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Abstract: Studies on Multi-pass Friction Stir Processing (FSP) of Fe49.5Mn30Co10Cr10C0.5, a metastable
dual-phase High Entropy Alloy (HEA), were carried out with the aim to systematically investigate the
microstructural changes occurring during different passes, and to evaluate the mechanical response of
this alloy with progressive passes. A reduction in grain size and a change in HCP volume fraction was
observed after each pass. Dynamic recrystallization, occurring during FSP, led to grain refinement,
and the transformation induced plasticity (TRIP) effect resulted in observed changes in HCP phase
fraction. One-pass FSPed material exhibits a higher work hardening rate and a higher ultimate tensile
strength (UTS.) value, as compared to both, an annealed and two-pass FSPed material. This is due to
a combination of two factors, a small grain size and a large fraction of metastable Face Centred Cubic
(FCC) phase, in the microstructure of the one-pass material.
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1. Introduction

In the quest to develop high-performance High Entropy Alloys (HEAs), metastable
engineering has been shown to be a useful guide [1–3]. Li et al. [1] have developed a
quaternary HEA, with the composition Fe50Mn30Co10Cr10 (at%), exhibiting transformation-
induced plasticity assisted dual-phase microstructure, consisting of an face centered cubic
(FCC) γ matrix and an hexagonal closed pack (HCP) ε phase, with improved strength
(~730 MPa) and ductility (50% total elongation). The increased strength of this alloy
derives from increased resistance to plastic deformation on account of grain-boundaries
and interphase boundaries, while the increased ductility is due to the enhanced strain
hardening ability, attributed to strain-induced transformation of the metastable FCC phase,
as well as the increased dislocation hardening of the stable HCP phase. In fact, a multitude
of strengthening mechanisms such as substitutional solid solution strengthening, twinning
induced plasticity (TWIP), transformation induced plasticity (TRIP), stacking faults (SFs),
grain boundaries (GBs), and dislocation interactions are responsible for superior mechanical
properties of this alloy [4]. Further improvement in the mechanical properties of this alloy
was possible by the addition of C as an interstitial alloying element. Addition of small
amounts of C (~0.5 at%) not only leads to local distortions in the lattice, thereby promoting
interstitial solid solution strengthening, but also increases the stacking fault energy, and
hence the phase stability [5]. However, the amount of alloying element C added, should
not be excessive, in which case it may suppress the TRIP/TWIP effect [6].

Friction Stir Processing (FSP) is primarily a derivative of Friction Stir Welding (FSW)
and is a technique to engineer the microstructure through synergistic control of tempera-
ture, strain rate and strain [7]. FSP is a surface modification technique which produces a
microstructure consisting of fine, equiaxed, and randomly oriented grains [8]. Due to severe
plastic deformation during FSP, a large amount of frictional heat is generated, leading to
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refinement of the microstructure in the nugget (stir) zone [9]. Studies on multi-pass FSP
reported in the literature indicate improved strength of the alloy on account of progressive
grain refinement, due to dynamic recrystallization [10].

Kumar et al. [11] studied FSP of a single-phase FCC, Al0.1CoCrFeNi HEA, using a tool
rotational speed of 600 rpm, having a traverse speed of 25 mm/min. The one-pass FSP
reduced the grain size to 14 µm and increased the strength to 315 MPa, along with an ex-
ceptional elongation of ~75%, suggesting that grain boundary strengthening is an effective
strengthening mechanism for the alloy. Further work done by Kumaraswamy et al. [12]
on the alloy showed that due to the reduction in grain size during FSP, the material ex-
hibited a change in the work hardening mechanism, which was explained in terms of
twin-matrix interactions leading to an increase in dislocation storage inside the grains.
Wang et al. [13] investigated the possibility of introducing Al powders during one-pass FSP
of Al0.1CoCrFeNi HEA. They reported achieving heterogenous, bimodal-grained material
with increased strength and without significant loss of ductility. Li et al. [14] explored
the feasibility of one-pass FSP on single phase, FCC equiatomic CoCrFeNiCu HEA. Se-
vere plastic deformation led to ultrafine grained structure, with formation of nano-twins
mainly as a result of low stacking fault energy (SFE) of the alloy. The significant increase in
strength was mainly attributed to large grain refinement and formation of nano-twins in
the microstructure.

