fault diagnosis methods based on generative adversarial networks has
achieved fruitful results, but most of the research objects are rolling bearings or gears, and the model
test data are almost all derived from laboratory bench test data. In the industrial Internet environment,
equipment-fault diagnosis is faced with the characteristics of large amounts of data, unbalanced
data samples, and inconsistent data file lengths. Moreover, there are few research results on the
fault diagnosis of rotor systems composed of shafts, impellers or blades, couplings, and tilting pad
bearings. There are still shortcomings in the operational risk evaluation of rotor systems. In order
to ensure the reliability and safety of rotor systems, an Improved Auxiliary Classifier Wasserstein
Generative Adversarial Network with Gradient Penalty (IACWGAN-GP) model is constructed,
a fault diagnosis method based on IACWGAN-GP for tilting pad bearings is proposed, and an
intelligent fault diagnosis system platform for equipment in an industrial Internet environment is
built. The verification results of engineering case data show that the fault diagnosis model based
on IACWGAN-GP can adapt to any length of sequential data files, and the automatic identification
accuracy of early faults in tilting pad bearings reaches 98.7%.

Keywords: fault diagnosis; risk evaluation; improved auxiliary classifier Wasserstein generative
adversarial network with gradient penalty; industrial Internet; rotor system

1. Introduction

Centrifugal compressors, steam turbines, flue gas turbines, expanders and other high-
speed rotating machinery are widely used in petrochemical, coal chemical, metallurgical
and other industrial fields. In the event of blade fracture, rotor imbalance, rubbing, surges
and other faults [1], minor faults may cause equipment failure and production interruption,
and serious faults may cause machine damage and fatal accidents, leading to huge economic
losses or social impact to enterprises [2,3]. Timely and automatic identification of equipment
failure types, to take control and to take preventive measures, is of great significance for
reducing or avoiding economic losses in enterprises and preventing catastrophic failures of
rotating machinery [4].

Oil-whirl faults caused by improper assembly-clearance and contact areas between
tilting pad bearing and shaft is one of the most common faults in rotating equipment. Oil
whirl failure refers to severe fluctuations or vibrations in the lubricating oil film, which
usually occurs when the lubricating oil film cannot be stably maintained on the surface
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of mechanical parts. This failure may cause serious harm to mechanical equipment and
systems. The specific hazards include: (1) Friction and wear increase: oil whirl will lead to
the instability of the lubricating oil film, so that the contact area between the mechanical
parts increases; friction and wear will increase accordingly. Long-term friction and wear
can lead to damage and the shortened life of parts. (2) Energy loss: oil whirl will cause
abnormal contact between mechanical parts, which will lead to energy loss, thus affecting
the efficiency and performance of the mechanical system. (3) Vibration and noise: Oil whirl
can cause the vibration of mechanical parts, and then produce noise. These vibrations and
noises not only affect the normal operation of mechanical equipment, but also may affect
the surrounding environment and the health of workers. (4) Heat accumulation: oil whirl
may lead to local energy concentration, resulting in excessive heat accumulation. This
may lead to overheating of lubricating oil and further aggravate the damage to mechanical
parts. (5) System failure: If the problem caused by oil whirl is not solved in time, it may
lead to the failure of the components of the mechanical system, which in turn affects the
normal operation of the entire equipment. This may require expensive maintenance and
downtime. In addition, due to the shaft misalignment, rotor imbalance, surges, rubbing
and other faults of rotating equipment may also occur at the same time; it is challenging to
accurately identify the early faults of tilting pad bearings.

The research on fault diagnosis methods based on artificial intelligence has achieved
fruitful results. Zhong et al. [5] proposed a rolling bearing fault diagnosis method based on
a convolutional autoencoder and nearest-neighbor algorithm, which was verified experi-
mentally by using the experimental data set published by CWRU under different working
conditions. Mohiuddin et al. [6] proposed an improved AlexNet-based intelligent fault
diagnosis method for rolling bearings, which was verified experimentally using the data
of different working conditions and a different signal-to-noise ratio of the experimental
data set published by CWRU. Cui et al. [7] proposed a method for fault diagnosis of rolling
bearings under the condition of sample imbalance based on CNN, and used the conven-
tional rolling bearing-fault data set collected in the laboratory for experimental verification.
Zhang et al. [8] proposed a CNN-based multi-channel data fusion neural network for
rolling bearing fault diagnosis, using bearing data collected by eight vibration sensors
on the SB25 aero-engine bearing bench test for experimental verification of the model.
Shen et al. [9] proposed an improved Gray Wolf optimizer algorithm based on a support
vector machine and swarm intelligence optimization algorithm for rolling bearing fault
diagnosis. The proposed algorithm was verified experimentally using the experimental
data set published by CWRU and the data obtained from the mechanical transmission bear-
ing life-cycle test platform independently developed by Nanjing Agricultural University.
Huang et al. [10] proposed a rolling bearing fault-detection method based on an improved
Gray Wolf algorithm to optimize multi-stable stochastic resonance parameters, and con-
ducted experimental verification using the published experimental data sets of CWRU
and MFPT. Tian et al. [11] proposed a CNN-LSTM bearing fault diagnosis model based on
hybrid particle swarm optimization, and conducted experimental verification using the
experimental data set disclosed by CWRU. However, most of the research objects of these
research results are rolling bearings, and the model test data are almost all derived from
laboratory bench test data. Moreover, there are few research results on the fault diagnosis of
rotor systems composed of shafts, impellers or blades, couplings, and tilting pad bearings.
There are still shortcomings in the operational risk evaluation of rotor systems.

The traditional fault diagnosis method for rotating machinery relies on the experience
and knowledge of external experts, and relies on a spectrum analysis diagram, Bode di-
agram, Nyquist diagram and other analysis toolboxes in the condition-monitoring and
analysis software to carry out a one-by-one manual analysis. This not only has a low
efficiency of fault diagnosis and analysis, but also has a great lag, which often leads to
untimely early fault-detection. Industrial Internet-enabled equipment management tech-
nology has developed rapidly in China. The accumulated equipment state-aware data has
laid a foundation for intelligent fault diagnosis based on artificial intelligence and big data
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analysis. This data-driven, deep learning intelligent fault diagnosis method [12–14] makes
full use of the advantages of industrial big data and greatly reduces the dependence of the
model on external experts. It has gradually become a development trend for equipment
fault diagnosis technology in the industrial Internet environment [15,16].

During the service life-cycle of rotating equipment, the time of fault-free operation
for equipment is far greater than that of fault operation, which determines that the data
samples of normal-state perception for equipment are significantly more abundant than
those of fault-state perception. The data samples are of a long-tail distribution type and
have the characteristics of low value density [17]. For specific rotating equipment, it is
impossible to go through all the faults such as rotor imbalance, axis misalignment, rubbing,
oil film whirl, surges and so on in the service life-cycle. Some equipment will not even
have any kind of fault in the whole life-cycle. The lack of equipment-fault sample data
is one of the challenging problems faced by fault diagnosis technology based on artificial
intelligence and big data [18].

When model-training samples are insufficient, a generative adversarial network is
considered as one of the effective methods for solving the problem of data imbalance [19].
Generative Adversarial Networks (GAN) [20] are a deep learning model that is one of the
most promising approaches to unsupervised learning over complex distributions in recent
years. The model produces a fairly good output through game learning between (at least)
two modules in the framework: the generative model and the discriminative model. GAN
models generally use deep neural networks as G and D. A good GAN application needs to
have a good training method; otherwise the output may not be ideal due to the freedom of
the neural network model. To improve a GAN’s data generation capabilities and optimize
the training process, a Deep Convolution Generative Adversarial Network (DCGAN) based
on a deep Convolutional Neural Network (CNN) and generated high-resolution images
have been proposed [21]. However, as the training time of the model increases, some filters
of the model will collapse and oscillate, resulting in mode collapse.

