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Abstract: Graphene is a single atomic plane of sp2-bound carbon that has attracted considerable
interest in various technologies. On the basis of its unique physical, mechanical, and chemical
properties, graphene is a potentially strong candidate as a lubricant additive in its liquid-based form
to reduce friction and protect surfaces from degrading. Furthermore, graphene on wear performance
acts as a heat dissipation source for liquid lubricants. This review explores and addresses the
fundamental mechanisms illuminating the exceptional tribological behaviours of graphene family
materials and their limitations. Although graphene additives were reported to improve friction
coefficients and wear properties, several challenges remain a hindrance, such as production costs,
dispersion stability, and lack of information regarding graphene optimisation. Thus, this review
can provide a standard methodological framework for graphene additives in improving tribological
performance. Moreover, this review provides an up-to-date review of current tribological experiments
based on ultrafine particles incorporated with graphene as an additive for lubricating liquids.

Keywords: graphene; additive lubricant; anti-wear; lubricating liquid-based; tribology performance

1. Introduction

Tribology is an interdisciplinary field focusing on friction, wear, and lubrication.
Hence, the field investigates the interaction between moving surfaces and every facet of
wear, lubrication, adhesion, abrasion, tribochemistry, and other related topics. In numer-
ous industries, including those in the automobile sector, bearings, space, sports, cuisine,
biomedicine, and renewable energy, tribology is also utilised as a solution. As frictional and
wear losses consume energy that could be conserved, tribology becomes increasingly im-
portant to tackle this concern effectively. A small investment in research and development
of better tribological practices could prevent between 1 and 1.4% of the gross domestic
product from being spent [1]. In addition to its financial advantages, tribology can aid in
protecting the environment by boosting energy efficiency and lowering CO2 emissions. By
implementing cutting-edge tribology technologies, CO2 emissions from the transportation
sector can also be significantly reduced, which is a significant portion produced by energy
consumers. Therefore, significant societal issues can be resolved using the tribological
study findings [2]. In terms of lubricated surfaces, tribology is found between journal and
thrust bearings, cam mechanisms, gear teeth, and hydraulic systems. Figure 1 presents a
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selection of these tribological interfaces, which include examples of tribological interfaces
spanning from the contact between mechanical devices to human joints. The study of
lubricants contributes a significant portion of the field of tribology.
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Figure 1. Standard classical tribological interfaces. Reproduced with permission from [3].

A lubricant is a substance that effectively improves solid objects to move relative to
one another by reducing wear and friction on interacting surfaces (see Figure 2). Addition-
ally, automated systems often generate friction from sliding, rolling, or rotating contact
interfaces. Hence, friction results in significant energy losses, part failures, and potentially
fatal mechanical mishaps [4]. In addition, friction wastes at least 5% of the total wealth
in the world by converting productive energy into worthless heat. To effectively reduce
the negative impact, reducing friction between two surfaces can produce moving parts
in machines and electromechanical devices with significant energy, resource, and main-
tenance savings [5–7]. Various equipment and devices are utilised daily in which these
machines and devices have several moving parts that require proper lubricants. Hence,
lubricants should be chemically and thermally stable [8], involatile, non-corrosive, and time
durable. In order to comply with the criteria for environmental protection, they must also
be environmentally friendly and biodegradable [9]. The primary purposes and benefits of
lubricants can be summarised as follows:

• Lowering the amount of loading and extending its service life by producing a lubricat-
ing layer at the contact between two components.

• Enhancing beneficial driving qualities such as reduced noise or friction.
• Radiating the generated heat outside to avoid overheating the bearings and degra-

dation of lubrication. If the circulation lubrication method is used, the performance
improves incredibly well.

• Lessening corrosion by limiting rust and the penetration of foreign materials.
• Reducing the amount of wear and tear on the surfaces by putting lubricants between

the surfaces that rub against each other and avoiding metal/metal contacts.
• Lessening material deterioration and metal expansion brought on by frictional heat.
• Functioning as a coolant for metal due to its heat transfer medium.
• Decreasing wear and avoiding rough relative motion.
• Lowering the expense of maintenance.
• Lessening internal combustion engine power loss.
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Figure 2. Schematic diagram representing the role of lubricants in reducing friction. The image
on the left demonstrates two rough surfaces with high friction, creating resistance. The image
on the right demonstrates how adding lubricant creates a thin film that produces more accessible
sliding materials.

Despite the advantages of lubricant systems, the physical and chemical properties
can highly influence the tribological lubricant’s performance. The three main categories of
lubricants are grease, solid lubricants, and lubricating oils. A liquid lubricant, such as water
or natural or synthetic oils, may reduce friction by preventing sliding between contact
interfaces (metal-to-metal or metal-to-non-metal contacts). The lubricant’s performance is
determined by the load on the contact, the sliding velocity, and the lubricant’s viscosity
(higher viscosity indicates stronger lubricating film). Nonetheless, the film will break down
in extreme load cases, and the surfaces will come into direct contact (boundary lubrication),
which can cause increased friction and wear [10]. While oil and grease-based lubricants
are easy to handle, they offer only moderate performance and can be contaminated by
external dust [11]. Excessive oil-based lubricant may also cause combustion when operated
under extreme temperatures. Conversely, solid lubricants, such as molybdenum disulphide,
require careful application as a thin film but can wear out quickly and are sensitive to the
environment [12]. Clearly, additives are necessary to augment lubricants’ physical and
chemical properties to overcome the shortfalls presented here.

An excellent option to resolve this challenge involves the use of nanoparticle additives.
These additives can avoid direct contact, lowering the friction coefficient and speeding up
wear due to the rolling impact of nanoparticles on lubricated contact surfaces. Therefore, the
use of nanoparticles produces higher effortless sliding and prevents metal-to-metal contact,
which improves the tribological characteristics of the lubricating system [13]. Recently,
nanoparticles were efficiently demonstrated in various fields [14–17] for their advanced
features, including lubricant additives. The tribological performance of nanoparticles
currently utilised as lubricant additives produces impressive results [18–20]. Due to their
small size and unique microstructure, nanoparticles can easily create lubricated tribofilms
on substrates by contacting the contact surfaces [4]. The most common particle-based
lubricant additives are pure metals, metal oxides, metal sulphides, metal hydroxides,
and metal salts. For the first time in the 1980s–1990s, Hisakado et al. discovered that
Cu nanoparticles as lubricant additives demonstrated good tribological qualities in base
oils [21]. Nevertheless, the use of lubricant as additive is fraught with difficulties. One
of the most crucial disadvantages of particle additives is their dispersion stability. Good
dispersion performance allows nanoparticles to enter the frictional contact zone more easily
and reduces clogging and lubrication degradation caused by agglomeration [22]. Thus,
several modification strategies should be examined to increase the dispersion stability of
lubricant additives.

