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Abstract: Bearings are crucial components that decide whether or not a wind turbine can work 

smoothly and that have a significant impact on the transmission efficiency and stability of the en-

tire wind turbine’s life. However, wind power equipment operates in complex environments and 

under complex working conditions over long time periods. Thus, it is extremely prone to bearing 

wear failures, and this can cause the whole generator set to fail to work smoothly. This paper takes 

wind turbine bearings as the research object and provides an overview and analysis for realizing 

fault warnings, avoiding bearing failure, and prolonging bearing life. Firstly, a study of the typical 

failure modes of wind turbine bearings was conducted to provide a comprehensive overview of the 

tribological problems and the effects of the bearings. Secondly, the failure characteristics and di-

agnosis procedure for wind power bearings were examined, as well as the mechanism and proce-

dure for failure diagnosis being explored. Finally, we summarize the application of fault diagnosis 

methods based on spectrum analysis, wavelet analysis, and artificial intelligence in wind turbine 

bearing fault diagnosis. In addition, the directions and challenges of wind turbine bearing failure 

analysis and fault diagnosis research are discussed. 
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1. Introduction 

Nowadays, as a natural, reliable, and clean energy source, wind power has become a 

new energy source developing around the world and has huge demand in the energy 

market [1]. Under the background of vigorously promoting “carbon peaking and carbon 

neutrality”, China, as the primary leader of renewable energy development in the world, 

attaches considerable importance to renewable resources, especially wind generation [2]. 

According to the IEA, China’s installed onshore wind power capacity has reached nearly 

69GW in 2020 [2,3]. The large-scale development and application of wind energy has 

brought great opportunities for the development of the market economy, but it has also 

raised the challenges of issues related to, for example, equipment reliability, cost effec-

tiveness, and energy security [4]. On the one hand, as wind turbines are mostly installed 

in isolated locations, the working environment is particularly complicated, and the in-

stability and time-varying characteristics of the wind make the turbine drive train very 

prone to damage. As the core of the wind turbine drive train, the bearings play a vital 

role in the healthy operation of wind turbines. In addition, if the bearings have failed, it 

can cause the drive system to collapse or even downtime the equipment, increasing 

maintenance expenses [5,6]. On the other hand, this can be due to the limitations of the 

high altitude, low speed, and heavy load working conditions of wind turbines. The 

bearings are not easy to observe and disassemble, which brings great difficulties to the 
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operation and maintenance of wind power equipment and, similarly, increases the 

maintenance costs of the turbines [7]. Therefore, real-time fault diagnosis of wind power 

bearings is quite essential not only to prevent faults in advance, but also to increase the 

efficiency of wind power generation. 

The majority of wind turbine generator systems are made up of mechanical and 

electrical parts that transform the kinetic energy of the airflow into electrical energy 

[8,9]. The gearbox speed-increasing kind of wind turbine is the most popular form and is 

seen in Figure 1a. With this type of wind generator setup, where the gearbox, generator, 

and rotor are installed in the nacelle, the generation efficiency and electrical output are 

relatively higher [10,11]. Another common design is the direct-drive style, shown in 

Figure 1b. Compared with the speed-increasing type, the direct-drive version connects 

the impeller and the generator directly, eliminating the complex gearbox and making 

the structure simple, yet the dimension of generator is larger [12]. The range of wind 

turbine bearings involves the central components used in the main shaft, pitch, yaw, 

gearbox, and generator systems in wind power plants, which correspond to the main 

shaft, pitch, yaw, gearbox, and generator bearings [13,14], respectively, with a service 

life of about 20–25 years. The intended service life is, however, hardly met because of the 

impacts of friction, corrosion, and impurity particles [15,16]. The health of bearings is 

critical to the stable operation of wind turbines, as various failure modes in bearings can 

cause severe injury to wind machine components [17]. To reduce these problems, it is 

crucial to identify the root causes of failures and provide early warnings. Only this way 

will increase the expected lifetime of the wind turbine components and decrease 

maintenance costs [18]. Therefore, it is essential to conduct early fault diagnosis and 

warnings for bearings. 

 

Figure 1. Wind turbine types, (a) Gearbox speed increasing wind turbine; (b) Direct-drive wind 

turbine (Adapted from [8,9]). 

Real-time fault diagnosis of bearings not only decreases the occurrence of drive train 

breakdowns, but also reduces the maintenance costs of the equipment and enhances op-

erational efficiency [19]. In this paper, we focus on the latest progress of wind turbine 

bearing fault diagnosis by systematically combing the research results of recent years. 

First, the common failure causes of wind turbine bearings are introduced, and their typ-

ical failure modes are classified to help the reader understand the causes and effects of 

bearing problems. Second, the current bearing diagnosis methods are summarized. 

Among them the research advances in wind power bearings fault diagnostics based on 

spectrum analysis, wavelet analysis, and artificial intelligence analysis are reviewed in 

detail. Meanwhile, the most advanced fault detection methods for traditional mechanical 

bearings and the deficiencies of the current fault diagnosis technologies for wind turbine 

bearings are summarized. Finally, the future research direction of the wind turbine 

bearings diagnostics is pointed out. 



Lubricants 2023, 11, 14 3 of 34 
 

 

2. Wind Turbine Bearings’ Failure Patterns Analysis 

To achieve the demand of wind power generation, wind turbines are normally in-

stalled offshore or located in remote mountain areas and operate in extremely harsh 

conditions [20]. Unpredictable loads caused by dust, humidity, temperature, air pressure, 

and wind gusts can expose the main load-bearing components in the unit to severe al-

ternating loads, which can make the drive train extremely susceptible to wear, fatigue 

and corrosion, leading to set malfunction [21]. In this regard, bearings, as one of the most 

crucial and vulnerable components of the drive train, are directly related to the reliable 

operation of wind turbine equipment. In addition, due to the differences in wind turbine 

sizes and bearing combinations, each type of bearing would have multiple failure modes 

because of their different design mechanisms and operating conditions [22]. For these 

reasons, it is considered necessary to distinctly classify failure modes based on fault 

characteristics and understand different data acquisition techniques and signal pro-

cessing methods to effectively diagnose faulty bearings in wind turbines. 

The major manifestations of bearing failure are in the forms of material spalling and 

wear [23]. Su et al. [24] analyzed the operational data of wind turbines from several 

wind farms and found that the outer rings of generator bearings had the highest number 

of failures due to galvanic corrosion and were subject to inadequate lubrication. By ex-

amining fractured pitch bearings, Tao et al. [25] discovered that the action of alternating 

loads caused crack expansion and bearing material fracture. Errichello et al. [26] indi-

cated that adding sufficient amounts of viscosity modifiers and suitable anti-wear addi-

tives to the lubricant can reduce phenomena such as Brinell indentations that occur in 

pitch and yaw bearings. Liu et al. [27] analyzed the structure of the failed bearing of a 

wind turbine main shaft. It has been suggested that the main reason for bearing failure is 

because of improper heat treatment resulting in unqualified rolling body hardness. 