In order to solve the problem of GAN pattern collapse, a Wasserstein generative ad-
versarial network (WGAN) model was constructed to overcome the problem by improving
the stability of training [22]. Aiming at the problem that WGAN adopts weight-clipping to
solve the problem of Lipschitz constraints that can easily cause gradient disappearance or
gradient explosion and slow model convergence, an improved Wasserstein GAN training
method (WGAN-GP) has been proposed by Gulrajani et al. [23]. By using a gradient penalty
instead of weight-clipping to solve the problem of Lipschitz constraints, gradient disap-
pearance or gradient explosion during model training can be avoided, and the problem of
slow convergence of WGAN also can be solved. GAN, DCGAN, WGAN, and WGAN-GP
are all unsupervised learning models that generate samples without category labels and
cannot generate multiple types of samples using the same model.

In order to enhance the performance of GAN, an Auxiliary Classifier GAN (ACGAN)
supervised learning model, which adds category labels to the generator and discriminator,
as well as a classifier to the output part of the discriminator, have been proposed [24]. This
ACGAN model realizes that the generated samples all have a corresponding category label.
The ACGAN model is improved based on DCGAN, so ACGAN still has the problem of
model collapse. A Parallel Classification Wasserstein Generative Adversarial Network with
Gradient Penalty (PCWGAN-GP) has been proposed by Yu et al. [25]. By feeding healthy
samples into the PCWGAN-GP model, the model will produce various failure samples
of good quality, which can gradually expand the unbalanced data set until equilibrium
is reached.

PCWGAN-GP is an unsupervised learning model, which needs to be constructed and
trained independently for each fault type to obtain a balanced data set. This undoubtedly
increases the workload of model construction and increases the time of model training. An
ACWGAN-GP model based on a gradient penalty and auxiliary classifier has been built by
Li et al. [26], which can generate good-quality samples from an unbalanced training set, and
has used the balanced data set for training Multilayer Perceptron (MLP), CNN, Support
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Vector Machine (SVM) and other classifiers for fault diagnosis. Cao et al. [27] constructed a
fault diagnosis model based on ACWGAN-GP and homogeneous superposition ensemble
learning, which significantly improved the classification accuracy and stability of the model.

ACWGAN-GP combines the advantages of WGAN-GP and ACGAN, so that the model
has the ability to generate multi-class label samples while overcoming the problems of
pattern collapse and gradient disappearance. As a supervised learning model, ACWGAN-
GP still needs a complete variety of fault label sample training data sets. Obviously,
engineering application scenarios are not always able to meet such needs. Furthermore,
the length of a single device state-aware data file is different, and the ACWGAN-GP model
can only adapt to a single data file type, which cannot meet the needs of engineering
applications. Therefore, the application of the ACWGAN-GP model for equipment full-
fault diagnosis needs improvements in the model structure, so that it cannot only meet
the data function of generating complete fault samples, but also automatically adapt to
different equipment-state perception data.

Rotating equipment is generally composed of shafts, impellers or blades, comb seals,
couplings, tilting pad bearings and other components. Among them, oil whirl faults caused
by improper assembly-clearance and contact areas between tilting pad bearings and shafts
are the most common. It is challenging to accurately identify the early faults of tilting pad
bearings, because shaft misalignment, rotor imbalance, surges, rubbing and other faults of
rotating equipment may also occur at the same time. Aiming at the engineering status of
unbalanced data samples of rotating equipment, this paper studies an improved auxiliary
classifier Wasserstein generative adversarial network with a gradient penalty for fault
diagnosis of tilting pad bearings. The contributions of this paper are listed as follows:

(1) An improved auxiliary classifier Wasserstein generative adversarial network with
gradient penalty is developed, in which the input data-length adaptive layer is added
before the 2D convolution layer of the discriminator.

(2) A fault diagnosis method based on IACWGAN-GP for tilting pad bearings is
proposed, which is able to accurately identify the early faults of tilting pad bearing oil whirl
despite the interference of shaft misalignment, rotor imbalance, surges, rubbing and other
faults that may occur simultaneously in rotating equipment.

(3) The application of an IACWGAN-GP-based fault diagnosis model in an industrial
Internet environment via cloud-integrated prediction and health management systems,
which includes a cyber-physical system layer, network layer and application layer, is
proposed. The application layer consists of micro-service systems such as early fault
warning, health evaluation and fault diagnosis.

2. Theoretical Foundations
2.1. Generative Adversarial Network

As shown in Figure 1, a GAN is composed of two neural networks: the generator
G and the discriminator D. In order to trick the discriminator D, the generator must
learn the data distribution of real samples and create fake samples using random noise.
The discriminator’s task is to tell the real samples from the fake samples that have been
generated. The performance of G and D is continuously improved until Nash equilibrium
is reached in these two adversarial trained neural networks. The GAN’s loss function can
be described as follows:

Loss = EX∼Pdata [log D(x)] + EZ∼PZ [log(1− D(G(z)))] (1)

where ES~Pdata and EZ~PZ stand for the expectation of x from the real data distribution Pdata
and z sampled from the random noise prior distribution PZ, respectively. D(x) represents
the discriminant result when the input of the discriminator is real data x, G(z) represents
the generated data of the generator, and D(G(z)) represents the discriminant result when
the input of the discriminator is the generated data G(z).
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Figure 1. Architecture of GAN.

The binary minimax problem that describes the optimization procedure for D and G is
represented by the following equation:

Goal = argmin
G

max
D

Loss (2)

2.2. Auxiliary Classifier Generative Adversarial Network

ACGAN is a modified model of GAN with the structure shown in Figure 2. Unlike
GAN, ACGAN can use label information to generate samples of specified types and to
identify and classify the input samples. Specifically, the generator G generates new samples
G(z, y) using random noise z and label y, while the discriminator D needs not only to
determine the real or fake nature of the input samples, but also to classify the input
samples. During the adversarial training, the generating sample capability and recognition
capability of ACGAN are continuously optimized. Eventually, the model has a strong
ability to generate new samples with corresponding labels.
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Since ACGAN needs to process the source and class label information of the input
samples, the loss function of ACGAN contains two components, defined as follows:

Lsource = EX∼Pdata [log D(x)] + EZ∼PZ [log(1− D(G(z, y)))] (3)

Lclass = EX∼Pdata [log P(Y = y|Xreal)] + EZ∼Pz

[
log P

(
Y = y

∣∣∣Xgenerated

)]
(4)

where G(z, y) represents the generated sample when the generator inputs are random noise
z and sample label y, P(Y = y|Xreal) represents the conditional probability distribution of
the real sample, and P

(
Y = y

∣∣∣Xgenerated

)
represents the conditional probability distribution

of the generated sample.
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The objective function of the D is to maximize Lsource + Lclass, and the objective function
of the G is to maximize Lsource − Lclass, shown as follows:

LD = EX∼Pdata [log D(x)] + EZ∼PZ [log(1− D(G(z, y)))]+
EX∼Pdata [log P(Y = y|Xreal)] + EZ∼PZ

[
log P

(
Y = y

∣∣∣Xgenerated

)] (5)

LG = EX∼Pdata [log D(x)] + EZ∼PZ [log(1− D(G(z, y)))]−
EX∼Pdata [log P(Y = y|Xreal)]− EZ∼PZ

[
log P

(
Y = y

∣∣∣Xgenerated

)] (6)

2.3. Wasserstein Distance and Gradient Penalty

GANs have attracted the attention of many researchers because of their powerful
sample generation capability. But there are gradient-disappearance and model-collapse
problems leading to unstable training. To solve these problems, a lot of attempts have been
made by many researchers. However, the problem of GAN training instability was not
solved until the proposal of WGAN.