Using large quantities of additives increases the viscosity of the primary lubricant. As
a result, when incorporating nano additives into essential lubricants, their physicochemical
qualities must be kept within acceptable ranges. Furthermore, the high cost of nanomaterial
synthesis is a considerable barrier. Hence, the nanomaterials manufacturing process must
be adjusted to increase nano additives’ economic application [22]. Meanwhile, MoS2 is also
hampered by its high density and nanoparticle aggregation. Although having improved
dispersion, MoS2 has a limited load-bearing capability when used alone. Therefore, a
significant quantity of MoS2 is generally required to minimise the coefficient of friction
(CoF). This amount might offer a considerable obstacle to the matrix’s overall mechan-
ical behaviour [23,24], whereby the difficulty lies in achieving very low friction while
maintaining a low particle concentration.
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Conventional lubricant additives, such as organic phosphates, organic sulphides, and
organic metallic compounds, have good dispersing stabilities and tribological properties.
In contrast, these additives have varying degrees of toxicity, releasing sulphated ash,
phosphorous, and sulphur (SAPS), which can result in air pollution, such as acid rain and
hazy weather, and chemical corrosion [25,26]. While some additives, including ionic liquids,
offer exceptional tribological performance and are environmentally benign, their high cost
prevents them from being widely used in industry [27,28]. As a result, it is critical to creating
environmentally friendly and long-lasting lubricating nanomaterials. Nanocarbon-based
materials, graphene, and graphene-like substances are considered future possibilities. The
foundation of practical applications in lubrication systems is the stability of the additives,
which is of great importance. Nonetheless, there are still challenges in improving the
dispersion stability of nano lubricant additives, as physically treated nanoparticles are
susceptible to reaggregation [29].

Since the most durable material is crucial as a lubricant-based material, it should be
environmentally insensitive, easy to handle, and able to reach contact interfaces to reduce
friction. Thus, this review investigated the exceptional graphene properties that are highly
resistant to wear, regardless of test environments, with insensitivity towards environmental
factors. As graphene was discovered in 2004, it has already amazed researchers globally
with its unique properties [30,31]. Therefore, this review intends to highlight graphene’s
unique properties as a superior lubricant additive in liquid-based settings to reduce wear
and friction coefficient. Moreover, this review presents a collection of work from various
research groups globally, highlighting the various applications of graphene as a lubricant
additive to augment its chemical and physical properties. On the basis of this review, the
development of graphene additives in lubricant technology can be accelerated.

2. Graphene and Carbon-Based Additives

Graphene exhibits remarkable and unparalleled qualities, making it highly desirable
for tribological applications due to its exceptionally high mechanical strength, outstanding
conductivity, low shear strength, and high surface area. The tribological properties of
graphene are controlled by various techniques used for its synthesis and the presence of
functional groups, such as residual oxygen functionalities, thickness and lateral dimensions
of each sheet, number of atomic lamellae in a sheet, and structural flaws. Furthermore,
the ease of surface functionalisation enhances the potential of graphene-based materials
for aqueous lubrication. Such improvements are due to oxygen functionalities, excellent
conductivity for dissipating heat, an ultra-low thickness that allows entrance into tribo-
interfaces, a good affinity for forming protective tribo-thin films at contact interfaces, and
low shear strength [32]. In addition, graphene provides excellent potential for use as an
ultra-thin protective layer for many precision components owing to its greater strength [33].

Before the discovery of graphene, graphite was the most common form of carbon used
for lubrication [34,35]. Graphite comprises multiple layers of graphene sheets and can easily
take on a layered structure [35]. Nevertheless, the use of graphite as a lubricant has many
shortcomings when used in a liquid-phase solution. Graphite cannot be dispersed evenly
in a liquid, which causes a decrease in fluidity and lubrication performance [36]. Graphite
also has difficulty entering the contact area and forming a continuous protective film,
resulting in a lack of lubrication. Thus, graphite is not an ideal lubricant for liquid-phase
solutions [37]. Graphene, on the other hand, is a single layer of carbon atoms arranged in
a two-dimensional (2D) hexagonal lattice. Unlike graphite, the single-layer structure of
graphene can be stabilised easily within the liquid phase by using surfactants [36].

The effects of few-layered graphene (FLG) could also contribute to a graphite-like fric-
tion reduction due to the sliding of graphene layers [38]. Saurin et al. [39] studied the effect
of graphene structure by comparing two forms of commercial graphene nanomaterials,
such as 1–2 layer and 1–10-layer graphene. In future works, they were used as additives
in 1-octyl-3-methylimidazolim tetrafluoroborate in steel-epoxy resin and sapphire-steel
contacts. The 1–2 layered graphene formed large agglomerates, resulting in abrasive wear.
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In contrast, the 1–10 layered graphene prevented wear by avoiding direct contact between
asperities. Furthermore, compared to graphite, graphene-based additives are more resistant
to oxidation and corrosion and possess superior thermal [40] and tribo-logical [38,41,42]
properties. This section maps the advantages of graphene’s inherent chemical and physical
properties to the desirable properties for a lubricant additive. Then, the synthesis tech-
niques for graphene-based lubricant additives are discussed. Several researchers [43–47]
demonstrated the superior chemical resistance of graphene. A study by Topsakal et al. [43]
described a first principles analysis of the oxidation protection effect of graphene. The
study revealed that the graphene coating demonstrated efficient protection from oxida-
tion. A high energy barrier to the path of oxygen atoms’ path was observed, which could
have penetrated from the top of graphene to the higher reactive regions located below.
Meanwhile, Su et al. [44] reported that graphene films synthesised via graphene oxide
(GO) laminate reduction produced a barrier capable of blocking aggressive chemicals,
such as hydrofluoric acid. The high level of graphitisation of the laminates and minimal
structural destruction during the reduction process are the reasons for their impressive
barrier properties. Therefore, this research revealed the potential of thin protective coatings
with high stability and inertness like that of graphene and graphite, with the potential for a
wide range of applications. In a more practical approach, Chen et al. [45] demonstrated the
corrosion resistance of graphene toward hydrogen peroxide. The graphene was produced
via chemical vapour deposition (CVD) to protect metallic growth substrates, such as Ni
and Cu. The experimental work agreed with the properties predicted by Topsakal et al.’s
simulations [43]. In addition to graphene’s chemical inertness and barrier-like properties,
multiple researchers [48–50] indicated that graphene has strong antibacterial properties.
This makes graphene very appealing as an anti-fouling additive in various bio-lubricant
forms. In particular, Li et al. [50] believed that the charge transfer properties of graphene
are responsible for the antibacterial actions of graphene.

Besides the chemical properties, graphene was discovered to have superior tribo-
logical performance when compared to other materials [36–38,41,42,51]. The tribological
performance is often attributed to the ability of graphene layers to slide smoothly against
each other [52–55]. These results were confirmed by Xu et al. [56] in their molecular dy-
namics simulation work, which demonstrates the relationship between the number of
layers in graphene and friction. The model provides a comprehensive explanation of the
results, which showed remarkable stability across a wide range of temperatures, shear
velocities, and pressures, predicting that the friction force approached zero as the graphene
approaches two or three layers.

In terms of the application of graphene in lubricants, Pape et al. [38] reported ex-
periments conducted with a rolling bearing test setup that evaluated the implementation
of graphene platelets as a dry lubricant and grease additive in machinery components.
Different thicknesses of the graphene platelets, ranging from 2 to 11–15 nm, were tested
in angular contact ball-bearing surfaces. The results indicated that the graphene platelets
formed a thin film, and the presence of the material in the grease improved the lubrication
of the bearings. Meanwhile, Berman et al. [54] reported the effect of adding few-layer
graphene (FLG) on a steel surface for wear reduction. The added FLG layers act as a
two-dimensional nanomaterial that conforms to the contact interface, allowing for shearing
and slowing down tribo-corrosion. Thus, it reduced wear between the sliding contacts
by almost four orders of magnitude and friction coefficients by a factor of 6. The thermal
conductivity of graphene also plays an essential role as a lubricant additive [40]. Graphene
has excellent thermal properties, as shown through theoretical approaches [24,57,58] and ex-
perimental approaches [59,60]. Hence, adding graphene to lubricating media will improve
its thermal conductivity [61–64]. Al-Janabi et al. [62,65] conducted a series of experiments
to determine the stability, thermal conductivity, and rheological properties of graphene and
multi-walled carbon nanotubes (MWCNT) in lubricant with different surfactants [66]. The
study described that the highest overall value for thermal conductivity obtained was for the
graphene sample, with a reported thermal conductivity of 0.145 W/mK. The researchers
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also discovered that the samples with added nanoparticles all recorded higher values for
thermal conductivity when compared to samples without nanoparticles. Alternatively,
Naddaf et al. [63] studied the thermal and electrical conductivity of nanofluids containing
graphene nano-platelets (GNP) and MWCNT at different weight concentrations. The re-
sults exhibited increased conductivity for both thermal and electrical conductivity with
increased weight concentrations of the carbon-based additives. In this case, the dispersion
of the carbon-based nanoparticle plays a crucial role in improving the thermal conductivity
of the fluid.