Schwack et al. [28] investigated the structure of wind turbine pitch bearings using finite 

element models. The results showed that the stresses between the bearing ball and 

raceway were primarily related to the magnitude of the contact angle. Bhardwaj et al. 

[29] performed a reliability analysis on wind turbine gearbox bearings. It was found that 

wearing particles of bearing steel was a major cause of gearbox failure while proper lu-

brication could precisely reduce the bearing wear and micropitting. Grujicic et al. [30] 

analyzed the causes of premature failure of gearbox bearings using finite elements. It 

was argued that white etched cracks and the spalling of material were the major causes 

of bearing failure. Bovet et al. [31] established a dynamics model of wind turbine bear-

ings under high torque loads. It was concluded that the phenomenon of fatigue damage 

in ball bearings was mainly caused by the concentration of stresses in the cage and the 

outer ring due to rolling contact. 

Common bearing problems in wind turbines include fatigue, wear, defects, dents, 

and corrosion failures. Here are the characteristics and causes of typical failures. 

• Plastic deformation 

The plastic deformation is unreversible [32]. The deformation of large areas, such as 

inhomogeneous craters on the surface of material contacts, can occur at the macroscopic 

level as a result of high loading or misalignment. Only very small contact areas of the 

contact surface experience plastic deformation at the microscopic scale, which might re-

sult in distortion such indentations that are difficult to see [33,34]. In general, surface 

and localized surface plastic deformations are two types of plastic deformations. The 

additional interpretation is as follows. 

(a) General surface plastic deformation 

As the surface of the bearing material rolls and slides, it continuously produces 

plastic collisions, which result in the formation of a cold-rolling surface [35]. When the 

polishing of the cold-rolled surface is more severe, shallow cracks are highly prone to 

form on the contact surface. Additional development of the shallow fractures could result 
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in microscopic spalling in the surface area, which in turn further covers the contact sur-

face [36]. The general surface plastic deformation is caused by direct contact between two 

rough surfaces with no lubricating film being formed. Therefore, when the oil film lu-

brication parameter is less than a certain value, general surface plastic deformation oc-

curs. The lower the oil film lubrication parameter, the more severe the plastic defor-

mation that occurs on the surface [35,37]. 

(b) Local surface plastic deformation 

The local surface plastic deformation typically occurs near the original defects on the 

friction surface [38]. Overloading, misalignment, and improper assembly can lead to 

common indentations, bumping injuries, bruises, and scratches on the bearing surface 

[39]. A diagram of the wind power bearing surface’s plastic deformation failure mode is 

shown in Figure 2 [40–42]. 

• Indentation 

Indentation is a phenomenon of cratering generated by the intrusion of solid metal 

particles or external impurities of the bearing into the surface caused from poor sealing 

under load [43]. Figure 2a shows the indentation of rolling elements of wind turbine 

gearbox bearings due to overload. The indentation is of different shapes and sizes with a 

certain depth. Its edges are smooth and slightly raised [44]. 

• Bumping injuries 

Bumping injuries are mainly pitting phenomena caused by the collision of tough 

metal bodies with each other [45]. Figure 2b illustrates a schematic diagram of the wear 

bump injury of the inner ring on a wind turbine gearbox bearing. Its morphological fea-

tures differ in shape and size depending on the force of the impact. It has, however, a 

certain depth and often has protrusions at the edges. 

• Bruising 

As shown in Figure 2c, bruising is the occurrence of metal migration between two 

mutually contacting moving parts, which arises from sliding friction under load. When 

the pressure stress force is excessive, it may be accompanied by the appearance of metal 

surface burn marks [46]. The shape of the bruise is indeterminate, with definite length 

and width. However, its depth generally varies from deep to shallow along the sliding 

direction. 

• Scratch 

A scratch is a mark formed when a solid, sharp object invades the surface of a part 

under pressure and produces relative traces of movement [47]. It is generally linear, with 

a certain depth, narrower than the width of the bruise, generated mainly on the working 

surface of the part and the mating surface, as shown in Figure 2d. In contrast, strain oc-

curs only on the inner diameter mating surface of the bearing. It is oriented parallel to the 

axis, has a certain length, width, and depth, and appears in groups [46,48]. 
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Figure 2. Wind power bearing partial surface plastic deformation failure graphs, (a) Bearing rolling 

elements’ indentation; (b) Bearing inner ring bump injury; (c) Bearing rolling body bruising; (d) 

Bearing rolling body scratches (Adapted with permission from Refs. [40–42]. Copyright 2017 Else-

vier). 

Bearing plastic deformation mainly refers to the mechanical damage to its surface 

caused by the effect of stress. When there is a large static or shock load, it arises as the 

force exceeds the yield strength of the bearing material. The specific failure modes of 

plastic deformation have been described in the previous subsections. On this basis, we 

describe the causes and effects of plastic deformation failure of wind power bearings, in 

addition to a comprehensive analysis of the failure. Shown in Figure 3. 

 

Figure 3. Plastic deformation failure analysis of wind turbine bearings [49,50]. 

• Wear 

Wear is the effect of friction on materials in mutual contact, resulting in metallic 

depletion or residual deformations that alter the friction properties of the bearing. When 

dirt, dust, or flaking iron chips enter the lubricant, it prevents the formation of oil film on 

the raceway surface, which further aggravates the occurrence of wear. The continuous 

abrasion leading to the failure of the bearing to operate properly is referred to as wear 

failure [51]. According to the tribological definition and the material used in wind power 

bearings [52], the forms of bearing wear are classified into four categories. 

Wear is defined as the removal and consumption of material from contact surfaces 

caused by mechanical movements [51]. According to the mechanistic characteristics of 

the surface damage of wind turbine bearings, the common wear phenomena and mech-

anisms of the bearing wear process have been described in detail at Table 1 and Figure 4. 

In addition, on this foundation, we have further illustrated the causes and effects of wind 

turbine bearing frictional failure and made a comprehensive analysis of the failure 

modes, illustrated in Figure 5. 

Table 1. Wind power bearings wear form classification (Adapted from [53–60]). 

Wear Type  Definition Wear Phenomenon 

Adhesive Wear 

Adhesive wear is the mutual movement of materials on mutually rubbing 

surfaces, resulting in the transfer of substances onto the surfaces in rela-

tive motion. This further leads to a change in the morphology of the con-

tact surfaces [53], as shown in Figure 4a. In the case of insufficient lubri-

cation, the friction surface is prone to local deformation and damage 

phenomena due to the local friction temperature rise of the material. In 

severe cases, the surface metal will be locally spalled off, causing plastic 

deformation on the contact surface [54,55], as illustrated in Figure 4b. 