Arjovsky et al. [22] proposed WGAN and credited the objective function, which
took the form of J-S divergence, as the cause of the unstable training of GAN. They then
suggested utilizing the Wasserstein distance (WD) rather than the J-S divergence in the
WGAN. The following is an expression of the WGAN’s objective function:

min
G

max
D∈Ω

EX∼Pdata [D(x)]− EZ∼PZ [D(G(z))] (7)

where Ω denotes the set of 1-Lipschitz functions that take values in the range [−ω,ω].
Although the WGAN training process is faster and more stable than the original GAN,

the quality of the generated samples is occasionally unsatisfactory. The issue, according
to Gulrajani et al. [23], was caused by the weights in WGAN being restricted in order to
enforce the Lipschitz constraint on the discriminator. Therefore, they introduced a gradient
penalty to propose WGAN-GP. The following defines the WGAN-GP’s loss function and
objective function:

L = EZ∼Pz [D(G(z))]− EX∼Pdata [D(x)] + ϕEX̂∼PX̂

[(
‖ ∇X̂D(x̂) ‖2 − 1

)2
]

(8)

min
G

max
D

EX∼Pdata

[
D(x)− EZ∼PZ [D(G(z))]

]
− ϕEX̂∼PX̂

[(
‖∇X̂D(x̂)‖2 − 1

)2
]

(9)

where x̂ = εx + (1− ε)G(z) ∼ Px̂ and the random numbers ε ∼ U(0, 1), ϕ represents the
penalty factor. Without meticulously adjusting the hyperparameters, WGAN-GP performs
better than WGAN and achieves steady training.

3. The Proposed Method
3.1. Building an Improved Auxiliary Classifier Wasserstein Generative Adversarial Network with
Gradient Penalty

In order to overcome the limitation of the input data length on the neural network
model, the IACWGAN-GP model has been designed. In order to avoid the problem of
model collapse and gradient disappearance during the training process, Wasserstein dis-
tance and a gradient penalty are introduced into the loss function of the model. The model
introduces category labels in the generator and discriminator, and introduces an auxiliary
classifier in the discriminator, so that the model has the ability to generate multi-class label
samples and a sample classification ability. The generator uses three 2D deconvolution
layer results, and the discriminator uses three 2D convolution layer structures. Before the
first convolutional layer of the discriminator, an input data length adaptive layer designed
in this paper is added, so that the model can automatically adapt to different device-status
sensing data, and improve the applicability and generalization of the model to various
types of data. The architecture of the IACWGAN-GP model is shown in Figure 3.
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The 2D CNN has superior performance in feature extraction and classification com-
pared to the 1D CNN [28], so both the generator and discriminator of IACWGAN-GP
constructed in this paper use 2D convolutional structures. The vibration signal of rotat-
ing machinery is a 1D signal, which cannot be directly convolved in 2D. Therefore, it is
necessary to convert 1D data into 2D data, which requires the data length to be a square
number. However, the length of engineering case data often does not meet this requirement.
For example, the 1D vibration engineering case data with data length of 1024 is halved to
512 after Fourier transform. Since the input data dimension of 2D convolution requires
2D, 1D data needs to be converted into 2D data, and the data length is usually taken as
a square number, such as 784(28 × 28), 1024(32 × 32), etc. However, the length of the
spectrum data after Fourier transform (512) is not a square number. To overcome the
limitation of the neural network model on the input data length, an input adaptive learning
framework is designed. Specifically, the Input Adaptive Layer (IAL) is designed before the
first convolutional layer of the discriminator, as shown in Figure 3.

A 1D signal of length m is defined as:

Sinput =
[
a1 a2 · · · am

]
(10)

where Sinput indicates the 1D input data, and ai indicates the value of node i of the 1D
waveform data.

In order to convert 1D data with length of non-square number m into 2D data with
target size, multiply Sinput with size (1, m) by a weight matrix with size (m, n), the input
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data can be converted into 1D data with length of square number n, and the result can be
corrected with deviation, as shown in Equation (11).

S = FA
(
Sinput·K + b

)
(11)

where K is the weight matrix created by the kernel layer, as shown in Equation (12); b is
the deviation vector, created by the layer, as shown in Equation (13); FA(·) is the activation
function of the neural network.

K =


k11 k12 · · · k1n
k21 k22 · · · k2n

...
...

. . .
...

km1 km2 · · · kmn

 (12)

b =
[
b1 b2 · · · bn

]
(13)

By substituting Equations (12) and (13) into Equation (11), the value of the transformed
i-th node is as follows:

Si = FA

(
m

∑
j=1

aj × k ji + bi

)
(14)

Since n is a square number, it is easy to transform 1D data of length (1, n) into 2D data
of shape

(√
n,
√

n
)
:

Soutput = FR(S) (15)

where FR(·) is the Reshape function.
Equations (10)–(15) are the derivation process of IAL. IAL can be defined as follows:

S2D = IA(S1D) (16)

where IA(·) is the input adaptive function whose input is 1D data of arbitrary length and
output is 2D data of desired size.

With the introduction of IAL, 1D data whose data length is not a square number
can be easily converted into 2D data required for 2D convolution models, enabling input
data-length adaption and improving the applicability and generalization of neural network
models to various types of data.

Bringing Equation (8) into Equation (5) and Equation (6), the objective function of
IACWGAN-GP is expressed as follows:

LD = Ex∼PX [log D(x)]− Ex̂∼PG [log D(x̂)]
−ϕEx̃∼Px̃

[
(‖∇x̃D(x̃)‖2 − 1)2

]
+ Ex∼PX [log P(Y = y|x)] (17)

LG = Ex̂∼PG [log D(x̂)] + Ex̂∼PX̂
[log P(Y = y|x̂)] (18)

where
∼
x = εx + (1− ε)x̂ ∼ P∼

x
is the random sample got by interpolating between x and x̂,

ϕ is the gradient penalty factor.
Equations (17) and (18) are the objective functions of IACWGAN-GP. Combining the

advantages of WGAN-GP and ACGAN, the model can generate multi-class label samples,
and overcome the problems of pattern collapse and gradient disappearance.

3.2. Establishing Fault Diagnosis Model Based on IACWGAN-GP

The architecture of the IACWGAN-GP-based fault diagnosis model is shown in
Figure 4. The model is divided into a model training phase and an online monitoring phase.
The model training phase includes a virtual sample generation module, an IACWGAN-GP
generation module, and an IACWGAN-GP diagnosis module. Using the virtual sample
generation module to generate virtual samples of full fault types, the IACWGAN-GP
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generation module is trained. The well-trained IACWGAN-GP generation module is used
to generate the required number and required type of fault samples, which, together with
the normal samples of the equipment, form a complete data set to train the IACWGAN-GP
diagnosis module. The well-trained diagnosis module can be used for fault diagnosis
in the online monitoring phase. The online monitoring phase includes a fault diagnosis
module and a fault-severity evaluation module. The fault diagnosis module uses the
IACWGAN-GP diagnosis module with good training in the model training phase as the
classifier. The real-time original vibration signal is transformed into a frequency domain
signal by FFT and then input into the classifier to obtain the real-time fault diagnosis result.
After the fault diagnosis results are obtained, the fault-severity evaluation module enables
the fault-severity evaluator of the corresponding fault type, and the frequency domain
signal is input into the evaluator to obtain the real-time fault-severity evaluation results.
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3.2.1. Virtual Sample Generation Module
Fault Virtual Sample Definition

As the characteristics of frequency domain signals are more prominent than those of
time domain signals, many researchers in the field of fault diagnosis in rotating machinery
employ frequency domain signals as the input to their models [29,30]. The frequency
domain signal can be obtained by Fourier transforming the vibration signal in the time
domain of the equipment, and studying the spectrum of the equipment fault signal shows
that the spectrum contains the fault-characteristic frequencies that coincide with the fault
mechanism, and these fault-characteristic frequencies belong to the common characteristics
of the fault. Besides fault-characteristic frequencies, other frequency information in the
spectrum responds to some private characteristics of the equipment, such as working
conditions, environmental noise, etc. Studying the spectrum of the normal-state signal
of the equipment reveals that the information in the spectrum matches with the private
features in the fault signal. In other words, the normal-state signal of the equipment can
reflect the private characteristics of the equipment. As shown in Figure 5, the overlapping
parts of the fault data belong to the common features, and those other than the overlapping
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parts belong to the private features. Take surge and oil whirl as an example for illustration,
as shown in Figure 6.
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Figure 6. Spectrum of equipment fault and normal data. (a) The frequency spectrum of the oil whirl.
(b) The frequency spectrum of the normal-state data of the equipment. (c) The frequency spectrum of
the surge fault data. (d) The frequency spectrum of the normal-state data of the equipment.