Liu et al. [15] have performed one-pass FSP (250 rpm rotational speed) on two, dual-
phase FCC+HCP HEAs, Fe42Mn30Cr15Co10Si3 and Fe40Mn20Co20Cr15Si5. The dual-phase
Fe40Mn20Co20Cr15Si5 HEA being more metastable displayed more responsive phase evolu-
tion during FSP i.e., change of FCC to HCP during FSP. The alloy exhibited TRIP effect and
the fraction of HCP phase reached ~90 percent after tensile straining. The alloy displayed
higher ultimate tensile strength as well as higher ductility due to effective strain accommo-
dation by the HCP phase. Nene et al. [7] studied the effect of one-pass (350 rpm & 150 rpm
rotational speed) and two-pass FSP (350 rpm in pass 1 and 150 rpm in pass 2) on the work
hardening behavior of dual-phase Fe40Mn20Co20Cr15Si5 HEA. The microstructure of the
as-cast material contained up to 90% coarse-grained εmartensitic phase, which resulted in
limited work hardening ability. This is because forming geometrically necessary dislocation
(GND) arrays in a harder martensite phase is not favorable. The one-pass FSPed sample
subjected to high strain rate processing at 350 rpm, showed 95% martensite phase hence,
no considerable change in martensite fraction occurred during tensile deformation. This
material also displayed a rapid reduction during stage III of work hardening with localized
variation in slope, due to controlled deformation twinning in ε phase. The one-pass FSP
sample processed at 150 rpm showed an FCC phase (65%) dominant microstructure. The
material displayed sustained work hardening up to a plastic strain of ~0.18. The two-pass
processed material displayed an HCP (69%) dominant microstructure and distinctly differ-
ent work hardening behavior. After a gradual change of slope at ~0.08 strain, a local maxima
was seen at later stages of tensile deformation, which is an indication of TRIP to a fully
martensitic microstructure. Sittiho et al. [16] investigated the effect of one-pass FSP on the
microstructure and mechanical properties of dual-phase FCC+HCP, Fe42Co10Cr15Mn28Si5
HEA. The microstructure of the room temperature, uniaxial compression tested sample
contained increased proportion of εmartensite as a result of TRIP effect. The fine-grained
austenitic structure, obtained after FSP, engendered the enhanced strain hardening rate and
strain hardening exponent leading to improved work hardening ability.

Nene et al. [17] have investigated the effect of FSP on the Fe50Mn30Co10Cr10 HEA
and evaluated the microstructure-property relationship. The alloy, when processed at
two different tool rotational speeds of 350 rpm and 650 rpm, revealed a microstructure with
significantly smaller grain size and varying fractions of FCC and HCP phases. While the ho-
mogenized microstructure had a grain size of 100 µm, the grain size obtained after FSP with
a tool rotational speed of 650 rpm was 5.2 µm. FSP resulted in a fine grain size and a small
volume fraction of HCP phase in the microstructure. The combination of these two factors
led to a high work hardening rate due to enhanced TRIP effect. Dmitr et al. [6] have investi-
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gated the effect of FSW parameters on the structure and properties of Fe49Mn30Co10Cr10C1
HEA. The initial microstructure obtained after cold rolling and annealing consists mainly
of FCC matrix phase having a 7 µm grain size. In addition, a small amount of the HCP (5%)
phase and the carbide (4%) phase were also present in the microstructure. FSW resulted in
a decrease in grain size and a reduction in the fraction of carbides in the microstructure.
However, the fraction of HCP phase in the microstructure remained unchanged after FSW.
Upon tensile deformation, FCC to HCP transformation occurred displaying in large values
of UTS. and total elongation.

The dual-phase Fe49.5Mn30Co10Cr10C0.5 HEA has shown an excellent combination of
strength and ductility at room temperature [5,18,19] and is a promising structural material.
However, the multi-pass FSP of this dual-phase HEA has not been studied to date, although
several studies have shown applicability of multi-pass FSP to improve structure properties
of other structural alloys [20–22].

Therefore, the current investigation explores multi-pass FSP of a quinary, Fe49.5Mn30Co10Cr10C0.5
HEA, with the aim to systematically investigate the microstructural changes occurring, and to evalu-
ate the mechanical response of this metastable dual-phase alloy.

2. Materials and Methods
2.1. Alloy Processing

The alloy of the required composition was prepared on a semi-industrial scale, in a vacuum
induction melting furnace having a 10 kg batch size under an Ar atmosphere. The molten alloy
was cast in a mould and the ingot obtained had dimensions of 50 mm × 50 mm × 300 mm. The
ingot was trimmed at both ends and the ends discarded. The alloy ingot, having a dendritic cast
structure, was kept in a reheating furnace for 2 h at 900 ◦C, to obtain compositional homogeneity,
and then the ingot was hot-forged to break the dendritic structure and achieve a thickness
reduction of 50%. Homogenization was performed at 1200 ◦C for 2 h to relieve any internal
stresses developed during working. Subsequently, the hot-rolled plate was subjected to a 40% cold
reduction. The dimensions of the cold-rolled plate obtained were 200 mm × 200 mm × 12 mm.
After cold rolling, annealing was performed at 900 ◦C for 3 min to obtain fully recrystallized
grains and relieve any internal stresses.