Scuffing, seizing, flak-

ing, skidding galling, 

and plastic defor-

mation. 
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Abrasive Wear 

Abrasive wear is defined as the loss of material from a soft surface due to 

a slip when a tough surface or particle comes into contact with a softer 

surface. This is shown in Figure 4c. Differences in the coarseness and 

characteristics of its abrasive grains can lead to different degrees of mate-

rial wear surface darkening [56]. Therefore, when abrasive particles such 

as dirt, sand, or flaking iron chips produce continuous wear that causes 

the bearing to become non-functional, it is termed as abrasive wear failure 

[57], as shown in Figure 4d. 

Scratches, dents, in-

dentations, bruises, 

plastic deformation, 

and chips. 

Corrosion Wear 

Corrosion wear is the chemical reaction between the material on the 

bearing surface and the ambient medium, causing its interface to be 

damaged and failure. It mainly includes two categories of moisture corro-

sion and friction corrosion [58,59]. When the bearing surface is in contact 

with moisture, moisture corrosion will occur, as illustrated in Figure 4e. 

In addition, frictional corrosion is mainly caused by the metal of the 

bearing surfaces rubbing against each other. 

Seizing, craters, cracks, 

pitting, and partial 

flaking. 

Fretting Wear  

Fretting wear is caused by fretting corrosion and Brinell indentation of 

the contact surfaces caused by micro-sliding and rolling between the 

bearing contact surfaces. Among them, fretting corrosion occurs in the 

non-lubricated condition, which produces severe adhesion on the bearing 

surface. Brinell indentation, on the other hand, happens in the boundary 

lubrication situation on the bearing, with slight adhesion [60]. At the be-

ginning, Brindle indentation presents a pseudo-indentation form. When 

the friction surface is formed without lubrication by the abrasive debris 

blocking the lubricant, it is gradually upgraded to fretting corrosion, as 

shown in Figure 4f. 

Brinell indentation, 

chipping, pseudo in-

dentation, and scuffing, 

notches. 

 

Figure 4. Wind power bearing wear forms and types, (a) Wind power gearbox bearing outer ring 

adhesive wear failure; (b) Bearing material adhesive wear EDM; (c) Bearing abrasive wear mecha-

nism; (d) Bearing raceway abrasive wear; (e) Pitch bearing roller balls’ corrosion wear; (f) Pseu-

do-indentation caused by fretting wear of the bearing inner ring (Adapted with permission from 

Refs. [54–60]. Copyright 2013 Elsevier). 
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Figure 5. Wear failure analysis of wind turbine bearings [49,61]. 

• Cracks and fractures 

When the stress, temperature, and impact to which the bearing is subjected exceed 

the fracture limit of the material, partial fracture occurs inside or on the surface, and the 

phenomenon is called cracking [62]. When the cracks grow to a certain extent, making the 

bearing part of the material completely out of the bearing matrix, this phenomenon is 

called fracture [63]. As presented in Figure 6, the factors of common bearing cracks and 

fractures include the following three main aspects. 

 

Figure 6. Factors of wind power bearing cracks and fractures [64–66]. (a) Wind turbine gearbox 

bearing WECs; (b) Fatigue fracture of blade bearing inner raceway; (c) Thermal cracks occur on the 

outer ring side face. 

(a) Forced fracture 

Forced fracture is caused by the concentration of stress exceeding the tensile 

strength of the material. When the bearing is damaged by external forces, it causes 

forced fracture [67]. In this case, white etching cracks appear on the bearing and further 

lead to structural spalling, as shown in Figure 6a. 

(b) Fatigue fracture 

Fatigue fracture mainly refers to the bearing in the cyclic alternating stress effect, 

resulting in structural changes and defects of the internal material. Its occurrence is often 

characterized by suddenness and high localization [68], which is mainly manifested by 

fracture of the running surface of the bearing, as shown in Figure 6b. 



Lubricants 2023, 11, 14 8 of 34 
 

 

(c) Thermal cracks 

Thermal cracking usually occurs between the bearing rollers and raceways, where 

frictional heat from the sliding of the surfaces in contact with each other causes cracking. 

Mounting misalignment, lubricant failure, elevated impact loads, and excessive dust are 

the main causes of bearing thermal cracks. A sudden rise in temperature during bearing 

operations can cause changes in the structure and strength of the material, and when the 

stress exceeds the tensile strength of the material, thermal cracking appears [69,70], as 

shown in Figure 6c. 

As discussed above, cracks are failures caused by discontinuities or fractures in the 

material, while fractures are the result of crack formation and extension. Various factors 

such as improper heat treatment, collision or temperature during installation, stress 

concentration, thermal shock, etc., can cause cracks and fractures in bearings. Figure 7 

illustrates the causes and effects of common cracks and fracture failure modes in wind 

turbine bearings and provides a comprehensive analysis of the failures. 

 

Figure 7. Cracks and fractures failure analysis of wind power bearings [49,71]. 

• Electric erosion 

As shown in Figure 8, electric erosion is the phenomenon of sparking when the 

electric arc flows through the bearing and causes the displacement of materials from the 

contact surface and local melting [72,73]. The bearing suffers from electric corrosion, its 

surface is partially heated and melted, and the damaged area normally shows spots, 

grooves, dense minute pits, and metal melting phenomena. Electro-etching reduces the 

hardness of the bearing material and accelerates wear, and also induces fatigue spalling 

[45,74]. Electric erosion on wind turbine bearings is associated with the voltage and cur-

rent [75]. 

 

Figure 8. Wind power bearing electric erosion failure [72,73]. (a) Electrolysis causes spindle groove 

corrosion and (b) Ripple-shaped grooves appear on the outer ring of the bearing. 

(a) Excessive voltage 
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When there is a current through the bearing inside, there is a voltage difference on 

the contact surface. If the voltage difference is high enough to break through the insula-

tion layer, the bearing rolling body and raceway contact surface will be locally heated 

and generate extreme temperatures. In turn, this causes localized surface melting and the 

formation of arc concave or groove corrosion [72,76]. Shown in Figure 8a. 

(b) Excessive current/current leakage 

When the current is too high/there is current leakage, the bearing surface is easily 

damaged. Initially, they appear as shallow annular pits, with adjacent pits that are in 

close proximity and are small in size. Over time, the annular pits will develop into cor-

rugated grooves [77]. These corrugated grooves will appear on the roller and raceway 

contact surfaces, as shown in Figure 8b, which are equidistant and darker at the bottom. 

Bearing electro erosion is the breakdown of the contact part between the rolling 

element and the raceway by an electric current, resulting in localized melting and dent-

ing [74]. Based on the above in-depth discussion of corrosion phenomena and patterns, 

we have collated a comprehensive analysis of the causes and effects regarding the failure 

modes of electric erosion. This is shown in Figure 9. 

 

Figure 9. Electrical corrosion failure analysis of wind power bearings [49,78]. 