Figure 6a shows the frequency spectrum of the oil whirl, the speed of the device is
10,600 rpm, in which fx = 66.25 Hz is the fault characteristic frequency of the oil-whirl
fault. Figure 6b shows the frequency spectrum of the normal-state data of the equipment.
Comparing with Figure 6a, it can be found that except the fault feature frequency, the
private features such as the low-frequency component, the 1st-order frequency f1×, the
2nd-order frequency f2×, the 3rd-order frequency f3×, and the 4th-order frequency f4× are
all included in the spectrum. Figure 6c shows the frequency spectrum of the surge fault
data, the speed of the device is 8300 rpm, in which fx = 17.29 Hz is the fault characteristic
frequency of the surge fault. Figure 6d shows the frequency spectrum of the normal-state
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data of the equipment. Comparing with Figure 6c, it can be found that excepts the fault
feature frequency, the private features such as the low-frequency component, the 1st-order
frequency f1×, the 2nd-order frequency f2×, the 3rd-order frequency f3×, and the 4th-order
frequency f4× are all included in the spectrum.

The Pearson Correlation Coefficient (PCC) [31] is extensively used to measure the
degree of correlation between two variables, and the value of PCC is between −1 and 1;
the closer to ±1 the higher the correlation. The PCC of the fault and normal data, the PCC
of the fault data with the fault characteristic frequency removed, and the normal data are
calculated as shown in Table 1. The PCC value of the oil whirl and normal data of the
device is 0.81824, and the PCC value of the oil whirl with the fault characteristic frequency
removed and normal data is 0.90919. The PCC value of the surge and normal data of the
device is 0.78202, and the PCC value of the surge with the fault characteristic frequency
removed and normal data is 0.98130.

Table 1. PCC of fault data and normal data.

The PCC of the Fault Data
and the Normal Data

The PCC of the Fault Data with the Fault
Characteristic Frequency Removed and the

Normal Data

Oil whirl 0.81824 0.90919
Surge 0.78202 0.98130

Through the comparative study of spectrograms of fault and normal data, as well as
the comparative study of a PCC index calculation for fault and normal data, the above
results show that fault data can be described as a collection of common features and private
features. That means the fault feature frequency characterizing the common features of
faults, and the normal data characterizing the private features of the equipment, can be
composed of fault data. Based on this result, it provides an idea for constructing a fault
virtual sample. Based on the normal data spectrum of the equipment, the fault characteristic
frequencies are superimposed to form the fault virtual samples.

Fault Mechanism-Based Virtual Sample Generation

Based on the results of Fault Virtual Sample Definition, when the target device can
only provide the normal-state data of the equipment, or when the fault type space is
incomplete, a fault virtual sample can be generated based on normal data and fault mecha-
nism features frequency. In this paper, we propose a FMVS generation algorithm with the
following pseudocode:

As shown in Algorithm 1, α and β represent the upper and lower bounds of the
amplitude range of virtual sample fault mechanism features frequency; the amplitude of the
fault mechanism features frequency takes a value within [α, β], which can characterize the
severity of the fault; ν represents the speed of the device; γ represents the fault characteristic
frequency parameters, which are determined based on the fault mechanism; L represents
the length of the normal data of the device; n represents the number of data sets of normal
data and virtual fault samples; DN represents the normal data of the device.

First, calculate the fundamental frequency f s1× of the target device, and the amplitude
of the fundamental frequency can be obtained by Fourier transform on the normal data of
the target device. Then, calculate the fault characteristic frequency fc, and the amplitude
of the fault characteristic frequency is determined from the amplitude of the fundamental
frequency as well as α and β. Next, a sine function is used to fit the virtual signal containing
only the fault characteristic frequencies, and the virtual signal is Fourier transformed to
obtain the virtual signal spectrum fy with frequency fc and amplitude within [α, β]. Finally,
the virtual signal spectrum fy plus the normal signal spectrum fN of the target device can
obtain the fault virtual sample Vsi of the target device. Repeating the above process, the
virtual sample Data with full fault types can be generated.
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Algorithm 1 Pseudocode for FMVS algorithm

Input: α,β,ν,γ, L, n, DN
Output: Data
1. A← ai ∈ [α, β]
2. f s = 32× ν/60
3. f s1× = ν/60
4. fc = round

(
γ× f s1× × L/ f s

)
5. for i← 0 to n
6. y = ai × sin(2π × fc × x)
7. fy ← 2×

∣∣fft(y)∣∣/L
8. di ∈ DN
9. fN ← 2×|fft(di)|/L
10. Vsi = fy + fN , Vsi ∈ Data
11. return Data

3.2.2. IACWGAN-GP Generation Module and Diagnosis Module

The IACWGAN-GP generation module and the diagnosis module adopt the same
neural network structure, as shown in Figure 7. The IACWGAN-GP generation module
mainly uses the sample generation ability of the generator, and the IACWGAN-GP diag-
nosis module mainly uses the sample classification ability of the discriminator. It makes
full use of the performance of IACWGAN-GP and reduces the difficulty of constructing
the model.
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Figure 7. Structure of IACWGAN-GP neural network.

The number of fault virtual samples constructed in Section 3.2.1 is limited, and to
avoid the pattern collapse problem caused by training classification networks with lim-
ited data sets [32], an IACWGAN-GP generation module is constructed for generating
fault mechanistic feature spectrum samples. Using the virtual samples generated in the
Section 3.2.1 training generation module, with supervised learning and the powerful sam-
ple generation capability of IACWGAN-GP, the prior knowledge in Section 3.2.1 is no
longer required, and only the fault sample labels and the number of required samples need
to be input for generating the corresponding fault mechanism feature spectrum samples
with corresponding fault types and numbers. Compared with the FMVS generation algo-
rithm in Section 3.2.1, the number of inputs to the model is reduced from seven to two.
The IACWGAN-GP diagnosis module is trained with a complete fault data set consisting
of fault mechanism feature spectrum samples generated using generation module and
equipment normal-state samples. The well-trained model can be used for real-time online
full-fault-type fault diagnosis and identification.

3.2.3. Fault Severity Evaluation Module

In an actual engineering scenario, the faults of rotating equipment often experience a
gradual development process from weak to strong. Therefore, in addition to determining
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the type of failure of the equipment, it is also necessary to evaluate the severity of the failure
of the target equipment. After the spectrum analysis of the vibration signal, the fault-type of
the equipment can be known from the fault characteristic frequency, and the severity of the
fault can be judged by analyzing the amplitude ratio of the fault-characteristic frequency
to the fundamental frequency. Based on this method, this paper has constructed a Fault
Severity Evaluation (FSE) module.