2.2. Friction Stir Processing

A schematic of the friction stir processing is shown in Figure 1. A lanthanated tungsten
tool was used during FSP. The details of the parameters used during FSP are provided
in Table 1. One-pass FSP was carried out at a tool rotational speed of 800 rpm, whereas
two-pass FSP was performed with the second pass, overlapping (100%) the processed
region of the first pass and again at a tool rotational speed of 800 rpm. Traverse speed
was the same during the one-pass as well as during the two-pass FSP. Figure 2 shows low
magnification optical images of the etched one-pass and two-pass FSP samples, with the
nugget and thermomechanical heat affected zones indicated.

Table 1. Friction Stir Processing parameters.

Tool material W-La2O3

Plate thickness 5 mm

Tool rotation speed 800 rpm

Tool traverse speed 50 mm/min

Shoulder dia. 22 mm

Pin dia. 14 mm

Pin length 4 mm
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Figure 2. Optical micrographs showing thermo-mechanically processed zone in (a) one-pass and (b) 
two-pass FSPed samples. (a1,b1) show the microstructure at the advancing side while (a2,b2) show 
the microstructure on the retreating side. (c) is a magnified image of (b2) showing distinct regions 
of nugget and thermomechanical heat affected zone. 

2.3. Micro Tensile Test 
Micro tensile testing was performed on an EFT-5EDC UTM, manufactured by Jinan 

Testing equipment IE corporation, capable of exerting a maximum load of 5 kN. Dog-bone 
tensile test specimens were prepared from the nugget zones of the one-pass and the two-
pass FSPed material and from the annealed material. Mini tensile specimens were pre-
pared with a gauge length, width, and thickness of 5 mm, 2 mm, and 1.7 mm, respectively. 
Samples were subjected to an initial strain rate of 10−3 s−1. To check the reproducibility, 
three samples were tested from each of the three materials, viz., annealed, one-pass and 
two-pass materials. 

2.4. Microstructural Characterization 
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nugget and thermomechanical heat affected zone.

2.3. Micro Tensile Test

Micro tensile testing was performed on an EFT-5EDC UTM, manufactured by Jinan
Testing equipment IE corporation (Jinan, China), capable of exerting a maximum load of
5 kN. Dog-bone tensile test specimens were prepared from the nugget zones of the one-pass
and the two-pass FSPed material and from the annealed material. Mini tensile specimens
were prepared with a gauge length, width, and thickness of 5 mm, 2 mm, and 1.7 mm,
respectively. Samples were subjected to an initial strain rate of 10−3 s−1. To check the
reproducibility, three samples were tested from each of the three materials, viz., annealed,
one-pass and two-pass materials.

2.4. Microstructural Characterization

The annealed sample and samples from the nugget zone of the FSPed regions, were
polished and etched with nital solution. Microstructures were examined using a Carl Zeiss-
make optical microscope (Jena, Germany) equipped with a BIOVIS MP 2000 image analyzer.
X-ray Diffraction (XRD) studies were performed on a Bruker-make diffractometer (Billerica,
MA, USA), using CuKα incident radiation. Electron Backscatter Diffraction (EBSD) studies
were performed using a Zeiss Gemini 300 SEM equipped with an Oxford-make EBSD
detector (Abingdon, UK) and TSL OIM software. Transmission Electron Microscopy (TEM)
studies were performed on a Thermo Scientific (Waltham, MA, USA), Themis 300 G3
instrument, equipped with Velox software.
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3. Results and Discussion
3.1. Composition and Microstructure of the Cold-Rolled and Annealed Sample

An Inductively Coupled Plasma—Atomic Emission Spectrometer (ICP/AES) was
used to determine the composition of the alloy. Table 2 provides the weight and atomic
percentages of the different elements present in the alloy.

Table 2. Chemical composition of the alloy.