• Lubricant 

The utility of a lubricant is to prevent direct contact between the rolling element, 

raceway, and cage to keep the bearing in a well and stable working condition [79]. An 

effective lubricant can generate a lubrication film on the contact surface of the bearing, 

reduce the noise generated during running of the bearing, evacuate heat, and prevent the 

bearing from rusting or corroding [80]. The normal operation of the bearings depends on 

the existence of good lubrication between the components. Its failure is mainly attributed 

to insufficient lubrication, excessive lubrication, and ineffective lubrication, as shown in 

Figure 10. 
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Figure 10. Wind power bearing lubrication failure [80–82]. (a) Insufficient spindle bearing lubrica-

tion; (b) Over lubrication of pitch bearings; (c) Main bearing grease contamination. 

(a) Insufficient lubrication 

Insufficient lubrication will make the bearing enter a poor oil state, prone to the 

formation of adhesive wear. Poor oil contact between materials can cause high bearing 

temperatures and lead to discoloration of the raceways and rollers. It can contribute to 

excessive bearing wear and serious damage [83]. 

(b) Over lubrication 

When there is excessive lubricant, it increases the rotational resistance of the bear-

ing, which causes a linear elevation of its temperature rise and leads to a larger frictional 

torque of the bearing. In addition, the bearings are prone to scratching and spalling under 

high-load, low-speed applications or continuous high temperature [84]. 

(c) Ineffective lubrication 

Lubricants with different additives are likely to be incompatible. There is a possibil-

ity of chemical changes when lubricants are mixed, which may cause the quality of the 

lubricant to deteriorate or it even tends to solidify. Oil breaks, on the other hand, can 

cause excessive bearing wear and noise. In addition, wrong lubrication can lead to over- 

or under-lubrication of the bearing [85]. 

(d) Lubricant contamination 

Moisture from the air, wear particles, and debris in the bearings are the key reasons 

for the contamination of lubricants [86,87]. When the lubricant in the bearing is contam-

inated, a chain reaction of oxidation will occur, generating substances such as oxide gum 

with oil sludge to corrode the equipment and cause bearing failure. 

Keeping well lubricated bearings will ensure their reliability and extend the service 

life of them [80]. The detrimental effects of lubrication failure on bearings are 

self-evident. On these grounds, Figure 11 concludes the causes and influences of wind 

turbine bearing lubrication failure and provides a thorough analysis of the failure. 

 

Figure 11. Lubrication failure analysis of wind power bearings [49,88]. 

• Contact fatigue 

Contact fatigue of bearings is the change in material structure due to repeated stress 

application. It begins as pitting with a slight shape and size, but with the expansion of 

pitting comes fatigue spalling [89]. The morphological features of fatigue spines are typ-

ically of a certain depth and area, and the rolling surface is unevenly scaled. The current 

mechanisms of bearing fatigue failure are generally divided into the following two cat-

egories. 

(a) Surface origin 



Lubricants 2023, 11, 14 11 of 34 
 

 

Surface-originated contact fatigue mainly manifests itself as a bearing roll contact 

surface uneven fault, with the surface as the origin of fatigue spalling. It occurs especially 

when the bearing operates under boundary lubrication without forming oil film or in-

sufficient lubrication in the rolling contact area [90]. 

(b) Sub-surface origin 

Sub-surface origin type contact fatigue is expressed as the bearing internal of the 

origin of the fatigue spalling. It starts as microcracks that develop below the bearing 

raceway surface, and spalling occurs when the microcracks pass to the bearing surface 

[91]. As shown in Figure 12. 

Bearing contact fatigue is commonly characterized as structural organization 

changes on a microscopic scale and material falling at a macroscopic level [89]. As de-

scribed above, fatigue failures of bearings are classified into surface origin type and 

subsurface origin type. We have performed a detailed analysis of the two failure mecha-

nisms based on wind turbine bearing contact fatigue and presented a comprehensive 

analysis of the failures, as shown in Figure 13. 

 

Figure 12. Subsurface origin type contact fatigue process, (a) Changes in structure under the 

raceway surface with time; (b) Microcracks’ development under the raceway surface. (Adapted 

with permission from Refs. [91,92]. Copyright 2015 Taylor & Francis). 

 

Figure 13. Contact fatigue failure analysis of wind power bearings [49,93]. 

• Engineering failure 

Engineering failure of bearings is attributed to a combination of various factors [94]. 

It is classified by the authors as follows. 

(a) Manufacturing factors 

• Bearing structure design 
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A structural design is determined based on the target values of in-service perfor-

mance. At the design stage, various aspects can render the structure design inapplicable 

or disconnected from the application, or it can even deviate from the desired target val-

ues, which can be prone to the early failure of the bearing [95,96]. 

• Material quality 

In terms of the bearing material itself and its characteristics, there may be micro-

scopic porosity, shrinkage, air bubbles, white spots, and other problems within it. In ad-

dition, all these defects are the main causes of the early fatigue spalling of the bearings 

[97]. Among the material qualities, another factor that mainly affects the fatigue perfor-

mance of bearings is the purity of the material. It is specifically expressed in the amount 

of oxygen content in the bearing steel and the number of inclusions, the size, and distri-

bution. 

• Heat treatment quality 

Bearing heat treatment includes normalizing, annealing, carburizing, quenching, 

tempering, additional tempering, etc. [98]. Its quality is directly related to the quality of 

subsequent processing and bearing performance. 

(b) Operating factors 

The operating factors include bearing selection, mounting, lubrication, sealing, etc. 

[99]. 

• Bearing selection 

The most common mistake is the improper selection of bearings, which leads to 

overloads and vibration. 

• Installation 

Improper mounting practices can easily lead to bearing damage or local stress con-

centrations in the parts, resulting in fatigue. The amount of excess can cause an increase 

in tension on the inner ring raceway surface and a decrease in the fatigue resistance of the 

part, even to the point of fracture [100]. 

• Lubrication 

Improper lubrication induces abnormal frictional wear and generates a large 

amount of heat, which affects the material structure and lubricant properties. If the lu-

brication is inadequate, it can lead to wear fatigue and reduce the service lifetime of the 

bearings [101]. 

• Sealing 

Poor sealing easily makes impurities enter the bearing. This affects the normal con-

tact between the parts to form a source of fatigue and can cause pollution to the lubricant 

[102]. 

Bearing failures caused by manufacturing are generally referred to as engineering 

failures in the paper, and the multiple forms have been discussed in depth. A full ex-

planation of the failure modes has been performed to further help the reader understand 

the causes and consequences of engineering failures. This is illustrated in Figure 14. 
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Figure 14. Engineering failure analysis of wind power bearings [49,103]. 

In the previous subsections, various causes and modes of bearing failure have been 

described. Generally, failures are caused by multiple causes and are accompanied by 

various failure modes. The mode of bearing failure is dominated by either material fail-

ure or premature fatigue. Material failures are caused by components and structures and 

are reflected in phenomena such as cracks and wear, while premature fatigue of bearings 

involves plastic deformation, improper lubrication, electrical corrosion, and engineering 

failures. Figure 15 shows a summary of a detailed classification of bearing failure modes. 

 

Figure 15. Classification of wind power bearing failure mode [49,104]. 