The pseudo-code of FSE algorithm is shown in Algorithm 2. D represents the data
to be measured; ν represents the speed of the device; γ represents the fault characteristic
frequency parameters, which are determined based on the fault mechanism; G represents
the result of fault severity evaluation. Firstly, the device sample frequency f s and the fun-
damental frequency f s1× are calculated from the speed ν. Secondly, the fault characteristic
frequency is calculated by γ and f s1×, and the Fourier transform is performed on the data
to be measured D, and the vibration signal in the time domain is transformed into the
frequency domain signal. Then, the amplitude of the fault characteristic frequency amp and
the amplitude of the fundamental frequency amp1× are found in the spectrum signal, and
the fault severity of the fault signal to be measured is evaluated based on the amplitude
ratio of the fault characteristic frequency to the fundamental frequency. Finally, the output
fault grade G is used as the evaluation result of the fault severity.

Algorithm 2 Pseudocode for FSE algorithm

Input: D,ν,γ
Output: G
1. f s = 32× ν/60
2. f s1× = ν/60
3. f sx = γ× f s1×
4. fx, Y = FFT (D, f s)
5. index = find(round( fx) == round( f sx))
6. index1× = find

(
round( fx) == round

(
f s1×

))
7. amp = Y[index]
8. amp1× = Y[index1×]
9. Fault grade = evaluator (amp, amp1×

)
10. return G

3.3. Fault Diagnosis Method Based on IACWGAN-GP

In this paper, a fault diagnosis method based on IACWGAN-GP for tilting pad bearings
is proposed, which is able to accurately identify the early faults of tilting pad bearing oil
whirl despite the interference of shaft misalignment, rotor imbalance, surges, rubbing and
other faults that may occur simultaneously in rotating equipment. The specific steps are as
follows:

Step 1: The virtual sample generation module uses the normal data of the equipment
and the characteristic frequency of the fault mechanism to generate the virtual sample of
the full fault types.

Step 2: Use the generated full fault type virtual samples to train the IACWGAN-GP
generation module.

Step 3: The IACWGAN-GP generation module is used to generate the fault mechanism-
characteristic spectrum samples of different fault types, and the fault-type complete data
set is formed with the normal-state data of the equipment.

Step 4: Use the complete data set to train the IACWGAN-GP diagnostic module.
Step 5: The IACWGAN-GP diagnosis module is used to realize the intelligent diagnosis

and identification of full fault types.
Step 6: The fault-severity evaluation module is used to evaluate the severity of

the fault.
Among these, steps one to four are the model training phase, and steps five to six are

the online monitoring phase.
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4. Experiments and Analysis of Results

In this paper, model validation and comparison experiments are conducted using the
rotating equipment fault case-data of petrochemical enterprises to verify the effectiveness
of the rotating machinery fault diagnosis method based on IACWGAN-GP. The proposed
IACWGAN-GP-based fault diagnosis model is used to generate fault mechanism feature
frequency spectra samples of different fault types and perform fault diagnosis. Subse-
quently, the validity of the fault virtual sample generation method and the fault diagnosis
model is verified by the fault diagnosis accuracy.

4.1. Rotating Equipment Condition Monitoring System

The rotating equipment condition-monitoring system is composed of shaft, impeller,
bearing seat, tilting pad bearing, thrust pad bearing, shaft vibration, shaft displacement,
temperature measurement unit, transmitter, signal processing unit, database server and
workstation, as shown in Figure 8. The main research object of this paper is the tilting pad
bearing, as shown in Figure 9a. Its characteristic is that the bearing surface is composed
of multiple tiles. These tiles can be tilted in the bearing seat, so as to adapt to different
working conditions during the rotation process. It has the advantages of strong adaptability,
load distribution, vibration suppression, adaptability to non-uniform deformation and long
service life. In this study, a non-contact eddy current displacement sensor is used to collect
the condition-monitoring data for the rotor bearing system. The installation method for the
eddy current sensor is shown in Figure 9b. The x-direction and y-direction eddy current
sensors are arranged in a 45◦ angle direction, and the angle between the two sensors is
90◦. To avoid energy leakage during data analysis, a synchronous whole-cycle sampling
method is used, i.e., the rotor is sampled 32 times for each rotation week, and the number
of rotation weeks is 32, so there are 1024 total sampling points in a single sample, and each
set of data files (100 × 1024) includes 100 samples of fault data.
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4.2. Engineering Case Data Validation
4.2.1. Rotor System Condition Monitoring Data Acquisition

Real engineering case data from mixed refrigerant compressor units, axial flow main
air units, syngas compressor units and turbogenerator units have been collected. The types
of failures include oil whirl, shaft misalignment, rotor imbalance, surges, and rubbing,
which are five types of typical rotor system failures, as shown in Table 2. With the oil-whirl
fault data from the syngas compressor units, equipment speed is 10,600 rpm, fault code
is Class I. The shaft misalignment fault data comes from the axial main air units; the
equipment speed is 5900 rpm, the fault code is Class II. The rotor imbalance fault data
comes from the syngas compressor units; the equipment speed is 7700 rpm, the fault code
is Class III. The fault data of surges comes from the mixed refrigerant compressor units; the
equipment speed is 8300 rpm, the fault code is Class IV. The rubbing data comes from the
turbogenerator units; equipment speed is 3000 rpm, fault code is Class V. The normal state
of the equipment data code is Class VI.

Table 2. Engineering case data introduction.

Fault Code Units-Equipment Fault Type Unit Code ID Speed/rpm

Class I Syngas compressor units—Steam turbine Oil whirl 170***443 0008 10600
Class II Axial main air units—Shaft system structure Shaft misalignment 171***945 0013 5900
Class III Syngas compressor units—Compressor Rotor imbalance 170***397 0033 7700

Class IV Mixed refrigerant compressor
units—Compressor Surge 200***002 0009 8300

Class V Turbogenerator units—Steam turbine Rubbing 140***131 0015 3000

Figure 10 shows the time domain waveform and spectrum of the engineering case
data. Figure 10a shows the time domain waveform and spectrogram of Class I fault
data with fault mechanism characteristic frequency fx = 0.375 f1×; Figure 10b shows
the time domain waveform and spectrogram of Class II fault data with fault mechanism
characteristic frequency fx = 2 f1×; Figure 10c shows the time domain waveform and
spectrogram of Class III fault data with fault mechanism characteristic frequency fx = f1×;
Figure 10d shows the time domain waveform and spectrogram of Class IV fault data with
fault mechanism characteristic frequency fx = 0.125 f1×; Figure 10e shows the time domain
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waveform and spectrogram of Class V fault data with fault mechanism characteristic
frequency fx = 4 f1×. Class I to Class V data are from different units with different
operating conditions, so the private characteristics of the fault samples are not the same,
but all of them have obvious characteristic frequencies of fault mechanisms. The typical
fault characteristic frequencies of rotor system [33] are shown in Table 3.
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Table 3. Rotor system typical fault characteristic frequency.

Class I Class II Class III Class IV Class V

Characteristic frequency ≤0.5× 2× significantly
higher 1× 1~30 Hz low

frequency components 1/n× and n×

Accompanying frequency 1× 1×, High
harmonics

Smaller high
harmonics 1× 1×

As shown in Table 4, the data sets A to E contain equipment normal-state data (Class
VI) and a class of real fault data, and data set F contains equipment normal-state data and
five classes of real fault data across equipment and operating conditions. To confirm the
efficiency of the proposed approach, the engineering case data are used for three purposes
in this research: (1) to compare with the generated fault mechanism feature spectrum
samples to verify the similarity between the virtual samples and the real samples; (2) as the
test set for fault diagnosis to calculate the fault diagnosis accuracy of the models; (3) the
data set F is used as the test data of cross-device and cross-condition research to verify the
robustness and versatility of the proposed method.
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Table 4. Introduction to the data sets.