Fe Mn Co Cr C

Wt.% 49 ± 0.94 30 ± 0.80 9 ± 0.28 10 ± 0.64 0.11 ± 0
At.% 48 ± 0.93 30 ± 0.45 9 ± 0.47 10 ± 0.67 0.51 ± 0

The optical micrographs taken from hot-rolled, cold-rolled, and cold-rolled and an-
nealed sample are shown in Figure 3. As seen in Figure 3a, the microstructure of hot-rolled
samples consists of large equiaxed grains. Inside the large equiaxed grains, twins can be
clearly seen extending through the grains. The microstructure of the cold-rolled sample,
shown in Figure 3b, consisted of pancake shaped grains displaying shear bands across the
grains. Figure 3c shows the microstructure of the sample subjected to annealing after cold
rolling. The microstructure consisted of small equiaxed recrystallized grains. The twins
present inside the small, recrystallized grains could be clearly observed.
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Figure 3. Optical micrographs showing the microstructures of the (a) hot-rolled, (b) cold-rolled and
(c) cold-rolled and annealed sample.

The EBSD Inverse Pole Figure (IPF) map of the cold-rolled and annealed sample is
shown in Figure 4a. The micrograph displays random orientation of the grains confirming
absence of preferred orientation in the sample. Figure 4b shows the EBSD phase map of
the cold-rolled and annealed sample. The dual-phase microstructure consisted of FCC and
HCP phases. The matrix grain size in the present work was determined by considering
the whole matrix grain, including the HCP laminate phase. The grain size was found to be
7.9 ± 2.1 µm. From EBSD phase analysis, the amount of HCP phase in the microstructure
was determined to be 16%. Li et al. [23] have described the microstructure in a quaternary
Fe50Mn30Co10Cr10 alloy. They have also reported a dual-phase microstructure consisting
of compositionally identical FCC and HCP phases, with the HCP phase exhibiting a
laminate morphology.
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Figure 4. EBSD (a) IPF map and (b) phase map of the cold-rolled and annealed sample.

Figure 5a shows a scanning transmission electron microscopy–high angle annular dark
field (STEM-HAADF) image of the sample taken in a <112> zone axis orientation. The TEM
micrograph also reveals the presence of fine precipitates in the microstructure. The selected
area electron diffraction (SAED) pattern shown in Figure 5b, taken from the matrix region
containing the precipitate particles, reveals the presence of strong matrix reflections and
faint particle reflections. Li et al. [5] have also investigated the microstructure in a TEM and
identified the particles to be those of M23C6 carbides. Carbide particles shown in Figure 5a,
were found to be precipitated at the grain boundaries and found distributed homoge-
neously throughout the matrix. The average size of the carbide particles was estimated
to be 10–20 nm. The crystallographic orientation relationship between the matrix and the
particle was found to be cube-on-cube, usually expressed as <100>matrix//<100>precipitate
or {100}matrix//{100}precipitate. This is in agreement with the result reported by Li et al. [2].
The nanosized carbide particles in the matrix provide additional precipitation hardening to
the alloy through the Zener pinning effect [24]. Figure 5c,d are the bright field and dark
field images of the precipitates whereas, Figure 5e is the STEM-EDS elemental map of Cr,
recorded in the same location as shown in Figure 5a. The map clearly reveals the presence
of Cr precipitates in the alloy matrix. EDS elemental maps shown in Figure 5f–i indicate
uniform distribution of Fe, Co, Mn, and C in the matrix, showing no elemental segregation
at the grain level.
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3.2. Friction Stir Processed Samples: Microstructural Evolution

Figure 6 shows the optical micrographs taken from the annealed, nugget zone of one-
pass FSP and two-pass FSP samples. The microstructures of FSPed samples consist of very
fine grains. Clearly, one-pass FSP reduces the grain size substantially while the subsequent
second pass further reduces the grain size of material only marginally. The frictional forces
acting between the rotating tool and the work piece, leads to heat generation and along with
the severe plastic deformation during FSP, produces a fine-grain microstructure. The more
intense the plastic deformation, the more the driving force for dynamic recrystallization in
the material.
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(c) two-pass FSP samples.