As wind turbine bearings operate in harsh conditions, the environment, tempera-

ture, and load are continuously changing, making it easy for wind turbine bearings to 

malfunction. For the fault diagnosis of wind turbine bearings, it would be easier to iden-

tify the bearing failure modes if researchers could master these failure modes and com-

bine them with some signal processing analysis methods. In this way, the efficiency of 

bearing fault diagnostics can be made more efficient for further enabling the 

cost-effective purpose of wind turbines. Combined with the above description and ref-
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erences [49,103,104], etc., some common failure types and failure modes of wind turbine 

bearings are listed, as shown in Table 2. 

Table 2. Common wind power bearing failure types and failure modes [49,103,104]. 

Bearing Type Failure Mode 

Main shaft bearing 
Forced fracture; fatigue fracture; thermal cracks; adhesive wear; abrasive wear; 

plastic deformation; contact fatigue; lubricant failure; engineering failure. 

Generator bearing 
Forced fracture; fatigue fracture; thermal cracks; adhesive wear; abrasive wear; 

plastic deformation; contact fatigue; lubricant failure; engineering failure.    

Pitch Bearing 
Forced fracture; fatigue fracture; corrosion wear; fretting wear; plastic defor-

mation; contact fatigue; lubricant failure; engineering failure.    

Yaw Bearing 
Forced fracture; fatigue fracture; corrosion wear; fretting wear; plastic defor-

mation; contact fatigue; lubricant failure; engineering failure.    

Gearbox bearing 

Forced fracture; fatigue fracture; thermal cracks; adhesive wear; abrasive wear; 

plastic deformation; electrical erosion; contact fatigue; lubricant failure; engineer-

ing failure.    

3. Wind Power Bearings’ Fault Diagnosis Mechanism and Process 

Bearings are extensively applied in various components and subsystems of wind 

turbines [105]. The most commonly used bearings in wind power systems are ball bear-

ings; however, the trend is heading toward roller bearings [106]. 

Roll bearings generally include inner rings, outer rings, roll elements, and cages. If 

the bearings fail, it is susceptible to triggering severe damage to the wind turbine. Bear-

ing failures usually initially appear as wear of the surfaces. Later they develop into some 

major failure modes such as fatigue, indentation, cracking, or fracture of the outer ring, 

inner ring, rolling elements, and cage [107,108]. Different characteristic frequencies of the 

bearing are caused by these failures. The characteristic frequencies of each part of the 

bearing are the crucial factor for fault diagnosis. The fault frequency equation can be es-

tablished based on the bearing self-parameters and rotational speed. The fault character-

istic frequency equation of each part of the wind power bearing is shown in Table 3. 

Table 3. Wind power bearing failure characteristic frequency formula(Adapted from [109,110]). 

Failure Location Characteristic Frequency Calculation Formula 

Inner ring )cos1(5.0 a
D

d
fZf rbpfi +=  

Outer ring )cos1(5.0 a
D

d
fZf rbpfo −=  

Rolling element  







−= 2)cos(15.0 a

D

d
f

d

D
f rbsf

 

Cage )cos1(5.0 a
D

d
ff rftf −=  

where: D : bearing diameters; Z : number of rollers; d : rolling body diameter; a: bearing radial 

contact angle; rf : frequency of rotation of the shaft. 

The characteristic frequency of failures in wind turbine bearings regularly varies 

with the location of the damage, and both the magnitude and amplitude of the charac-

teristic frequency imply the occurrence of failures [111]. Common faults with wind 

power bearings include fatigue, wear, cracks, dents, and corrosion. Since the difference 

in the waveform amplitude of the fault characteristic frequency indicates the degree and 

modes of failure, the failure of different parts will also have different waveforms [112]. 

Hence, fault diagnosis of bearings is one of the effective methods to determine if a bear-

ing has failed. When a bearing surface fails due to damage, rotation causes the formerly 
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contacted surface to come into contact with the defective part, resulting in an alternating 

excitation force. This effect is significantly periodic [113,114]. Among them, the outer 

ring, inner ring and rolling elements’ failures have obvious periodic characteristics. With 

the vibration generated by the bearing failure and its periodic change in amplitude, it is 

available for abnormal diagnosis of the bearing. A major problem in early bearing fault 

diagnosis was the absence of any characteristic frequencies or a low signal noise ratio in 

the signal [115]. However, in actual diagnostic work, it is difficult to obtain the dimen-

sional parameters of the bearing components, except for the number of rolling elements. 

However, the merchant will provide the bearing characteristic coefficients correspond-

ing to each type of bearing model. Therefore, the individual characteristic frequencies of 

the bearings can be calculated from the bearing characteristic coefficients and the current 

shaft rotational frequency where the bearings are located [116]. 

Figure 16 depicts a typical wind power bearing fault detection process. 

 

Figure 16. Typical wind turbine fault diagnosis process(Adapted from [117]). 

The fault diagnosis procedure for wind power bearings mainly involves real-time 

monitoring of the system using a large number of sensors installed on the device. 

Through the operational data of the system and in combination with known system 

structure and parameters and historical operational data, we predict, analyze, and judge 

failures that may be about to occur or have already occurred. Decision support for sys-

tem repair and maintenance is provided to restore the equipment to its normal state as 

soon as possible and to minimize losses and maintenance costs [118,119]. 

4. Research on Wind Power Bearing Fault Diagnosis Technology 

The failure modes and fault detection techniques of wind turbine bearings are cov-

ered in the first two chapters. In order to improve the safety and reliability of wind tur-

bines and reduce the operation and maintenance costs, it is necessary to study the fault 

diagnosis technology of wind turbine bearings. Currently, fault diagnostics for wind 

power bearings are being developed in the following stages. In the first stage, spectral 

analysis is commonly used for bearing fault diagnosis. In the second stage, fault diagno-

sis is performed using pulse and resonance demodulation techniques (wavelet analysis). 

While in the third stage, computer-based fault diagnosis is proposed. 

4.1. Fault Diagnosis of Wind Turbine Bearings Based on Spectrum Analysis 

Complex signals can be broken down into simpler ones using the spectrum analysis 

technique [120,121]. This method entails processing the signal in the frequency domain, 

converting a time domain signal that would not typically fluctuate intuitively into a 

frequency domain signal (e.g., amplitude, power, intensity, or phase, etc.), and obtaining 



Lubricants 2023, 11, 14 16 of 34 
 

 

unique information not present in the time domain signal by extracting various features 

of the signal in the frequency domain [122]. At this stage, the fault diagnosis for wind 

power bearing spectrum analysis is mainly implemented on a computer by fast Fourier 

transform (FFT) of the collected bearing data signals [123,124]. In order to identify the 

most abrupt amplitude and frequency components of the harmonic components of the 

data signal as the root of fan faults, the amplitude spectrum and phase spectrum are 

primarily used in the analysis of fan bearing faults [125]. As a traditional analysis meth-

od, the fault diagnosis method of wind turbine bearing based on spectrum analysis is 

still in the trendy area of study. 