On the basis of the extensive research on graphene, it has been found to be a superior
material for use as a lubricant additive due to its superior chemical and physical properties.
Graphene-based lubricants resist oxidation and corrosion with superior thermal, tribologi-
cal, and rheological properties. Additionally, graphene’s excellent thermal properties also
make it an attractive option for improving the thermal conductivity of lubricants. Although
graphene is a popular option, synthesising graphene-based lubricants is challenging, and
further research is needed to understand the best synthesising methods. Nevertheless,
graphene has the potential to revolutionise the lubricant industry, and its use as a lubricant
additive can produce significant improvements in our current lubrication systems.

2.1. Synthesis of Graphene

Graphene was first isolated and characterised in 2004 by Geim et al. [30] at the Univer-
sity of Manchester. The authors used scotch tape to mechanically exfoliate graphene films
from a small mesa of highly oriented pyrolytic graphite. This approach allowed for the
preparation of FLG films up to 10 µm in size, with even thicker films that were up to 100 µm
across and visible to the naked eye (d ≈ 3 nm). Since then, much research has been de-
voted to understanding the properties of graphene and developing methods to synthesise
it [67–69]. The summary of the synthesis technique for graphene is displayed in Figure 3, in
which the most common method was chemical vapour deposition (CVD) [70–73]. CVD is a
process where a material is deposited on a substrate by decomposing a gas in a controlled
environment. The resulting CVD graphene/graphitic films are often used as a protec-
tion layer for micro-electromechanical systems (MEMS)/ nano-electromechanical systems
(NEMS) devices [74], gas barriers [75,76], and sensors [77]. In contrast, CVD graphene is
usually deposited in situ and may not be suitable for manufacturing graphene for liquid-
phase lubricants. The synthesis of liquid-phase graphene additives may be generalised into
a few broad steps mechanical exfoliation of graphene oxide or other chemically modified
graphene compounds [51,78], followed by chemical reduction or modification [79–81] or
thermal reduction [82–85].

One of the most common routes for graphene production involves the mechanical
exfoliation of graphite oxide into graphene oxide via a method known as Hummer’s
method [80,81,83–85]. The Hummers’ method and most of its modified synthesis route
involve the oxidation of graphite via a chemical reaction that introduces oxygen molecules
to pure graphene layers which make up graphite powder. Usually, sulfuric acid is used
as an oxidation agent. Then, potassium permanganate and sodium nitrate are added to
act as catalysts for the reaction between the graphene and the concentrated sulfuric acid.
The resultant graphene oxide (GO) layers have a weaker inter-layer attraction and thus are
easily separated by mechanical agitation in the liquid. Liang et al. [78] introduced an in
situ graphene exfoliation method for water-based lubricants. Their method relies on using
a non-ionic surfactant (Triton-X) in the exfoliation process. The graphene was mechanically
exfoliated via ultrasonic sonification after mixing with the non-ionic surfactant. Liang
et al. reported an 80% enhancement in friction properties in water-based lubricants with
graphene additives. Alternatively, Patel et al. [79] used off-the-shelf reduced graphene
oxide (rGO) nano-platelets as additives to lubricants and reduction of wear and friction by
up to 51.86%.

The chemical reduction of GO involves using a chemical agent to remove the oxygen
atoms bonded to the GO after some form of mechanical exfoliation is applied to separate the
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GO layers. Reduced graphene oxide (rGO) is the product of this reduction process, which
typically involves using hydrazine hydrate. The rGO has a higher degree of crystallinity
than the GO and thus exhibits higher mechanical properties. The rGO has been used
as an additive in lubricants that can reduce friction and wear [86]. Due to the toxicity
of hydrazine hydrate, various alternatives were proposed [80,81]. Satheesh et al. [81]
proposed an alternative reduction route utilising thiourea as a reducing agent. The resulting
graphene flakes showed stable thermal performances. Silva et al. [80] summarised using
green alternatives to hydrazine hydrate. Amongst the available alternatives, ascorbic acid
was known as the most promising reducing agent due to its low toxicity, low cost, and non-
carcinogenic properties. Therefore, the resulting graphene demonstrated good electrical
and thermal properties.

An alternative method for the reduction of GO involves the use of thermal reduction.
Thermal reduction is usually made at an elevated temperature to reduce the GO to graphene.
On the contrary, in most cases, the rGO may still have some hydroxyl, carbonyl, and
carboxylic acid groups attached to the surface [83–85]. Alam et al. reported a modified
Hummers method for synthesising rGO with a thermal reduction [85]. The thermal stability
of the rGO was the main factor to consider for thermal reduction, as the higher temperature
needed to purge the hydroxyl, carbonyl, and carboxylic acid groups may also cause a
mass loss in the carbon skeleton due to combustion. The rGO experiences less mass loss at
lower temperatures, but the final product may have a higher density of impurities [83,85].
Oliveira et al. [83] suggested that a rapid rate of heating to high temperatures, as opposed
to slow annealing, may be the key to creating high-quality rGO. The higher heating rate
causes the oxygen-containing group on the graphene surface to detach rapidly, forming
high-pressure vapour and pushing the layers apart.

Although the liquid phase exfoliation of graphene may be the best way to produce
graphene for lubricant additives, researchers need to be aware of the fundamental limita-
tions and impurities present in the final products [80,81,87]. Ambrosi et al. [87] presented
evidence that natural and synthetic graphite contains substantial metallic impurities in the
graphite oxide samples after oxidation and in chemically reduced graphene after reduction.
Despite some of the impurities being removed during the oxidation process of the graphite,
a substantial amount was still present, causing a major impact on the electrochemical
properties of the rGO produced [87].
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2.2. Lubrication Mechanisms of Graphene

Graphene-based nanocomposites are used as lubricant additives to reduce friction
and wear. The sliding pair wear resistance and friction reduction were greatly enhanced by
investigating the tribological behaviour of base oil with graphene lubrication. In invading
the rubbing interface, graphene successfully stopped tribo-pairs from making mechanical
contact with one another. Thus, with the addition of graphene, base oil viscosity, and
film thickness increased. The creation of protective films, interlayer shearing, and surface



Lubricants 2023, 11, 29 8 of 27

mending was lubrication mechanisms that helped to lower the friction coefficient and worn
scar diameter [4,89–91].