Figure 7a,c show the IPF images of the one-pass and two-pass FSPed samples. The
grain sizes were determined to be 6.2 ± 1.9 µm and 4.1 ± 1.2 µm for one-pass and two-pass
FSP samples, respectively. Multi-pass FSP is adopted with the objective of producing a
very fine grain size material [25,26]. However, the reduction in grain size obtained after
the second pass is not as significant as the one obtained in the first pass FSP. Luo et al. [21]
have also reported similar results with no drastic grain refinement observed after second
overlapped pass. The inability of the multi-pass FSP to achieve significant grain refinement
with constant processing parameters, has been attributed to the accumulated heat in
subsequent passes [21,27]. The heat generated and strain rate, along with strain, are known
to have a counteracting effect on the evolution of grain size [28,29]. Figure 7b,d show
the EBSD phase maps obtained from one-pass and two-pass FSPed samples. It can be
observed that the HCP phase in the microstructure increases from 16% in cold-rolled and
annealed samples to 18% and 36% in one-pass and two-pass FSPed samples, respectively.
During one-pass FSP, only a small volume fraction of FCC phase transforms into HCP
phase, whereas, during the second pass, substantial amount of FCC phase transforms into
HCP phase, suggesting increased metastability of FCC phase during the second pass. It is
known from literature that interstitial atoms hinder the movement of partial dislocations,
thereby, increasing the stacking fault energy of the HEA and suppressing the FCC-to-HCP
displacive transformation [30]. However, during the second pass of the FSP, the severe
plastic deformation enables the alloy to achieve very high strains. In the local regions where
the plastic strain is high, the interaction of dislocations in the confined volume results in
formation of shear bands. These shear bands act as HCP nucleation sites and promote
HCP phase formation. This explains how the significantly increased inhomogeneous stress
distribution during the second pass aggravates the strain localization resulting in more
HCP phase formation during the second pass than during the first pass in a two-pass
FSP process [30]. The X-ray Diffractograms from annealed, one-pass and two-pass FSP
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samples, shown in Figure 7e, further confirm the changes in HCP phase fraction after
FSP. In the annealed condition before FSP, low intensity peaks of HCP phase are observed,
whereas, after performing FSP, sharp HCP peaks are seen indicating modification in the
phase fractions.
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Figure 8(a1,b1,c1) shows Kernal Average Misorientation (KAM) maps of annealed,
one-pass and two-pass FSPed samples, respectively. The KAM maps reflect the local
mis-orientation experienced by the grains after deformation. The local misorientation
is a result of strain mismatch between the different grains and different phases present
in the microstructure [29,31]. The strain mismatch is accommodated by geometrically
necessary dislocations (GNDs) and the significance of KAM values lies in the fact that it
is indicative of the density of the GNDs present in the microstructure. The KAM map
of the annealed sample shown in Figure 8(a1) exhibits mostly blue colour indicating
almost strain-free microstructure, whereas the KAM maps of one-pass and two-pass FSPed
samples exhibit increasing amount of green colour indicating moderate strain distribution
across the microstructure. The area fraction of these moderately deformed regions in the
microstructure is determined using ImageJ software and were found to be 6.38%, 21.1%, and
33.39% in the annealed, one-pass, and two-pass FSPed samples, respectively. Interestingly,
comparison of the KAM maps with the phase maps shown in Figure 8(a2,b2,c2) indicate
that during FSP, the HCP phase deforms and attains similar strain accommodation as the
FCC phase. Nene et al. [17] have also observed a homogenous KAM pattern in the FSP
processed samples of composition Fe50Mn30Co10Cr10, having an initial grain size of 5.2 µm.
Liu et al. [15] have also reported that the higher metastability in Fe40Mn20Co20Cr15Si5 alloy
causes HCP phase to deform and accommodate strain levels similar to that of the FCC
phase. Figure 8d–f shows the presence of SFs in annealed, one-pass and two-pass FSPed
samples. In FCC materials, SFs are formed by dissociation of a perfect dislocation into
Shockley partials. Gliding of 1/6<112> partial leads to formation of HCP stacking fault.
A small number of SFs were present in the annealed sample prior to deformation. Upon
processing, and with increasing strain, those SFs overlapped and formed the HCP phase.
From Figure 8d–f, it can be observed that the number density of SFs increased upon FSP. In
a two-pass FSP sample, the strain induced is larger than that in the one-pass FSP sample.
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Apart from the strain localization resulting in more HCP phase formation during the second
pass, another reason is the increase in number density of overlapping stacking faults.
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Figure 8. EBSD KAM maps of (a1) annealed, (b1) one-pass and (c1) two-pass FSP samples and phase
maps of (a2) annealed, (b2) one-pass and (c2) two-pass FSP samples TEM micrographs showing
presence of stacking faults in the (d) annealed, (e) one-pass, and (f) two-pass FSP samples.