In the frequency domain analysis based on Fourier transform, Bodla et al. [126] used 

the fast Fourier transform (FFT), Hilbert–Huang transformation (HHT), feature extrac-

tion, and logistic regression (LR) approaches. Qi et al. [127] used Teager energy algo-

rithms to enhance the shock signals of wind turbine bearings after deconvolution and 

applied FFT to the augmented signals. Finally, the composite fault characteristics of the 

bearings were effectively identified by analyzing the fault characteristic frequencies in 

the spectrogram. Ma et al. [128] used empirical modal decomposition (EMD) to perform 

modal decomposition of vibration signals. Then, the larger eigenmodes are filtered by 

correlation coefficients for signal reconstruction. After that, the main faults of the bear-

ings are identified using spectrum analysis and the composite faults are diagnosed again 

by an adaptive trap. 

Acoustic measurements and vibrational signature signals are combined to provide 

the most general spectral analysis of wind power bearings. In order to increase the pre-

cision of acoustic signal diagnosis methodologies, Yu et al. [129] used ensemble empiri-

cal mode decomposition (EEMD) and local Hilbert marginal spectrum (LHMS) for the 

defect diagnosis of wind turbine bearings. This technique collects acoustic emission sig-

nals using signal acquisition hardware, decomposes them using EEMD, and then evalu-

ates the decomposed signals using the LHMS method to identify fault types. The ex-

periment was carried out using AE detection tools, and the outcomes demonstrated that 

the technique can more accurately measure the frequency and amplitude of the fault 

signal. This method, however, is not general and is only used for failures in the outer 

ring and roll portion of the bearings. Similarly, a method of analysis that combines 

1.5-dimensional energy spectrum and EEMD decomposition was put out by Tang et al. 

[130]. The method first performs EEMD decomposition and noise reduction of the vibra-

tion signal. After that, the modal screening reconstruction and 1.5-dimensional energy 

spectrum analysis were performed with the Teager algorithm. Finally, the fault type was 

determined by combining the eigenfrequencies. Ma et al. [131] gathered the pitch bear-

ing vibration signals and devised a shock chain identification method based on the time 

domain waveform in the frequency spectrum. It was found through implementation in 

real wind farms that the method can accurately assess the level of contaminants in the 

bearing racetrack and diagnose pitch bearing defects. However, the proximity is insensi-

tive to low-frequency vibrational signals during the early stages of the fault. Fan et al. 

[132] suggested a diagnosis technique that incorporates vibration signals from wind tur-

bine bearings with morphological multi fractal (MMF) and improved grey relational 

analysis (IGRA). In order to realize the fault diagnosis of wind turbine bearings, the 

method first used MMF to calculate the parameters of the generalized dimension of the 

bearing state and the multifractal spectrum, selected the effective parameters from them 

as the fault feature quantity, and finally input the bearing state features into the IGRA 

model. While this technique is able to pinpoint flaws in each component of the bearing, 

it is not able to pinpoint the exact mode of failure. Wang et al. [133] introduced a mul-

ticlass relevance vector machine (MRVM) approach to improve the accuracy of bearing 

fault diagnosis for the purpose of reducing the influence on control parameters in fault 

diagnosis. The method starts by dividing the bearing faults into a training set and a test 

set using feature vectors. The training set is input into MRVM for training, and the test 

set is used for input into the trained model for testing. The experimental results demon-
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strate that the method can effectively improve fault diagnosis accuracy and efficiency. 

The approach, however, is only applicable to wind turbine spindle bearings and is not 

widely available. McDonald et al. [134] used the impulse signal from the defective part 

as the monitoring signal and applied the multipoint optimal minimum entropy decon-

volution method adjusted (MOMEDA) approach as a bearing fault detection tool. The 

proposed method can successfully extract information about numerous fault features 

from composite fault signals, as demonstrated by the study of spectroscopic data of 

gearbox fault vibrations. In addition, it serves as a guide for the signal identification of 

various defects. Similarly, Rezamand et al. [135] suggested a comprehensive diagnostic 

technique based on a combination of signal processing and an adaptive Bayesian algo-

rithm. Utilizing the bearing failure characteristics, they effectively predicted the remain-

ing service life of the bearings using the ordered weighted averaging (OWA) operator 

approach. In order to monitor the operation of the pitch bearing at low speeds and high 

loads, Sandoval et al. [136] proposed entropy indicators (EIs) based on Fourier trans-

form. Vibrational signals of bearings with various health conditions were tested, 

demonstrating that EIs can better monitor the bearing operating condition at low speeds. 

Mollasalehi et al. [137] proposed fault diagnosis based on wind turbine tower vibrations. 

The method collected vibration data by means of accelerometers installed in the tower, 

and the vibration signals obtained from the tower and generator bearings were corre-

lated and analyzed by empirical modal decomposition (EMD). It was shown that the 

fault signal of the dynamo bearings can be derived from the tower vibrations, and the 

condition monitoring system of the nacelle assembly can also be used to monitor the 

operation status of the dynamo bearings. While this approach reduces the workload of 

data mining for wind farm operations, it is susceptible to inaccurate measurements due 

to background noise interference when performing acoustic signal extraction. Similarly, 

Castellani et al. [138] suggested a method to diagnose wind turbine drive train bearings 

by measuring vibration data at the tower. The proposed method performs vibrational 

data processing using a multivariate novelty detection algorithm in the feature space. 

Afterwards, the data set was examined using principal component analysis (PCA) and 

the abnormal condition of the damaged wind turbine was accurately detected based on 

a novelty index based on the Mahalanobis distance. Artigao et al. [139] conducted in-

depth tracking of wind turbine gearbox faults based on the time series evolution of the 

current and vibration spectrums. Spectral analysis was performed by identifying ro-

tor-related fault frequency components with peaks found in the current and vibration 

spectra. Thus, fault diagnosis of gearbox bearings was achieved. 

Spectrum analysis-based fault diagnosis methods for wind turbine bearings are still 

the mainstream research methodology [120]. The identification of spectrograms is im-

portant for bearing fault diagnosis and maintenance. Spectrum analysis is an essential 

foundation for guiding the service of wind turbines, which usually plays a decisive role 

in finding the root causes and solving the faults basically [140]. However, with wind 

turbines mostly being installed in remote areas, the work environment is also compli-

cated. The noise generated during the operation of the device is relatively loud, and the 

extraction of the characteristic parameters of the bearing signal is often easily obscured 

by additional noise, leading to more difficult fault extraction. This also leads to spectral 

analysis results for spectra that are often not easy to observe. Therefore, if the frequency 

band of bearing fault characteristic frequency can be analyzed by decomposition and 

reconstruction of the wavelet, the location and type of bearing fault will be extracted 

more effectively. 