Dataset Class I Class II Class III Class IV Class V Class VI

A
√

× × × ×
√

B ×
√

× × ×
√

C × ×
√

× ×
√

D × × ×
√

×
√

E × × × ×
√ √

F
√ √ √ √ √ √

Note:
√

means the corresponding real fault data are available, × means the corresponding real fault data are
not available.

As shown in Figure 11, the spectrum analysis of the oil whirl fault data of different
fault severity for the same equipment shows that the equipment has experienced a shift
from normal state to fault state, and the fault has gradually developed from weak to strong.
Figure 11a is in the normal state, and the fault characteristic frequency fx of oil whirl
has not yet appeared. Figure 11b has a fault characteristic frequency fx with a relatively
small amplitude. Figure 11b–e, as the fault gradually develops from weak to strong, the
amplitude of the fault characteristic frequency fx gradually increases.
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4.2.2. Rotor System FMVS Generation

Take data set A as an example; the device has Class I failure. Show the construction
process of the proposed fault diagnosis method based on IACWGAN-GP with this device
as an example, and verify the effectiveness of the method. In the engineering application
scenario where the target device can only provide normal data, the fault virtual samples
are generated based on the normal-state data of the device and fault mechanism feature
frequencies, generating a total of five fault types’ complete virtual samples for the target
device from Class I to Class 5.
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As shown in Figure 6b, the fundamental frequency of the device is 176.7 Hz with the
amplitude of 11.82, which can also be calculated by the speed f s1× = ν/60 = 10600/60 =
176.7 Hz. The FMVS algorithm process is shown in Algorithm 1. In the table, α and β are
the upper and lower bounds of the value domain of the fault virtual sample characteristic
frequency amplitude, α is 0.5 times the fundamental frequency amplitude, β is 1.2 times the
fundamental frequency amplitude, and the amplitude of the fault characteristic frequency
is taken within [5.91, 14.18], which can represent the different severity of the fault. Speed
ν = 10600 rpm. The fault characteristic frequency parameter γ is taken according to the
fault mechanism, and the value of γ is shown in Table 5. The characteristic frequency of
the fault mechanism of Class I is 0.375 times the fundamental frequency, usually less than
0.5 times the fundamental frequency. Fault mechanism characteristic frequency of Class
II is 2×. Fault mechanism characteristic frequency of Class III is 1×. Fault mechanism
characteristic frequency of Class IV is the low frequency component of 0.125 times the
fundamental frequency, usually in the range of 1 to 30 Hz. Fault mechanism characteristic
frequency of Class V is 4×. The data length L of the normal state data of the equipment is
1024 according to the engineering case data. The number of data groups of normal data
and fault virtual samples is set to 100 here. The generated fault virtual samples are shown
in Figure 12. Figure 12 I indicate the first group of fault virtual samples with the smallest
fault characteristic frequency amplitude, and Figure 12 II indicate the 100th group of fault
virtual samples with the largest fault characteristic frequency amplitude.

Table 5. Fault characteristic frequency parameters.

Class I Class II Class III Class IV Class V

γ 0.375 2 1 0.125 4
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As shown in Figure 13, since the device can provide Class I real fault data, the real
fault data can be compared with the generated virtual samples of faults. The real and
virtual samples are compared by drawing them under the same coordinate system and it is
found that the overlap is very high. The PCC of the real and virtual samples is calculated
to be 0.98367, showing that the generated fault virtual samples’ data distribution closely
resembles that of real fault samples.
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4.2.3. IACWGAN-GP-Based Fault Diagnosis Model Training

The label set Y = (y1, y2, y3, · · · , yk) and the random noise vector Z = (z1, z2, z3, · · · , zm)
are fed to the generator to produce the fake samples X̂ = G(Z, Y). Then the generated
samples X̂ is mixed with the real samples X and used as the input to the discriminator for
true–false discrimination and classification. The generators and discriminators are trained
alternately until Nash equilibrium is reached.

The fault virtual samples generated in Section 4.2.2 are used as the training set, training
the IACWGAN-GP generation module. To avoid overfitting problems during network
training, a dropout layer is added after each layer of the discriminator network and the
ratio is set to 0.5. A ReLU activation function is used for both generator activation functions.
The discriminator convolutional layer activation functions all use LeakyReLU, and the last
two fully connected layers’ activation functions use sigmoid and softmax, respectively. The
model uses the Adam optimizer, and the learning rates of the generator and discriminator
are set to 10−4 and 2 × 10−4, respectively. The batch size is 32. Since Wasserstein distance
and a gradient penalty are introduced in the model, it will not cause the problem of the
generator gradient disappearing because the discriminator accuracy is too high, so the
generator is optimized once for every five instances of discriminator optimization.

During the training of the model, the values of the loss function are recorded to
characterize the performance of the model, as shown in Figure 14. As the number of
iterations increases, both the loss of the discriminator and the loss of the generator drop
sharply in the beginning stage and stabilize at about 400 iterations, showing that the model
is well trained and can be used for samples generation.
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Figure 14. Loss of discriminator and generator.

To compare the similarity of the generated samples and the fault virtual samples, they
are drawn under the same coordinate system as shown in Figure 15. Obviously, these
samples are very similar. To further evaluate the quality of the generated samples, PCC
and Cosine Similarity (CS) are calculated to measure the similarity between the generated
and virtual samples [25]. The results are shown in Table 6, and PCC and CS of both virtual
and generated samples exceed 0.9, further showing that the generated samples are highly
similar to the virtual samples.
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Table 6. Similarity of virtual and generated samples.

Class I Class II Class III Class IV Class V

PCC 0.96407 0.94688 0.99522 0.94555 0.93213

CS 0.96489 0.94816 0.99528 0.94655 0.93426

An IACWGAN-GP generation module is used to generate 200 samples for each fault
type, which are combined with the device’s normal-state data to form a full fault types data
set to be used as the training set for the IACWGAN-GP diagnosis module. The constructed
complete data set is shown in Table 7 A*, and the real data are used as test data to calculate
the fault diagnosis accuracy of the fault diagnosis model. The fault diagnosis model is
tested using real Class I and Class VI data. The test experiments are performed 10 times
and averaged, and the fault diagnosis accuracy is 100% for both fault types.

Table 7. Full fault types data sets.

Dataset Class I Class II Class III Class IV Class V Class VI

A* √
# # # # #

√

B* #
√
# # # #

√

C* # #
√
# # #

√

D* # # #
√
# #

√

E* # # # #
√
#

√

Note:
√

indicates that the corresponding real fault data is available, # indicates the fault virtual sample, * indicates
Full fault types data sets.

Using data set A as an example, Section 4.2.2 shows the process of the IACWGAN-GP-
based fault diagnosis model in constructing full fault types dataset A*. Data set A contains
only real Class I fault data and Class VI normal data. In order to more comprehensively
show the correlation between the generated fault mechanism feature spectrum samples of
the proposed method and real fault samples, the above process is repeated using data set B
to data set E. Based on the normal-state data of the equipment in each data set and the fault
mechanism feature frequencies, a total of five fault mechanism feature spectrum samples
from Class I to Class V are generated using the IACWGAN-GP generation module. The
constructed complete fault data sets are shown in Table 7.

As shown in Figure 16, the virtual samples are highly similar to the real samples. The
PCC and CS between the virtual sample and the real sample are calculated, and as shown
in Table 8, the PCC and CS values of the virtual sample and the real sample are both higher
than 0.9, showing that they are highly positively correlated.

Table 8. Similarity of virtual sample and real sample.

Class I Class II Class III Class IV Class V

PCC 0.92215 0.96864 0.99851 0.98367 0.93462

CS 0.92346 0.96911 0.99839 0.98401 0.93543

The IACWGAN-GP generation module is trained using the above generated virtual
samples to obtain the generated fault mechanism feature spectrum samples. As shown
in Figure 17, the generated samples and real samples are very comparable to one another.
PCC and CS of generated and real samples are calculated, and as shown in Table 9, these
values are higher than 0.88, showing a high positive correlation between them.
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Figure 16. Comparison of virtual and real sample. (a) Class II. (b) Class III. (c) Class IV. (d) Class V.