Wu et al. [92] investigated graphene’s interlayer shearing and surface mending be-
haviour. Since the interlayer shearing stress of graphene was smaller than the shear force
between sliding pairs, the friction coefficient of a tribo-pair decreased. The graphene inter-
layer shearing lubrication mechanism that occurred during the running-in stage is shown
in Figure 4a, in which the surfaces of the tribo-pairs were covered with many dimples and
peaks. Graphene was interlayer sheared during sliding because of the shear stress between
tribo-pairs, which reduced the friction coefficient. For the heavy load, the larger graphene
nanoplates were broken into smaller ones, which allowed the smaller graphene to reach the
rubbing surface much more quickly. Graphene is also used to stop the rubbing surface from
oxidising while sliding. After interlayer shearing and tearing during friction, graphene was
absorbed into the worn surface to fix the deep dimples and severe scratches. The oil film
thickness investigation proved that graphene accessed the contact area and significantly
lowered the friction coefficient and wear. Hence, a protective tribofilm can be developed in
a constant state of friction.
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Another experiment was conducted to observe the effect of film formation of graphene
by Wu et al. [92]. Figure 4b describes the outcome of combining the friction coefficient
curves and the protective film formation process. When tribo-pairs were lubricated with
aviation lubricant containing 0.075 wt.% of graphene, the friction coefficient significantly
decreased compared to the base oil. Three stages, namely, the running-in stage, the pro-
tective film formation stage, and the steady stage, were found concerning the increasing
sliding time. The interlayer shearing operated when sliding pairs were lubricated by oil
containing graphene in the running-in stage, as opposed to lubrication with base oil. There-
fore, the graphene nanoplates penetrated the contact area and promiscuously dispersed
into the lubricating fluid as the large graphene pieces were broken into little pieces. As
the electric charge is combined with shear stress, graphene tends to be parallel to the
rubbing surface during the formation of the protective coating. This stage enhanced friction
reduction and wear resistance by using graphene to heal severe wear caused by jogging.
After adhering graphene to the rubbing surface, the friction coefficient curves remain stable
during the steady stage. Finally, protective coatings are created under the impact of average
load and shear stress. As a result, sliding pairs’ tribological characteristics were greatly
enhanced [92].



Lubricants 2023, 11, 29 9 of 27

3. Graphene as Lubricant Additive in Liquid Form
3.1. Overview of Graphene Tribology at Ultrafine Particles to Reduce Friction and Protect Surfaces
from Wear in Liquid Form

This section demonstrates the tribological properties of liquid-based graphene in reduc-
ing friction and wear. It also is noted that the tribological properties of the targeted materials
highly depend on the type of lubricant and should be discretely studied. Table 1 sum-
marises the various targeted applications lubricated using liquid-based graphene. On the
basis of the literature, several studies involve the use of graphene-related compounds, such
as multi-layer, few-layer, single-layer, reduced, and fluorinated graphene-based materials.

Table 1. Summary of liquid-based graphene tribological properties on various applications.

Sample Name Targeted Application * Coefficient of Friction
(COF), µ Tribological Properties Ref.

Graphene Polyalphaolefin base oils (PAO6) 0.088 Wear rate: 0.033 × 10−9 mm3/Nm [93]
Graphene Poly-alkylene glycol oil (PAG) 0.134 Wear coefficient: 3.8 × 10−5 [94]
Graphene Textured alloy cast iron surface 0.29 Wear rate: 371 × 10−3 µm3/Nm [95]
Graphene Aluminium matrix composites 0.32 Wear rate: 12 × 10−5 mm3/Nm [96]
Graphene Base oil SN350 - Maximum nonseizure load: 627.2 N [97]

Graphene
Palm oil

trimethylolpropane (TMP) ester
blended in polyalphaolefin

0.07370 Wear scar: 416 µm [98]

Graphene Water - Friction coefficient reduction: 53%
Wear rate reduction: 91% [99]

Graphene Titanium complex grease - Average friction coefficient reduction:
21.99%Wear scar diameter reduction: 18.4% [100]

Graphene Spindle oil D22
(SSO-22) - Wear scar dimension: 0.4 mm × 1.7 mm [101]

Graphene Magnesium alloy–steel
contacts 0.132 Friction coefficient reduction: 21.9%

Wear rate reduction: 90% [102]

Graphene Neem oil - Friction coefficient reduction: 41.4%
Wear rate reduction: 23% [103]

Graphene Grease - Friction coefficient reduction: 17.6%
Wear loss reduction: 74% [104]

Graphene Vegetable oil 0.0854 Wear scar diameter: 428 mm [105]
Graphene Calcium grease - Friction coefficient reduction: 61%

Wear scar diameter reduction: 45% [106]

Graphene Polyalphaolefin-9 (PAO9) oil - Friction coefficient reduction: 17%
Wear scar diameter reduction: 14% [107]

Few-layer
graphene

Engine oil meeting (APISJ/CF
20W50)

API SN/CF
20W50

0.017
0.013

Wear scar: 500 µm
Wear scar: 400 µm [108]

Few-layer
graphene M2 steel surfaces 0.22 Wear resistance reduction: 80% [109]

Few-layer
graphene Si3N4/GCr15 0.068 Friction coefficient reduction: 27%

Wear scar reduction: 43% [110]

Multi-layer
graphene Polyalphaolefin base oils (PAO4) 0.088 Wear rate: 0.0592 × 10−6 mm3/Nm [111]

Multi-layer
graphene Polyalphaolefin-2 (PAO2) oil - Friction coefficient reduction: 78%

Wear scar diameter reduction: 16% [42]

Multi-layer
graphene

Al2O3
TiAl matrix vs. GCr15 steel

TiAl matrix vs. Si3N4

0.43
0.36
0.33

Wear rate reduction: 65.7%
Wear rate reduction: 89.4%
Wear rate reduction: 80.2%

[112]

Fluorinated
graphene Liquid paraffin 0.09 Friction coefficient reduction: 51%

Wear rate reduction: 92.3% [113]
Reduced

graphene oxide Silicon substrate 0.25 Wear life: ≈4300 s [114]
Graphene
nanofluid Ti-6Al-4V and WC–Co contacts 0.29 Friction coefficient reduction: 29%

Wear rate reduction: 37% [115]

* SN350 = light grade base oil; M2 steel = high-speed steel; API = American Petroleum Institute;
SJ/SN = petrol engine oil rating; CF = diesel engine oil rating; Al2O3 = aluminium oxide; TiAl = tita-
nium aluminide; GCr15 = standard alloy bearing steel; Si3N4 = silicon nitride; Ti-6Al-4V = titanium alloy;
WC–Co = cemented tungsten carbide.

A study reported by Zin et al. demonstrated the use of graphene nanostructures
in poly-alkylene glycol oil (PAG) for compressors operating with CO2 refrigerant [94].
The 0.2 wt.% of graphene-added lubricant revealed the most efficient amount. Thus, the
decreased contact area produced by the unusual form of nanohorns and rolling or sliding
processes was linked to friction reduction. Several studies on improving polyalphaolefin
(PAO)-based oils with graphene were also observed. Kong et al. reported utilising multi-
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layer graphene in polyalphaolefin-4 (PAO4) oil with a ball-on-plate tribotester [111]. By
varying the thickness of the graphene layer, multi-layer graphene outperformed few-layer
graphene, owing to the interlaminar structure. Furthermore, when smaller-size graphene
was used instead of large graphene films, the friction and wear rate improved by 37% and
47%, respectively. Similarly, Guo et al. also studied multi-layer graphene in polyalphaolefin-
2 (PAO2) oil [42]. In this study, 0.05 wt.% multi-layer graphene in PAO2 demonstrated a 78%
friction coefficient reduction and wear scar diameter under a load of 120 N. In another PAO
study, polyalphaolefin-9 (PAO9) oil was investigated by adding micro-graphene materials
(see Figure 5). The study effectively showed that low concentrations of graphene improved
friction coefficient and wear scare diameter by 17% and 14%, respectively [107].
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Several studies have reported using graphene in grease-based samples, such as tita-
nium complex, lithium, and calcium-based greases [102,104,106]. Wang et al. explored
the use of graphene in lithium-based oil, and the tribological performance was performed
under point, line, and surface contacts [104]. All three contacts reported reduced average
friction and wear loss, owing to the mechanical strength of graphene. Interestingly, the
study demonstrates that graphene can act as a catalyst to stimulate Fe2O3 and Li2O tri-
bofilm formation. Graphene nanosheets were also examined in calcium grease, in which the
amount of graphene was varied [106]. An initial observation revealed that increasing the
graphene content until 3 wt.% was sufficient to improve tribological properties, owing to
the thin laminated structure. In addition, the authors successfully increased the non-seizure
load from 150 to 240 N of the graphene-based calcium grease.