The combined fraction of High Angle Grain Boundaries (HAGB) and Low Angle Grain
Boundaries (LAGB) in FCC and HCP phases, present in the microstructure of annealed,
one-pass, and two-pass FSP samples, is shown in Figure 9a. LAGBs are defined as those
having a misorientation of 2◦–15◦ whereas HAGBs are those having a misorientation
greater than 15◦. The results shown in Figure 9a clearly indicate that as the FSP passes
increase, the fraction of LAGB increases along with a corresponding drop in the fraction
of HAGBs in the microstructure. This has been attributed in the literature to the initial
development of Dense Dislocation walls (DDWs) and Dislocation Tangles (DTs) followed
by the transformation of DDWs and DTs into LAGBs, with increasing strain [32,33]. The
increase in the fraction of LAGBs, with increasing passes during FSP, is also supported by
the increasing average KAM values in the one-pass (0.74) and two-pass FSP (0.83) samples,
as compared to that in the annealed sample (0.41) (the KAM values determined from the
KAM maps shown in Figure 8(a1,b1,c1)). Figure 9b is a bright-field (BF) image taken from a
two-pass FSP sample. The BF image shows DDWs and DTs inside the original grain in the
microstructure. Figure 9c shows the presence of twin boundaries and low angle boundary
in the matrix with same zone axis.
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Figure 9. (a) Evolution of grain boundary fraction (LAGB/HAGB) and KAM value in the microstruc-
ture of the alloy during FSP. (b) TEM bright-field micrograph showing a network of high dislocation
density (white arrows) and dislocation walls (yellow arrows) in the microstructure of a two-pass FSP
sample, and (c) TEM bright-field micrograph showing twin boundaries (white arrows) and low angle
grain boundary (yellow arrows) in the microstructure of a two-pass FSP sample. The insets show the
diffraction patterns taken from three different regions in the microstructure.

The combined Taylor Factor (TF) maps for FCC and HCP phases present in the
microstructure in annealed, one-pass, and two-pass FSP samples are shown in Figure 10(a1),
Figure 10(b1), and Figure 10(c1), respectively. The average values of the TF calculated for
annealed, one-pass, and two-pass FSP samples are 3.11, 3.16, and 3.14, respectively. The
separate TF maps for FCC and HCP phases are also determined and shown in Figure 10.
The average values of the TF calculated for FCC phase in annealed, one-pass, and two-pass
FSP samples are 3.07, 3.15, and 3.07, respectively, and the same in HCP phase are 3.27,
2.4, and 3.37, respectively. TF maps are indicative of the yield response of the differently
oriented grains for a given stress state in the alloy. The higher Taylor factor being indicative
of the higher resistance to yielding [34,35]. The grains with least yield resistance are
shown in blue colour while the grains with high yield resistance are shown in red colour.
It may be noted that the Taylor factor depends on the texture and orientation of the
tensile axis, and accounts for averaging of the grain orientations, over all the grains in the
sample. For random textures its values are bound between 2.24 and 3.06 [36]. The one-pass
FSP sample showed a lower TF value in the HCP phase compared to the annealed and
two-pass FSP samples. It could be because of the difference in the orientation of HCP
grains. It also indicates that the fraction of the HCP grains resistant to yielding is the least
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in the microstructure of one-pass material and most in that of two-pass material. As a
result, more HCP grains in one-pass FSP will be available for sustaining strains during
tensile deformation.
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3.3. Friction Stir Processed Samples: Changes in Mechanical Properties

The microhardness profile across the nugget zone of the one-pass and two-pass friction
stir processed sample is shown in Figure 11. It is seen that upon FSP, the hardness has
increased from 162 HV in the annealed sample to 254 HV and 234 HV in the one-pass and
two-pass samples, respectively. The increase in hardness of the material, upon FSP, is a
result of grain refinement [10]. Interestingly, the hardness of the one-pass sample is slightly
higher than that of the two-pass sample. Although the microstructure of the one-pass
sample exhibited a larger grain size than that of the two-pass sample, the volume fraction
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of FCC phase in the one-pass sample was also higher than that in the two-pass sample.
During indentation, strain induced martensitic transformation has been shown to occur
beneath the indenter, which accounts for the increase in the hardness measured for the
one-pass sample. Sinha et al. [37] have also observed increased hardness of metastable
dual-phase high entropy alloys and have also attributed this to strain induced martensitic
transformation occurring underneath the nano-indenter.
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The engineering stress-strain plot and the work hardening rate vs. true strain plot
of the annealed, one-pass, and two-pass FSP samples are shown in Figure 12a and 12b,
respectively. Tensile test results obtained at room temperature are summarized in Table 3.
It can be seen from Table 3 that the yield strength (YS) increases from a value of 291 MPa
for the annealed material to a value of 415 MPa and 437 MPa for the one-pass and two-pass
FSP samples, respectively. The increase in the yield strength during FSP is a result of
grain refinement occurring during FSP. The grain refinement is attributed to the dynamic
recrystallization occurring due to the intense deformation and heat generation during
FSP. In addition to the reduction in grain size contributing to Hall-Petch strengthening,
the presence of planar defects, such as twins, SFs, low angle boundaries, and interphase
boundaries, contribute to the reduction in mean free path of the dislocations, thereby
sustaining the strain developed in the matrix resulting in enhanced strengthening [38].
Compared to the annealed material, the one-pass FSP material exhibited higher values of
UTS and strain hardening exponent but a lower value of elongation. However, compared
to the two-pass FSP material, the one-pass FSP material exhibited higher UTS, higher strain
hardening exponent and a higher elongation.
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Table 3. Mechanical properties obtained from tensile test conducted on an annealed, one-pass, and
two-pass FSP samples.