4.2. Fault Diagnosis of Wind Turbine Bearings Based on Wavelet Analysis 

The wavelet analysis technique continues the idea of short-time Fourier transform 

localization and was originally introduced into the field of signal processing by the 

French scholars Daubeches and Callet [141]. This concept is carried over by wavelet 

analysis techniques. It is primarily a time–frequency localization analysis method that 
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characterizes such a signal by its projection in space, whose shape, time window, and 

frequency can be varied. Due to the excellent localization properties in the time and fre-

quency domains. It is mainly a time–frequency localization analysis method that char-

acterizes such a signal by its spatial projection, whose shape, time window, and fre-

quency can be varied. In addition, it has the multi-resolution property of analyzing the 

high and low frequency components of the signal simultaneously, so it is widely used in 

the fault diagnosis of wind power bearings [142,143]. 

In wavelet analysis based on signal denoising, in order to reduce the noise interfer-

ence produced during bearing operation, Xu [144] proposed a noise reduction method 

based on fast Fourier transform combining multi-resolution singular value decomposi-

tion (MRSVD) with the diagnostic model of improved random forest algorithm P-RF 

(P-RF (particle swarm optimization (PSO) combined with random forest (RF)) in order to 

reduce the noise interference generated during bearing operations. Experiments demon-

strated that the method better suppressed the noise interference of vibration signals and 

accurately extracted the characteristics of the faults. This procedure, however, only ex-

amined one failure signal; a more thorough investigation is required in order to identify 

the cause of the simultaneous occurrence of several faults. To lessen the effect of changes 

in wind bearing speed on the vibration signal, Wang et al. [145] established a cur-

rent-assisted vibration sequence tracking approach. By establishing the axial phase ver-

sus time relation and using the instantaneous fundamental frequency of the generator 

stator current signal as the time-varying axial velocity, the method sequentially samples 

and tracks the vibrational envelope signal in equal bit increments. Finally, the bearing 

fault characteristic frequency is determined from the power spectrum of the vibrational 

envelope signal, which is obtained by resampling. It has been proven that this method 

can effectively diagnose different bearing faults in direct-driven wind turbines under 

different speed conditions. However, the method is only applied to the bearing fault di-

agnosis of direct-drive wind turbines at present, and further research is needed for its 

application to other types of wind turbines. Li et al. [146] combined empirical mode de-

composition (EMD) and envelope spectrum analysis to diagnose wind turbine gearbox 

bearing faults. The adaptive analysis was carried out after the bearing rota-

tion-generated AE signals were decomposed by EMD into intrinsic mode functions 

(IMF) of various agencies. Finally, after the envelope analysis, the bearing fault features 

are recovered from the IMF components. This technique has only been evaluated in an 

experimental setting, so it must be used in conjunction with superior noise reduction 

techniques to effectively capture faulty signals in real-world work environments. 

Regarding the wavelet transform-based wind turbine bearing fault feature extrac-

tion, Inturi et al. [147] made the fault diagnosis of wind turbine gearbox bearings more 

efficient by integrating a condition monitoring (CM) scheme in which the fault features 

extracted from vibration, acoustic, and lubricant analysis form an input characteristic 

matrix. This also provides a fresh concept for the bearing failure analysis of wind tur-

bines. Lu et al. [148] proposed a diagnostic method combining principal component 

analysis (PCA) and least squares support vector machine (LS-SVM). By monitoring the 

AE signals under different operating conditions, PCA is used to extract the eigenvalues 

of the signatures with faults, which are fed to LS-SVM for fault identification with the 

current intermediate. In practice, it has been demonstrated that the proposed method 

can effectively distinguish the type of bearing failure in the valid zone. Singla et al. [149] 

suggested an acoustic signal-based technique for bearing fault diagnosis and defect se-

verity detection. The method was based on Fourier transform and continuous wavelet 

transform (CWT) techniques for signal feature extraction. After that, the original acous-

tic signal is expanded into the orthogonal basis functions of infinitely long sine and co-

sine waves, so that the sine waves and amplitudes of different frequencies can be identi-

fied. In this way, the identification of bearing faults is completed. However, this method 

only identified the faults of the inner ring of the bearing accurately. 
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The frequency bands of bearing fault characteristic frequencies were reorganized 

and examined using wavelet reconstruction [150]. The wavelet transform has incompa-

rable superiority to the traditional noise reduction method for fault feature extraction 

because it has greater localization features than the traditional spectrum analysis tech-

nique [151]. Nevertheless, the traditional wavelet analysis technique has a poor de-

noising effect in two aspects of threshold function selection and threshold selection. 

Therefore, in order to further improve the diagnostic model, a deep relearning of wave-

let analysis can also be carried out on the original basis. 

4.3. Fault Diagnosis of Wind Turbine Bearings Based on Artificial Intelligence 

Artificial-intelligence-based fault diagnosis of wind turbine bearings is divided into 

two main categories, symbolic reasoning (knowledge-based) and numerical computa-

tion (neural-network-based) fault diagnosis [152]. As fault diagnosis is developing in the 

direction of intelligence, other methods in the field of artificial intelligence, such as fuzzy 

theory, fuzzy neural network, deep learning, and machine learning, have also been rap-

idly developed in the field of wind power bearings [153,154]. After the decomposition 

and feature extraction of bearing signals, the intelligent modeling of fault diagnosis is 

realized by limit learning. Thus, the health condition detection and accurate fault identi-

fication of wind turbine bearings and components can be realized. The method has to 

perform training and self-learning of wind power bearings’ normal operational data and 

fault data and then achieve fault diagnosis through inference and decision-making pro-

cess. The support vector machine (SVM), back-propagation (BP) neural network, deep 

learning (DL), and convolutional neural network (CNN) methods are mainly used [155]. 

When dealing with multidimensional nonlinear fault information such as wind tur-

bine bearings, SVM, a method for analyzing small samples, is generally not fully adap-

tive and is mostly combined with different algorithms [156]. Turnbull et al. [157] ex-

tracted critical features to predict wind turbine bearing failures and the remaining service 

life in advance, by analyzing high-frequency vibration data. By combining support vector 

machine (SVM) to enable deep learning of condition monitoring systems, the prediction 

was successfully performed 1–2 months before the failure occurred. However, the accu-

racy of the proposed method still needs to be improved. Altaf et al. [158] used acoustic 

emission signals as a signal source and recorded acoustic signals from different faulty 

bearings using a single microphone. The time, frequency domain, and spectral charac-

teristics of the faulty signals were extracted from them by computational analysis. 

Learning models such as K-nearest neighbor (KNN) classifier, SVM, kernel liner discri-

minant analysis (KLDA), and sparse discriminant analysis (SDA) were trained and used 

to intelligently classify the bearing data. Furthermore, the experimental results demon-

strated that the KLDA learning model can be effective for fault identification. It addi-

tionally showed the applicability of acoustic-signal-based machine learning models for 

fault diagnosis. Despite this, the method is calculated only on the basis of simulations 

and the tuning of the parameters is not sufficiently accurate for practical applications. 