Less explored materials, such as fluorinated graphene, were performed on liquid
paraffin [113]. This study reduced the friction coefficient and wear rate by 51.4% and 90.9%,
respectively. The authors confirmed that multi-layer use was more efficient than single-
layer fluorinated graphene. Furthermore, a stable and concrete tribofilm was successfully
developed with self-lubricating behaviour. On the other hand, reduced graphene oxide,
which is essentially known as graphene but with higher functional oxide groups, was
also explored as a lubricant in silicon substrates [114]. Through a covalently assembled
multiple-step route, the reduced graphene oxide was demonstrated to reduce the friction
coefficient of silicon substrates down to 0.23.
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Although the study of liquid-based graphene was initiated long ago, the number
of reported works seems to be dwindling. Such observation was noticed as researchers
moved from pure graphene to doped- or composite-based graphene materials (which are
mentioned in the following section). These newer materials offer a limitless combination
of graphene-based lubricants with other compounds, which reported higher significant
improvements in reducing coefficient frictions and wear rates. Additionally, a few reports
have mentioned graphene oxides, which may play a more efficient role than liquid-based
graphene. A study by Xie et al. deduced that graphene oxide performs better than
graphene in magnesium alloy and steel contacts [102]. On the basis of the improved friction
coefficient (21.9 to 77.5%) and wear rate (13.5 to 90%) values, they tremendously improved
when graphene was replaced with graphene oxide, owing to the excellent affinity between
graphene oxide sheets and magnesium alloy surface, high water dispersibility, and superior
wetting characteristic. Recently, Goralka et al. [115] focused on the use of graphene as a
nanofluid additive for titanium alloy (Ti-6Al-4V) and cemented tungsten carbide (WC–Co)
contacts as they were commonly used in machining operations [116]. They studied the effect
of graphene concentration on the surface roughness of pin-on-disk tests made by Ti-6Al-4V
and WC–Co. They found that the 0.10 wt.% of graphene concentration in distilled water
demonstrated the lowest friction coefficient (0.29) and wear rate (4.8 × 10−4 mm3. Nm−1)
than pure water. Thus, studies on pure graphene materials should be further studied and
optimised to compete with other graphene-based materials, as the field still has so much to
offer. Through this, the advancement of the tribological applications of pure graphene in
various applications can be successfully achieved.

3.2. Overview on Modification of Graphene as a Lubricant Additive in Liquid Form

The tribological performance of graphene as a function lubricant depended on modifi-
cations made on the surface of the graphene. The graphene’s tribological properties can be
made via several methods, including chemically modified graphene surfaces with fluorine,
hydrogen, or oxygen. These chemical modifications on the surface of graphene have been
widely investigated via experimental and theoretical works.

3.2.1. Functionalised Graphene as Lubricant Additive in Liquid Form

According to Wang et al. [117], the oxidised graphene increased the friction between
two sliding graphene layers due to the presents of epoxied and hydroxyl groups. These
domination groups created an electrostatic and produce non-stable hydrogen bond inter-
actions. The formation of hydrogen bonds within oxidised graphene may also require an
enormous energy barrier, resulting in high energy dissipation. For hydrogenated graphene
sheets, the friction decreased significantly compared to pure graphene [118]. The lower
friction value was explained by electrons accumulated between the carbon atom and the
attached hydrogen atom, resulting in a decreased repulsive interaction of two contact sheets
and, thus, reduced energy generation. Functionalised graphene with fluorine, hydrogen, or
oxygen can increase friction. Furthermore, the adhesive properties for fluorinated graphene
were decreased, while modification of hydrogenated and oxidised graphene remains almost
unchanged. This tribological effect is due to the reduction of the Van der Waals on the
contact area. Thus, these findings show that other factors might also appear, which could
lead to the tribological behaviour of the graphene’s interfaces.

3.2.2. Polymer Graphene and Carbon-Based Additive for Liquid Lubricant

Friction and wear decrease the efficiency and lifetimes of mechanical devices. Nonethe-
less, only a few researchers have reported the fabrication of graphene and polymer to
enhance the lubricating performance of a liquid-based substance. Wu et al. [119] reported
the fabrication of polysaccharide-based hydrogels such as alginate-incorporated graphene
to form a nanocomposite with outstanding strength and high tribological performance.
They fabricated graphene-enhanced and in situ-formed alginate hybrid hydrogels with
the addition of gluconic acid-δ-lactone (GDL) and calcium carbonate (CaCO3) as a sub-
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stitute to control uniform gelation of alginates. The tribological performance for an ideal
lubricant is performed via polymer–metal friction pairs using a ball-on-disc test mode. The
introduction of graphene enhanced the mechanical performances of alginate hydrogels
and endowed them with better bearing capacity and wear resistance. From the results,
the friction coefficient and wear volume were decreased by 37% (0.106, represented by
G1) and 50% (represented by G3), respectively, as compared to deionised water. The
study also claimed that water molecules released within the hydrogels network formed
a self-lubricating of graphene composite to reduce the friction coefficient. Additionally,
the mechanism of graphene-reinforced alginate hydrogel lubricating and its superior tri-
bological performance are depicted in Figure 6. On the contrary, most polymer-based
incorporated graphene is used as a solid coating lubricant for reduced friction and wear at
dry sliding conditions [120,121].
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erage friction coefficient, and (d) wear volume of graphene-enhanced and in situ-formed alginate
hydrogels. Reproduced with permission from [119].

3.2.3. Oleic-Modified Graphene-Composite-Based Additive for Liquid Lubricant

The decoration of graphene with functional groups such as hydroxyl, carboxyl, and
epoxy has received attention among researchers due to the possibility of grafting with
other molecules to enhance lubricating performance by synergistic effect. Although the
significant modification improved functionalised graphene’s tribological properties, they
still need to fulfil the demand for lifetime anti-wear. Thus, composite-based graphene
material was constructed to obtain highly effective lubricating performance with an ideal
anti-wear lifetime. For instance, oleic-modified graphene has been found to improve lube
oil’s friction-reduction property, wear resistance, and load-bearing capacity due to its small
diameter and extremely thin laminated structure [122]. Cheng et al. [122] synthesised
oleic-diethanolamide-capped zinc-borate-coated graphene oxide composites by a liquid-
phase-based ultrasonic-assisted stripping technique which allowed the composites to enter
and deposited on the contact area to prevent direct contact with the rough surface of a
four-ball wear machine.