Yield Strength, MPa Ultimate Tensile Strength, MPa Elongation, % Strain-Hardening Exponent, n

Annealed 291 ± 23 710 ± 30 63% ± 3 0.36
One-pass 415 ± 9 818 ± 18 55% ± 4 0.38
Two-pass 437 ± 21 768 ± 21 45% ± 7 0.31

It is evident from the work hardening rate vs true strain plot, shown in Figure 12b, that
the annealed material showed high work hardening ability. The work hardening rate was
determined to be 2500 MPa and 2000 MPa at a true strain of 0.1 and 0.2, respectively. The
increased work hardenability of the annealed material can be ascribed to the metastable
FCC dominated microstructure. Upon tensile loading, FCC phase transforms to HCP
phase as a result of the TRIP effect. This can also be readily seen from Figure 12c wherein
the amount of FCC phase in the microstructure has reduced from 84%, before the tensile
loading, to 4%, after complete tensile deformation. Li et al. [5] have also found a high strain
hardening in the grain refined alloy of the same composition. The strain hardening rate
estimated from their strain-hardening rate vs. true strain plot was around 3000 MPa and
2000 MPa at a true strain of 0.1 and 0.2, respectively. In their work, the amount of FCC
phase in the microstructure was reduced from 99.3% before tensile testing to 63.5% in the
neck region. Nene et al. [31] have also reported significantly high work hardenability in
as-cast metastable Fe42Mn28Co10Cr15Si5 alloy and they too have attributed this to FCC
enriched starting microstructure transforming to HCP martensite upon tensile loading
because of TRIP.
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The two-pass FSP material, on the other hand, exhibits a sharp decrease in the work
hardening rate during early stages of tensile deformation. With increasing strain, the work
hardening rate decreases less rapidly and exhibits a sustained value until fracture. The
rate of work hardening during this stage depends on phase stability of FCC for any given
grain size and HCP phase fraction. The dependence on grain size can be explained in
terms of the larger grain boundary area exerting more back stress, resulting in a more
controlled FCC to HCP transformation and thus, sustained work hardening in very fine
grained material [31]. The initial FCC phase fraction in the microstructure before tensile
deformation was 64%, and upon complete tensile deformation the phase fraction, reduced
to 3% as, shown in Figure 12e. The one-pass FSP material showed a very different work
hardening response. After an initial decrease there was a gradual reversal in the slope
of the curve at a plastic strain of 0.05, along with a formation of a local maxima. The
change in slope of the work hardening curve indicates the TRIP acting in the material.
Nene et al. [31] have also observed a similar hump in the work hardening curve in the
metastable Fe42Mn28Co10Cr15Si5 alloy which they have ascribed to the dynamic Hall-Petch
effect associated with the formation of twins in pre-existing and transformed HCP phases.
The larger grain size (6.2 µm) and higher fraction of the FCC phase (82%) in the one-pass
FSP material, compared to the two-pass FSP material, optimized the stability of the FCC
phase, resulting in increased strain hardening ability.

It is well known that mechanical processing can engender phase transformations in
metals. The process of transitioning the FCC structure into HCP structure is a subject of
continuing interest. While previous studies indicated that FCC to HCP transition occurs
through glide of partial dislocations on alternate close-packed {111} planes, inhomogeneous
bending strain would make this dislocation activity unfavorable. Sun et al. [39] performed
in-situ TEM investigation to determine the mechanisms operating at the atomic scale
during bending of Ag nano-wires. While dislocation glide and deformation twinning are
mechanisms of plastic deformation in metals under conventional loading, phase transition
becomes an important mechanism to accommodate plastic strain under bending, at least
for Ag nano-wires. They have shown that a sequential phase transformation from FCC
to BCC to HCP to re-oriented FCC, occurs upon gradual increase in the bending strain,
through a process of Bain straining [40]. Grain boundary sliding is known to exert an
influence on plastic deformation at ambient temperature and is of considerable interest
in research involving plastic deformation in nano-crystalline solids [41]. Wang et al. [42]
have performed an in-situ TEM investigation on a general high-angle tilt boundary in
FCC Pt bi-crystal and obtained insight into the disconnection mediated grain boundary
sliding process. Disconnections are defects that can be characterized by a step height and
Burgers vector. They have shown that while pure grain boundary sliding occurs by glide
of disconnection along the boundary, the coupled process of GB sliding, and atomic plane
transfer occurs through high-applied stress driven displacive atomic events, at ambient
temperature. In the presently-studied high entropy alloy system, similar investigations
could be carried out in future, on bi-crystals extracted from polycrystals, and carrying
out the nanomechanical tests in an aberration corrected atomic resolution TEM. This
would enable tracking of atomic scale motion of grain boundaries and obtain insights into
mechanisms of GB sliding and deformation behavior of HEA.