Lubricants 2023, 11, x FOR PEER REVIEW 24 of 33 
 

 

0 500 1000 1500
0

1

2

3

A
m

p
li

tu
d
e

Frequency(Hz)

(a)

 Real sample

 Virtual sample

0 500 1000 1500 2000
0

5

10

15

20

A
m

p
li

tu
d
e

Frequency(Hz)

(b)

 Real sample

 Virtual sample

0 500 1000 1500 2000
0

5

10

15

A
m

p
li

tu
d
e

Frequency(Hz)

(c)

 Real sample

 Virtual sample

0 200 400 600 800
0

3

6

9

A
m

p
li

tu
d
e

Frequency(Hz)

(d)

 Real sample

 Virtual sample

 

Figure 16. Comparison of virtual and real sample. (a) Class II. (b) Class III. (c) Class IV. (d) Class V. 

The IACWGAN-GP generation module is trained using the above generated virtual 

samples to obtain the generated fault mechanism feature spectrum samples. As shown in 

Figure 17, the generated samples and real samples are very comparable to one another. 

PCC and CS of generated and real samples are calculated, and as shown in Table 9, these 

values are higher than 0.88, showing a high positive correlation between them. 

Table 9. Similarity of generated sample and real sample. 

 Class I Class II Class III Class IV Class V 

PCC 0.88128 0.95451 0.99654 0.98000 0.92743 

CS 0.88285 0.95466 0.99637 0.98045 0.92856 

0 500 1000 1500 2000
0

5

10

15

A
m

p
li

tu
d

e

Frequency(Hz)

(a)

 Real sample

 Generated sample

0 500 1000 1500
0

1

2

3

A
m

p
li

tu
d

e

Frequency(Hz)

(b)

 Real sample

 Generated sample

0 500 1000 1500
0

5

10

15

20

A
m

p
li

tu
d

e

Frequency(Hz)

(c)

 Real sample

 Generated sample

0 500 1000 1500 2000
0

5

10

15

A
m

p
li

tu
d

e

Frequency(Hz)

(d)

 Real sample

 Generated sample

0 200 400 600 800
0

3

6

9

12

A
m

p
li

tu
d

e

Frequency(Hz)

(e)

 Real sample

 Generated sample

 

Figure 17. Comparison of generated and real sample. (a) Class I. (b) Class II. (c) Class III. (d) Class IV.
(e) Class V.

Table 9. Similarity of generated sample and real sample.

Class I Class II Class III Class IV Class V

PCC 0.88128 0.95451 0.99654 0.98000 0.92743

CS 0.88285 0.95466 0.99637 0.98045 0.92856
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4.2.4. IACWGAN-GP-Based Fault Diagnosis Model Test and Methods Comparison

The IACWGAN-GP diagnosis module is trained using data sets A* to E*, respectively,
and the well-trained fault diagnosis module is tested using real Class I to Class VI data,
respectively, and all test experiments are conducted 10 times and averaged; the results
as shown in Figure 18. The diagnosis accuracy of shaft misalignment faults is 93%, the
diagnosis accuracy of oil-whirl faults is 99%, the diagnosis accuracy of the remaining fault
types is 100%, and the overall average fault diagnosis accuracy is 98.7%.
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Figure 18. Fault diagnosis accuracy.

To demonstrate the efficacy of the fault mechanism feature spectrum samples gen-
erated by the proposed method, the Classifiers MLP, CNN, and ACGAN are trained
separately using the complete fault data sets in Table 7, and then the real data in the data
sets is used as test data to calculate the fault diagnosis accuracy of the classification net-
works and compare them with the IACWGAN-GP diagnosis module classification methods.
Since both CNN and ACGAN have convolution operations, the input adaption layer is
introduced before the first convolution layer to lift the limitation on the input data length.
The structures and parameters of the three Classifiers MLP, IA-CNN, and IA-ACGAN are
shown in Table 10.

The classifiers MLP, IA-CNN, and IA-ACGAN are trained using the complete data
sets A* to E* in Table 7, respectively, and then the real data in the data sets are used as test
data to calculate the fault diagnosis accuracy of the above classifiers, the results as shown
in Figure 19. In the case of providing only the normal data of the equipment and using the
method proposed in this paper to generate a complete fault data set to train the classifiers,
the fault diagnosis accuracy of MLP, which has a very simple network structure, reaches
0.927, and the highest fault accuracy is the IACWGAN-GP, which reaches 0.987, reflecting
the effectiveness of the method proposed in this paper.

A T-SNE is used to downscale and feature-visualize the complete data sets A*~E* in
Table 7, as shown in Figure 20. From the figure, it can be seen that the same classes of
fault data are clustered together, while different classes of fault data are far away from
each other, so all four classification networks in Table 11 achieve more than 92% fault
diagnosis accuracy.
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Table 10. Structure and parameters of the classifiers.

Model Structure Activation Function Parameters

Flatten
Dense_I ReLU 2048
Dense_II ReLU 2048

MLP Dense_III ReLU 2048

Flatten
Dense_IV ReLU 128

Dense_V Softmax 6

IAL

Conv2D_I (BatchNormalization/Dropout = 0.5) ReLU 32@(3, 3)

MaxPooling2D (2, 2)

Conv2D_II (BatchNormalization/Dropout = 0.5) ReLU 64@(3, 3)

IA-CNN MaxPooling2D (2, 2)

Conv2D_III (BatchNormalization/Dropout = 0.5) ReLU 128@(3, 3)

Flatten

Dense (Dropout = 0.5) ReLU 128

Dense Softmax 6

IA-ACGAN
(Discriminator)

IAL

Conv2D_I (BatchNormalization/Dropout = 0.5) LeakyReLU 16@(3, 3)
Strides = (1, 1)

Conv2D_II (BatchNormalization/Dropout = 0.5) LeakyReLU 32@(3, 3)
Strides = (2, 2)

Conv2D_III (BatchNormalization/Dropout = 0.5) LeakyReLU 64@(3, 3)
Strides = (2, 2)

Flatten

Dense Sigmoid 1

Dense Softmax 6
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Figure 20. Full fault type data set T-SNE feature dimension reduction visualization. (a) Data set A*,
(b) Data set B*, (c) Data set C*, (d) Data set D*, (e) Data set E*.

Table 11. Comparison of fault diagnosis accuracy.

Method MLP IA-CNN IA-ACGAN IACWGAN-GP

Average accuracy 0.927 0.977 0.983 0.987

In order to verify the robustness and versatility of the proposed method, the data set A*

in Table 7 is used to train MLP, IA-CNN, IA-ACGAN and IACWGAN-GP, respectively. The
cross-device and cross-condition data set F in Table 4 is used as the test set to calculate the
fault diagnosis accuracy, respectively. As shown in Table 12, the proposed method achieves
the highest fault diagnosis accuracy of 98% in the case of cross-equipment and cross-
working conditions. However, the fault diagnosis accuracy of the comparison methods
MLP, IA-CNN and IA-ACGAN are 60.8%, 31.8% and 77.7%, respectively. The method
proposed in this paper has higher robustness.

Table 12. Comparison of fault diagnosis accuracy across datasets.