3.2.4. TMD-Modified Graphene-Composite-Based Additive for Liquid Lubricant

Recently, several researchers reported the development of a hybrid graphene-based
composite consisting of transition metals such as MoS2. The weak Van der Waals bonding
between successive layers of transition metal dichalcogenides (TMDs) enables the growth
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of these heterostructures with minimal concern for lattice mismatch and the subsequent
strain common in epitaxial growth [123]. In particular, the dispersion of a graphene/MoS2
composite improved the tribological properties of esterified bio-oil (EBO), thus reducing
friction and wear behaviours of steel/steel pairs compared to the pristine graphene and
MoS2 dispersion, respectively [124]. From the investigation, Xu et al. reported a synergistic
lubricating effect of EBO consisting of 0.3 wt.% graphene and 0.2 wt.% MoS2. The ratios
significantly reduced the friction coefficient and wear of the steel specimens. Furthermore,
the existence of MoS2 in composites restricted the grinding of graphene into smaller sizes
and prevented defective graphene, thus protecting the contact area during the rubbing
process. A mutual influence of graphene and MoS2 during the frictional process that
contributed to a significant decrease in the average friction coefficient and wear of the EBO
with composite, up to 300 N, is illustrated in Figure 7.

Lubricants 2023, 11, x FOR PEER REVIEW 14 of 27 
 

 

 

 

Figure 7. (a) Illustration of the frictional process of (a) graphene, (b) MoS2, and (c) 0.3 wt.% graphene 

+ 0.2 wt.% MoS2 and the effects of loads on (a) average friction coefficient and (b) wear scar diameter 

(WSD) and (d) wear scar width (WSW) of steel specimens lubricated by EBO with and without ad-

ditives (rotational speed: 1000 rpm; testing time: 30 min). Reproduced with permission from [124]. 

Farsadi et al. [125] reported that the combination of functionalised reduced graphene 

oxide (FrGO) and MoS2 demonstrated better dispersibility over one month in oil than GO 

and the monocomponent of MoS2. Nonetheless, the MoS2-based FrGO composite exhib-

ited a slight reduction in coefficient of friction (CoF) compared to the MoS2 graphene-

based composite developed by Xu et al. [124]. The effects of various loading amounts of 

MoS2 and GO on lubricating performance were further investigated by Hou et al. [126]. 

Figure 7. (a) Illustration of the frictional process of (a) graphene, (b) MoS2, and (c) 0.3 wt.% graphene
+ 0.2 wt.% MoS2 and the effects of loads on (a) average friction coefficient and (b) wear scar diameter
(WSD) and (d) wear scar width (WSW) of steel specimens lubricated by EBO with and without
additives (rotational speed: 1000 rpm; testing time: 30 min). Reproduced with permission from [124].
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Farsadi et al. [125] reported that the combination of functionalised reduced graphene
oxide (FrGO) and MoS2 demonstrated better dispersibility over one month in oil than GO
and the monocomponent of MoS2. Nonetheless, the MoS2-based FrGO composite exhibited
a slight reduction in coefficient of friction (CoF) compared to the MoS2 graphene-based
composite developed by Xu et al. [124]. The effects of various loading amounts of MoS2
and GO on lubricating performance were further investigated by Hou et al. [126]. Hou et al.
prepared two feed ratios of GO and MoS2 precursors to design composites containing high
and low amounts of MoS2 represented by RGO/MoS2-1 and RGO/MoS2-2, respectively.
Later, the tribological behaviours were evaluated as an additive in paraffin oil operated
by ball-on-disk mode. From the results, the unique combination structure of cocked MoS2
nanosheets of the RGO/MoS2-1 sample demonstrated enhanced dispersibility and stability.
In addition, both composites demonstrated the lowest CoF of 0.09, with RGO/MoS2-1
composite exhibiting a higher wear resistance capability than other additives (see Figure 8).
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Figure 8. (a) Schematic preparation of RGO/MoS2 heterostructure with a graphene layer sandwiched
between two MoS2 layers, (b) CoF variation against sliding distance in paraffin oil formulated with
RGO/MoS2-1 and (c) RGO/MoS2-2 heterostructures at various concentrations, (d) the percentage of
CoF by setting the CoF of paraffin oil as a maximum value of 100%, and (e) wear volumes of wear
tracks in base oil and oil formulated with different additives at various concentrations. Reproduced
with permission from [126].



Lubricants 2023, 11, 29 15 of 27

Despite the excellent tribological behaviour of graphene-based MoS2 composite mate-
rials, other concerns corresponding to the nanosized MoS2 have also been focused upon
by several researchers. Wu et al. reported for the first time the preparation of MoS2 on
graphene (MoS2/Gr), then later utilised it as an additive in perfluoropolyether (PFPE)
base oil [127]. As a result, the carried-out investigation discovered that the MoS2/Gr
nanocomposites demonstrated a highly stable dispersion in PFPE-based oil over two weeks.
Subsequently, nanocomposite friction reduction and anti-wear properties are improved in
comparison with pure PFPE oil or monocomponent-based oil. The tribological test used a
steel/steel contact under a high vacuum, as they believed the improvement of lubricating
performance is indicated by the effect of nanosized MoS2 on graphene dispersed in PFPE.
The fact that nanosized MoS2 on graphene could improve tribological performance was
agreed upon by Gong et al. [128], who developed nanosized MoS2/Gr. The materials were
used as a lubricating oil additive in PAG dispersion for steel/steel contacts of an optimal
SRV-IV oscillating friction and wear tester. The authors observed that the tribological
performance of 0.5 wt.% MoS2/Gr in PAG oil performed the largest friction reduction and
had better anti-wear properties compared to other additives (see Figure 9). Moreover, they
summarised that nanosized MoS2 on graphene could enter the contact area between the
sliding surfaces and then form thin, durable, and stable surface boundary layers. Thus, it
can maintain low friction and wear.
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Figure 9. (a) Friction coefficient and (b) wear volumes of the discs lubricated by pure PAG oil and
the different additives in base oil formulated with 0.5 wt.% Gr, 0.5 wt.% MoS2, 0.3 wt.% Gr + 0.2 wt.%
MoS2, and 0.5 wt.% MoS2/Gr at different loads. Reproduced with permission from [128].
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3.2.5. Metal-Modified Graphene-Composite-Based Additive for Liquid Lubricant

Because of their nanoscale size and high specific surface area, several metallic nanopar-
ticles such as TiO2, Fe2O3, CuO, and Ni have been widely used as anti-wear lubricant
additives in lubricant systems [129,130]. Furthermore, these graphene-based nanoma-
terials are driven by the development of energy-efficient lubricant additives concerned
with energy savings and environmental protection. For example, Jaswal et al. [130] de-
scribed titanium-dioxide-reinforced boron and nitrogen co-doped reduced graphene oxide
(TiO2-B-N-MRG) hybrid materials via a simple solution mixing technique. The tribologi-
cal properties of the hybrid material were tested in neutral paraffin oil using a four-ball
machine at an optimised additive concentration of 0.15% w/v. The addition of elements B
and N doped into hybrid material resulted in the formation of a protective tribofilm in situ
within the contact surfaces, reducing asperity–asperity adhesion.

The TiO2 nanoparticles deposited on the reduced graphene layers prevent those layers
from agglomerating. Remarkably, the nanoparticle shape of TiO2, which is spherical, acts
as a dual additive effect by providing it as a nano bearing between reduced graphene
layers and tribopairs to smooth the sliding phenomenon during the rubbing process, thus
reducing the CoF and wear rates under high-stress conditions. Recently, the dual additive
effects of TiO2 graphene-based nanoparticles were reported by Garmroudi et al. [131] and
Zhao et al. [132] without boron and nitrogen elements. On top of that, these composites
revealed high stability in base oil and reduced average friction coefficient and wear rate at
more significant percentages than pure oil.