The fractographs of the annealed, one-pass, and two-pass FSP tensile test specimens
are shown in Figure 13. The fractographs exhibit equiaxed dimples indicating ductile failure
in the samples. The dimples and tear ridges observed in the fractographs are a manifestation
of nucleation, growth, and coalescence of microvoids. The presence of nanosize carbides in
the microstructure could have served as the initiation sites for the microvoids. A closer look
at the bottom of the microvoid, however, did not reveal the presence of carbides, indicating
that the carbides have debonded from the matrix. It is also clear from the fractographs that
the average size and depth of the dimples decrease with decreasing grain size. This is also
in agreement with the higher ductility obtained in annealed samples, which is manifested
in the fractographs through deep dimples. Naghizadeh and Mirzadeh [43] have also seen
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that on the fracture surfaces of AISI 304 stainless steel samples, size and depth of dimples
increase with increasing average grain size, consistent with the results obtained here.
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A plot showing the variation of grain size, initial fraction of FCC in the microstructure,
the yield and the tensile strength, and % elongation in the annealed, the one-pass, and the
two-pass materials, is shown in Figure 14. It is seen that the tensile strength of the one-pass
material is higher than that of the annealed material and it is also higher than that of the
two-pass material. This can be understood in terms of two counteracting factors which
influence the tensile strength of the material, viz., grain size and the initial fraction of FCC
in the material. It has been shown previously by Li et al. [1,23] that the strength-ductility
of the HEA, Fe50Mn30Co10Cr10, depends on the grain size and fraction of HCP phase,
as well as on the density of the stacking faults. It can be seen that upon decreasing the
grain size from annealed to one-pass material, both Y S and UTS increases and the total
elongation decreases. This result is consistent with the trend that decreasing grain size
leads to increased resistance to deformation [44,45]. Similar grain size effects on YS and
UTS were observed in AISI 304 austenitic stainless steel, and the authors have proposed
Hall-Petch type equations to relate the YS and UTS to the average grain size [43]. On the
other hand, along with a reduction in grain size, there is also a reduction in the fraction
of the FCC phase in the microstructures of the annealed, the one-pass, and the two-pass
material. The decreased fraction of the FCC in the microstructure results in a lower amount
of HCP phase formed though TRIP effect, during subsequent tensile loading, resulting in
lower value of UTS. Similar results have been obtained in TRIP-assisted steels, wherein a
decrease in the fraction of retained austenite leads to a decrease in the value of UTS [46,47].
Thus, the one-pass FSP sample with an optimum microstructure, consisting of relatively
high fraction of FCC phase and a small grain size, attains high work hardening and exhibits
good combination of strength and ductility.
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4. Conclusions

FSP was performed on a non-equiatomic, dual-phase, metastable HEA, Fe49.5Mn30Co10Cr10C0.5,
which upon deformation, exhibits an FCC-to-HCP transformation. The material was subjected to
one-pass and two-pass FSP and the nugget zone from different FSPed samples were characterized
by its microstructure. The mechanical properties of the FSPed material were compared with that of
the annealed material. The following are the conclusions from this work:

1. Friction stir processing significantly reduced the grain size of the material. The samples
subjected to one-pass and two-pass FSP showed around 22% and 48% reduction in
grain size, respectively.

2. Severe plastic deformation during FSP results in a strain induced FCC-to-HCP trans-
formation. The amount of deformation induced HCP phase in the microstructure
increases with an increase in the number of FSP passes.
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3. The evolution of the dual-phase microstructure into a fully martensitic microstruc-
ture during tensile testing of annealed and FSPed samples indicates strain induced
martensitic transformation is the dominant mode for plasticity.

4. Compared to the annealed sample, the samples subjected to one-pass and two-pass
FSP showed 90% and 100% increase in yield strength and 12% and 28% decrease in
ductility, respectively.

5. One-pass FSPed material exhibits a higher work hardening rate and a higher UTS
value, as compared to both annealed and two-pass FSPed material. This is due to a
combination of two factors, viz., a small grain size and a large fraction of metastable
FCC phase in the microstructure of the one-pass material.
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