Method MLP IA-CNN IA-ACGAN IACWGAN-GP

Average accuracy 0.608 0.318 0.777 0.980

4.2.5. Fault Severity Evaluation

The oil-whirl data of different fault severity shown in Figure 11 amounts to a total
of 24,434 sets of data, and the length of each set of data is 1024. The amplitude ratio of
oil-whirl fault-characteristic frequency to fundamental frequency is shown in Figure 21a.
The data is evaluated for fault severity, and the results are shown in Figure 21b. Due to the
large fluctuation of the amplitude ratio of engineering data, the evaluation results of fault
severity also fluctuate. In order to reduce the fluctuation of the fault severity evaluation
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results, a custom windowing function is used to correct the results. The custom windowing
function is defined as follows:

Gc
i = mode

(
Gi−τ : Gi

)
(19)

where Gi is the fault severity evaluation result of group i data, Gi
c is the fault severity

evaluation result after correction of group ith data, τ is the window scale factor, mode is
the mode function, and the mode of the evaluation result within the range of the window
scale factor is taken as the correction value of the fault severity evaluation result.
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Figure 21. (a) Amplitude ratio of oil-whirl fault data. (b) The results of fault severity evaluation.

The fault severity evaluation results corrected by the custom windowing function are
shown in Figure 22. With the increase of the window scale factor τ, the fluctuation of the
evaluation results decreases, and the development trend of the oil whirl fault severity of
the equipment is more obvious.
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Figure 22. Correction results of fault severity evaluation. (a) 𝜏 = 10. (b) 𝜏 = 50. (c) 𝜏 = 100. (d) 

𝜏 = 500. 

4.3. Application of IACWGAN-GP-Based Fault Diagnosis Model in an Industrial  

Internet Environment 

The application of an IACWGAN-GP-based fault diagnosis model in an industrial 

Internet environment via a cloud-integrated prediction and health management system, 

which includes a cyber-physical system layer, network layer and application layer, is pro-

posed, as shown in Figure 23. The application layer consists of micro-service systems such 

as an early fault warning, health evaluation and fault diagnosis. 
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Figure 22. Correction results of fault severity evaluation. (a) τ = 10. (b) τ = 50. (c) τ = 100.
(d) τ = 500.
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4.3. Application of IACWGAN-GP-Based Fault Diagnosis Model in an Industrial
Internet Environment

The application of an IACWGAN-GP-based fault diagnosis model in an industrial
Internet environment via a cloud-integrated prediction and health management system,
which includes a cyber-physical system layer, network layer and application layer, is
proposed, as shown in Figure 23. The application layer consists of micro-service systems
such as an early fault warning, health evaluation and fault diagnosis.
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Figure 23. The intelligent fault diagnosis system platform of cloud integrated equipment under the
industrial Internet environment.

4.3.1. Cyber-Physical System Layer

The cyber-physical system consists of rotating equipment, Bentley 3500 system, Safety
Interlocking System (SIS), Supervisory Control and Data Acquisition (SCADA), Distributed
Control System (DCS), Manufacturing Execution System (MES), Condition Monitoring Sys-
tem (CMS), Predictive Maintenance System (PMS) and Intranet communication network.

The function design of a cyber-physical system is mainly for real-time perception
of rotating equipment status, dynamic control of abnormal operations, unit fault safety
interlock protection and unit fault predictive maintenance control.

4.3.2. Network Layer

The intelligent edge device in the industrial Internet environment is not only a tra-
ditional controller or gateway, it can be an edge server. Collecting edge data, intelligent
computing and operable decision feedback are three essential capabilities of the edge end.

China‘s rotating equipment condition-monitoring system (such as S8000, SG8000, etc.)
mostly adopts a synchronous full-cycle sampling method: the rotor samples 32 times every
rotation cycle, continuously samples 32 cycles, and obtains a data file with 1024 sampling
points. A turbine centrifugal compressor unit with a speed of 6000 rpm has a total of
12 vibration displacement measuring points. Using the aforementioned full-cycle sampling
method, the vibration waveform data generated every day will reach 12.35 GB. Due to the
low value density of the original vibration waveform data, it is unnecessary and unrealistic
to upload all 12.35 GB data to the cloud. The original vibration waveform data only
performs the fault detection model operation at the edge end. It does not need to upload
the original vibration waveform data to the cloud, and only needs to upload the result of the
fault detection model operation to the cloud. This not only helps to reduce the computing
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load of the cloud server and the pressure on network bandwidth occupation caused by
data uploading to the cloud, but it also enables fast and efficient potential fault-warning
and predictive maintenance decisions.

4.3.3. Application Layer

The cloud design adopts an industrial micro-service architecture, which mainly in-
cludes modular components such as fault detection, fault diagnosis, and health evaluation.

Fault detection micro-service is used to detect the occurrence of potential faults in
rotating equipment. Fault diagnosis micro-service is used to identify the potential fault
type and fault location of rotating equipment. Health assessment micro-service is used to
evaluate the severity of rotating equipment failure.

Intelligentization is the essential feature of modular components of industrial micro-
services. Industrial micro-service modular components such as fault detection, fault diag-
nosis, and health evaluation provide knowledge for making maintenance decisions and
optimizing maintenance tasks.

5. Conclusions

Aiming at the engineering status of unbalanced data samples for rotating equipment,
this paper studies an improved auxiliary classifier Wasserstein generative adversarial
network with gradient penalty for fault diagnosis of tilting pad bearings. The work can be
summarized as follows:

(1) An improved auxiliary classifier Wasserstein generative adversarial network with
gradient penalty is developed, in which the input data length adaptive layer is added
before the 2D convolution layer of the discriminator. It overcomes the limitation of neural
networks on the length of input data and improves the applicability and generalization of
neural networks to various types of data.

(2) A fault diagnosis method based on IACWGAN-GP for tilting pad bearings is
proposed, which is able to accurately identify the early faults of tilting pad bearing oil
whirl despite the interference of shaft misalignment, rotor imbalance, surges, rubbing
and other faults that may occur simultaneously in rotating equipment. This method can
identify oil whirl faults as they develop from weak to strong, and evaluate the grade of the
fault. The engineering case-data verification results show that, with only normal data of
the equipment, the model can achieve an accuracy of 98.7% in spotting upcoming faults.
Train Multilayer Perceptron, CNN and Auxiliary Classifier GAN fault diagnosis models
using full-fault virtual samples, and the accuracy of the models reach 92.7%, 97.7%, and
98.3%, separately. The proposed method and three comparison methods are tested by using
cross-device and cross-condition engineering case data sets. The fault diagnosis accuracy of
the proposed method and the three comparison methods are 98%, 60.8%, 31.8% and 77.7%,
respectively, and the proposed method shows better robustness.

(3) The application of an IACWGAN-GP-based fault diagnosis model in an industrial
Internet environment, via a cloud-integrated prediction and health management system,
which includes cyber-physical system layer, network layer and application layer, is pro-
posed. The application layer consists of micro-service systems such as early fault warning,
health evaluation and fault diagnosis.

In this paper, the typical fault diagnosis of rotor systems is studied, and the proposed
fault diagnosis method has a high fault diagnosis accuracy and robustness. However, the
engineering case data involved in this paper only contains the data of a single type of fault.
When the equipment has multiple faults at the same time, the proposed method can only
draw a diagnosis conclusion for one of the faults. In addition, when a fault outside the
fault category included in the training data set occurs, the proposed method will draw a
similar diagnostic conclusion based on the similarity of fault characteristics between the
unknown fault and the known fault, which may lead to incorrect diagnosis results.

Future studies will collect more complex fault engineering case data, use the virtual
sample generation module in the proposed method to generate complex virtual fault
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samples based on the normal data of equipment and the fault characteristic frequency of
complex faults, and use the engineering case data for experimental verification. In addition,
the knowledge base of fault mechanisms except typical faults will be extended, and the
range of fault categories in the training set of the model will be expanded to solve the fault
diagnosis problem of unknown faults to a certain extent. The proposed method can also be
applied to the fault diagnosis of various types of bearings, gears and other key components,
providing support for fault prediction and health management of rotating equipment.
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