Song et al. [133] fabricated α-Fe2O3 nanorods/GO composites for the first time via
a simple hydrolysis method. The tribological performance was tested using a universal
ball-plate microtribotester in paraffin oil. The α-Fe2O3 nanorods with 3–5 nm diameter
and 15–30 nm length anchored on the GO nanosheets act as a spacer during the rubbing
process, which can prevent wear on the contact surfaces. The sample also formed a
continuous film to reduce shear stress, thus lowering the friction coefficient and WDS rate.
Majeed et al. [134] reported on the suspension of Fe2O3 nanoparticles within exfoliated
graphene, demonstrating similar outcomes. From other perspectives, a multilayer of
graphene amazingly contributed greatly to a lower friction coefficient and wear rate, as
reported by Zhou et al. [135]. They tested the tribological performance of multilayer
graphene/Fe2O3 nanocomposite on a sliding titanium (TC11) alloy’s interface. A stable
double-layer tribo-layer formed a protective layer on TC11 alloy, preventing it from wear.
Furthermore, a weak Van der Waals interaction among the graphene layers facilitated
smooth sliding motion and reduced its shear force [136].

As discussed above, the nanoparticle size of the additive plays a significant factor that
can improve the lubricating performance due to its synergistic effect between graphene
nanosheets and nanoparticles. Nevertheless, Meng et al. [137] reported that the presence of
surfactant elements is also essential and can contribute to reducing the friction coefficient
and wear rate. Therefore, they prepared copper nanoparticles deposited on graphene oxide
nanosheets with the assistance of a supercritical carbon dioxide (Sc-Cu/GO) composite.
The investigation found that the Sc-Cu/GO composite demonstrated better lubricating
performance than Cu/GO composite without ScCO2. This improved performance is
because the ScSO2 acts as an active platform to uniformly distribute the Cu nanoparticles
on GO nanosheets. Thus, the composite could maximise its role during the sliding process
in liquid paraffin oil. Besides preparing Cu nanoparticles, Meng and her colleagues also
reported synthesising graphene oxide dotted with nickel nanoparticles with supercritical
CO2 to reduce friction and wear on the contact steel balls [138]. The main contributing factor
was also agreed by Song et al., where the authors prepared Cu nanoparticles decorated
on the polydopamine-functionalised GO nanosheets (Cu/PDA/GO) via a simple wet
chemical reduction route [139]. As a result, they concluded that the PDA serves as an active
platform to uniformly immobilise the Cu nanoparticles anchored on the GO nanosheet’s
surfaces, as depicted in Figure 10b,c. Moreover, introducing various functional groups
within the composite increased the dispersibility of soybean oil. During the tribological
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test within soybean oil, the Cu/PDA/GO composites exhibited a reduction in friction and
acted as a protective coating against wear and deformation of the sliding steel surfaces (see
Figure 10d,e).
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Figure 10. (a) Schematic for forming Cu/PDA/GO composites, (b,c) TEM image of Cu/PDA/GO
composites, (d) average friction coefficient, and (e) wear rate of steel disk in soybean oil formulated
with different additives. Reproduced with permission from [139].

Verma et al. reported that the dual-metal-doped composite preparation consists of
zinc oxide (ZnO) and magnesium-doped zinc oxide nanoparticles Zn0.88Mg0.12O (ZMO),
decorated on the rGO nanosheets [140]. To study the tribological effect of doping metals
on the lubricating performance, they investigated it by using a four-ball lubricant tester in
paraffin oil. The solid synergistic interactions between rGO and nanoparticles contributed
to a remarkable improvement in the triboactivity of nanocomposites compared to other
additives, as demonstrated in Figure 11. Furthermore, the friction/wear-reducing efficiency
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and load-carrying capacity of different additives in paraffin oil were lies, as they followed
the order: ZMO−rGO > ZnO−rGO > ZMO > ZnO > rGO > paraffin oil.
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Figure 11. HR-SEM images of (a) rGO, (b) ZMO, and (c) ZMO−rGO with the EDX spectrum, and
(d) mean wear scar diameter and coefficient of friction in paraffin oil formulated with various nano
additives (concentration of 0.125% w/v) at a given load of 392 N; sliding speed of 1200 rpm; a
temperature of 75 ◦C; test period 60 min. Reproduced with permission from [140].

In another study, Zhang et al. [141] prepared a boehmite/graphene oxide nano-hybrid
via a simple covalent bond method used as a lubricant-oil-based additive. The investigation
as the lubricating oil additive was tested in a ball-on-disc testing machine and a four-ball
machine. They discovered that the graphene composite that contained modified boehmite
reduced friction efficiency and improved anti-wear ability compared to pure oil (VHVI8).
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Specifically, the friction coefficient (CoF), wear scar diameter (WSD), and wear rate were
reduced by 14%, 28%, and 73%, respectively.

3.2.6. Noble-Metal-Modified Graphene-Composite-Based Additive for Liquid Lubricant

After subsequent investigation on the effect of metal-doping graphene-based compos-
ites, Meng et al. also fabricated noble metals such as silver (Ag) decorated on graphene
nanocomposites to be employed as an additive in engine oil (10W40) at concentrations
of 0.06–0.10 wt.% [142]. As a result, they found that the effect of adding silver has the
ability to reduce the friction coefficient and wear by 30.4% and 27.4%, respectively. Later on,
Wang et al. [4] prepared a unique structure of silver/graphene nanocomposite via a simple
and effective one-step laser irradiation method. The fabricated L-Ag@rGO nanocomposite
showed excellent lubricating performance on contact surfaces of a four-ball tribometer in a
paraffin oil base. The L-Ag@rGO as a lubricant additive demonstrated superior friction
reduction of about 40% and a wear rate of about 36% in comparison with pure Ag nanopar-
ticles, GO sheets, Ag@GO, and several commercial additives. The size of Ag nanospheres
also contributed to the main factor for the dispersibility of the composite that can remain
for long-time stability in base oil (more than 60 days). Thus, the L-Ag@rGO composite
offers a tremendous potential prospect as an additive material for the lubricating industry.

Graphene has emerged as a promising reinforcement material to improve wear re-
sistance in composite materials. The tribological performance of hybrid graphene-based
composites is summarised in Table 2. The significant previous research on composite-
based graphene materials displayed a good dispersion in liquid-based form that allowed
for excellent anti-friction and anti-wear ability compared with conventional graphene
materials. Additionally, using composite as an additive only requires a small amount;
thus, the fabrication of graphene-composite-based additives could still be attractive for
industrial applications.

Table 2. Overview of graphene-composite material tribological properties of widely used liquid
lubricants.

Composite
Material * Lubricants * Tribo-Pair Optimum

Concentration CoF Wear Ref.

Graphene/alginate
hydrogels

Deionised
water

Steel
ball-on-disc

0.1 mg. mL−1

0.3 mg. mL−1 ≈0.106 ≈2.00 × 107 (wear
volume, µm3)

[119]

OD-ZB/GO 500 SN base oil 4 steel balls 2.0 wt.% ≈0.058 ≈0.450 (wear scar
diameter, mm) [122]

Graphene/MoS2 EBO 4 steel balls
0.3 wt.%

graphene and
0.2 wt.% MoS2

≈0.018 ≈0.433 (wear scar
diameter, mm) [124]

MoS2-based
FrGO

Group II 500 N
petroleum-

based
oil

Steel/steel 0.8 wt.% ≈0.065 - [125]

RGO/MoS2-1 Paraffin oil Steel
ball-on-disc 0.06 mg. mL−1 ≈0.090 ≈2.50 × 104 (wear

volume, µm3)
[126]

MoS2/Gr PFPE base oil Steel/steel 1.0 wt.% ≈0.060 ≈2.50 × 10−11 (wear
volume, mm3/N.m)

[127]

MoS2/Gr PAG base oil Steel/steel 0.5 wt.% ≈0.080 ≈1.20 × 10−4 (wear
volume, mm3)

[128]

TiO2-B-N-MRG Paraffin oil 4 steel balls 0.15% w/v ≈0.0564 0.366 (mean wear
diameter, mm) [130]

TiO2/rGO PAO 20 4 steel balls 0.08 wt.% ≈0.067 ≈0.23 × 107 (wear
volume, µm3)

[132]
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Table 2. Cont.

Composite
Material * Lubricants * Tribo-Pair Optimum

Concentration CoF Wear Ref.

α-Fe2O3/GO Paraffin oil Steel ball-plate 0.5 wt.% ≈0.200 ≈0.08 (wear scar
diameter, mm) [133]

MLG/Fe2O3
Titanium

(TC11) alloy Steel ball-disk 1:2–1:4 ratio ≈0.063 ≈0.0 (wear rate,
mm3. mm−1) [135]

Sc-Cu/GO Paraffin oil Steel/steel 0.05 wt.% ≈0.065 ≈0.260 (wear scar
diameter, mm) [137]

Sc-Ni/GO Paraffin oil 4 Steel balls 0.08 wt.% ≈0.064 ≈0.290 (wear scar
diameter, mm) [138]

Cu/PDA/GO Soybean oil Steel
ball-on-disc 0.1 wt.% ≈0.050 ≈0.137 (wear track

width, mm) [139]

ZMO−rGO Paraffin oil 4 steel balls 0.125% w/v ≈0.036 0.374 (mean wear
scar diameter, mm) [140]

GO–GPTS–
AlOOH VHVI8 4 steel balls 0.030 mg mL−1 ≈0.095 0.418 (wear scar

diameter, mm) [141]

Sc-Ag/GN Engine oil
(10W40) 4 steel balls 0.06–0.10 wt.% ≈0.080 ≈0.380 (wear scar

diameter, mm) [142]

L-Ag@rGO Paraffin oil 4 steel balls 0.1 wt.% ≈0.061 0.496 (wear scar
diameter, mm) [4]

* OD-ZB/GO = oleic-diethanolamide-capped zinc-borate-coated graphene oxide; EBO = esterified bio-oil;
FrGO = functionalised reduced graphene oxide; RGO or rGO or MRG = reduced graphene oxide; MoS2 = molyb-
denum disulfifide; TiO2 = titanium dioxide; B = boron; N= nitrogen; α-Fe2O3 = hematite iron(III) oxide; MLG =
multilayer graphene; PAO = polyalphaolefin; PFPE = perfluoropolyether; PAG = polyalkylene glycol; Sc = super-
critical carbon dioxide; Cu = copper; Ni = nickel; PDA = polydopamine; ZMO−rGO = zinc-oxide/magnesium-
doped zinc-oxide-reduced graphene oxide; GPTS–AlOOH = 3-glycidoxypropyl-trimethoxysilane−nano-boehmite;
Ag = silver; GN = graphene; L-Ag@rGO = laser irradiation-silver/graphene composite.

4. Conclusion, Challenges, and Future Prospects
4.1. Conclusion

The improved mechanical, electrical, optical, and structural features of graphene
have sparked a great deal of interest in basic research and a wide variety of practical
applications. Graphene is a potential candidate for tribological applications, which aim
to lessen friction and wear on engineering surfaces. These applications could be made
possible by graphene’s weak Van der Waals interaction between its atomic-thick lamellae,
excellent mechanical strength, remarkable thermal conductivity, and high surface area.
In recent years, the utilisation of graphene, graphene that has been chemically modified,
and graphene-based composites as additions to various lubricating media have grown
significantly. Hence, this review outlined the most recent developments in graphene-based
nanomaterials for lubricant additive applications, concentrating primarily on synthesis
techniques, structure, lubrication mechanism, tribological performance assessment, and
applications of graphene-based nanomaterial additives. Surprisingly, the dispersibility,
stability, and tribological properties of other materials could be easily controlled and
enhanced by mixing graphene. Graphene-based nanomaterials were dispersed in various
lubricants to address various environmental conditions, which could broaden their scope
of tribology application. The development of an additive lubricant based on the graphene
family was investigated vigorously, and it promotes a suitable additive in liquid-based form.
Graphene performed excellent tribologically for many lubricant systems as an additive
lubricant due to its extraordinary physical and chemical properties.

4.2. Challenges

Although the family of graphene as an additive can play a vital role in lubrication and
wear resistance performances, there are still some limitations that need to be addressed
as follows:

(1) For instance, dispersion stability is a significant concern for graphene family additives
since it is related to instability in liquid-based lubrication systems.

(2) The high-temperature-induced wear debris and material degradation can significantly
impact the long-term stability of graphene family additives, which still needs to be
investigated in further research.
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(3) The high cost of additives belonging to the graphene family for industrial applications
is still a large challenge to resolve. It is imperative to develop an industrial-scale, cost-
effective preparation procedure for synthesising additives belonging to the graphene
family for practical applications [31].

(4) Currently, there are no widely acknowledged standards for creating graphene family
materials as additives. For example, the optimal parameters for a given application
situation, such as particle size, layer number, type of particle, and concentration of
functional groups, are yet unknown.

(5) An in-depth assessment of the factors involved and advanced approaches will be
necessary to discover low-cost graphene preparation and noble materials as additives.
This assessment will drive the future design and deployment of graphene family
compounds as additives.

(6) Some of the regularly utilised organic and inorganic components (such as sodium do-
decyl sulphate (SDS) [143] and MoS2 [144]) in graphene-based nanomaterials contain
sulphur elements that can readily induce pollutant release. Consequently, develop-
ing “green” graphene-based nanoparticles as efficient lubricant additives without
compromising friction and wear qualities is highly desired.

(7) The dispersion stability of graphene-based nanostructures in different liquid lubri-
cants remains a mystery. Organic modifiers are prone to degradation, owing to
friction-induced heat during the rubbing process, which results in the re-aggregation
of graphene nanosheets in the lubricants. Therefore, long-term dispersibility has been
a significant concern for industrial lubricant uses.

By overcoming the challenges mentioned above, graphene can be potentially used as
additives in the commercialisation of lubrication and wear resistance technology.

4.3. Future Prospects

Once these challenges are resolved, graphene family materials might serve as out-
standing lubrication options in various and vast areas, saving enormous amounts of energy
and reducing environmental pollution caused by friction. By resolving the problems in the
upcoming few years, it is anticipated that considerable breakthroughs in graphene-based
nanomaterials with desired characteristics will be possible. Before preparation, the type
and structure of the functionalised molecules and the physical structure of graphene-based
nanocomposites determine the performance of graphene nanocomposites due to the various
tribological states in various application scenarios. Therefore, it is necessary to model and
calculate their chemical characteristics. Alternatively, creating graphene-based nanocom-
posites with tailored characteristics, controlled morphologies, and optimised structures is
simpler. Moreover, it encourages using industrial lubricating additives and graphene in the
micro-nano area. Developing a novel method for creating graphene nanocomposites with
precisely regulated architectures is crucial. Graphene-based nanocomposites will shine
in micro-nano friction systems, bio-tribology, and industrial lubrication by continually
refining preparation processes and techniques, optimising their anti-friction with anti-wear
and lubrication mechanisms.
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