Tang et al. [159] proposed an intelligent diagnosis method by combining singular spec-

trum decomposition (SSD) and a two-layer support vector machine (TSVM). The accu-

racy of bearing fault diagnosis is effectively improved by constructing a signal matrix for 

reconstruction. However, this approach has only been validated for data on individual 

components of wind turbine bearings, and additional experimental data are needed for 

deeper study. Wang et al. [160] presented a hyper-sphere-structured multi-class support 

vector machine (HSSMC-SVM) in order to achieve multi-state intelligent diagnosis of 

bearings. The AR model and the EMD of the SVD are used to extract two features and 

construct a hypersphere for each category. The method was adjusted for bearing failures 

by means of a hypersphere model to determine various types of failure modes. Eventu-

ally, the determination of the degree of performance degradation of the bearings at dif-

ferent locations was achieved. However, this approach is only available for all state vi-

brational signals of the bearing and requires a large amount of sample data. 
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The BP neural network, as a supplement to SVM, has the advantages of simplicity 

and limited computational effort. However, BP-based fault diagnosis techniques have 

too much sample dependence and are computationally slow in the presence of excess 

samples. An et al. [161] proposed to extract the feature information of bearings based on 

EMD. By classifying the faulty and normal signals, the EMD learning of the faulty sig-

nals using the BP neural network further improved the fault database. However, the 

method proved its effectiveness only by simulation, and further refinement is needed in 

the experimental part. Lin et al. [162] proposed a method for wind turbine gearbox 

bearing fault diagnosis. The method determined the factors affecting the bearing tem-

perature by establishing a neural network model of back propagation (BP) with an im-

proved accelerated particle swarm optimization (APSO) using principal component 

analysis. Furthermore, a regression analysis was performed on the residuals of the bear-

ing temperatures. From these, the optimal threshold value was derived and its failure 

state was determined. Experimental simulations of conventional PSO-BP and APSO-BP 

models were performed with the measured data from the wind farm. The results indi-

cate that the diagnostic accuracy is higher using the APSO-BP model. Chang et al. [163] 

constructed a fault diagnosis model for the main bearing of wind turbines. Like the ref-

erence [162], this model was based on the BP neural network for the classification pre-

diction of faults. However, it proposed a technique for extraction of historical data based 

upon optimized enhanced particle filter (EPF). The EPF-BP model was designed accord-

ing to the bearing fault tree analysis (FTA) to select the fault characteristic fault parame-

ters. The method optimized the weights and thresholds of the BP neural network by us-

ing protégé open source code and Web Ontology Language. It uses the bearing temper-

ature signal as the feature quantity and combines the learning of the neural network to 

share, interact, and process the bearing operation information. The method is more ef-

fective in diagnosing and identifying bearing faults and improving the reliability of 

wind power bearing operation. Yet it is more tedious, and the accuracy of fault detection 

is not high. 

As an improvement of the BP neural network, various deep learning fault diagnosis 

algorithms have emerged, such as the deep confidence network (DBN), convolutional 

neural network (CNN), deep learning (DL), gated recurrent unit (GRU) neural network, 

etc. Yuan et al. [164] proposed an intelligent fault diagnosis technique using a combina-

tion of convolutional neural networks (CNN) and wavelet time–frequency maps. By 

performing continuous wavelet transform (CWT) on the vibration signal, the 

time–frequency maps are obtained. In addition, it was input to the training model of 

CNN as the feature maps to complete the diagnosis of faults. The method demonstrates 

the applicability of artificial algorithms in bearing faults. However, when using CNN for 

diagnosis, it needs to rely on a large amount of historical data and sample sets, and the 

structure and training parameters of CNN also need to be constantly optimized and im-

proved for the stable recognition of faults. Therefore, how to reduce the reliance on fault 

samples to improve the recognition capability of CNN is the next direction for im-

provement. Similarly, Kim et al. [165] presented a CNN-based technique for bearing 

fault diagnosis with the purpose of improving the sampling rate of the acoustic emission 

signal. This methodology computed the envelope power spectrum by acquiring the 

acoustic emission signal and extracting the frequency magnitude from the characteristic 

frequency range of the bearing used as a feature. After that, the normalized bearing 

characteristic component (NBCC) that was used as the input data of the convolutional 

neural network extracted the importance of weights using gradient weighted class acti-

vation mapping (Grad-CAM). The trained convolutional neural network will classify the 

bearing acoustic emission signal as normal or faulty, accurately expressing the classifica-

tion result in bearing fault diagnosis. However, this approach is not accurate enough for 

extracting low frequency features. Yang et al. [166] developed a 

deep-neural-learning-based on automatic classification method for bearing fault diagno-

sis. The method classified and learned each sample in the dataset several times by a deep 
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neural network (DNN). Subsequent tests on the bearing data showed that the method 

can effectively classify the faulty vibration signals automatically and efficiently diagnose 

the bearing fault types. However, the method still requires a large amount of data and 

real signals for learning, and further improvements are needed in practical applications. 

Teimourzadeh et al. [167] proposed a neural network model for bearing fault diagnosis 

with continuous temperature monitoring. The method mainly used temperature indica-

tors of critical parts such as gearboxes, converters, generators, and transformers during 

normal operation of the wind turbine to train and optimize the deviations from the re-

al-time measurements as correction indicators, thus achieving early prediction of faults. 

However, the deviations in the calculation of the risk indicators of this method are too 

large, which leads to inaccurate measurement results in practice. Deng et al. [168] de-

veloped an intelligent diagnosis method based on bandwidth Fourier decomposition 

(BFD) and the multi-scale convolutional neural network (MSCNN) to improve the accu-

racy of the health assessment of wind turbine bearings under off-design operating con-

ditions. The method was decomposed by BFD of the original vibration signal and input 

to the MSCNN model for fault learning identification diagnosis as the feature quantity 

for bearing fault detection. Experiments have confirmed the automatic identification of 

bearing fault features under variable operating conditions with this method. Although 

the BFD-MSCNN method is independent of the training samples, it has only been tested 

for some working conditions and further investigations are needed to learn and recog-

nize data in different operating environments. Janssens et al. [169] proposed a convolu-

tional neural-network-based feature learning model for condition monitoring. This ap-

proach used manually designed features and a random forest classifier to process signal 

features via feature analysis followed by a regular classifier to classify faults. In addition, 

their experimental results showed that convolutional neural-network-based feature 

learning systems achieve higher accuracy. In the research of deep-learning-based fault 

diagnosis methods for wind turbine bearings, Shao et al. [170] proposed a particle 

swarm optimization (PSO) enhancement deep belief network (DBN) method for fault 

diagnosis of rolling bearings. The method fine-tunes the weights of the restricted Bor-

man machine by learning the vibration signal of the bearing layer-by-layer continuously 

and using the stochastic gradient descent method. In addition, the optimal structure of 

the trained DBN is then determined using a particle swarm algorithm. By simulating 

and experimentally analyzing the vibrational signals, it was shown that the optimized 

DBN can learn effective features for complex classification with better accuracy and 

generalization performance. Nevertheless, the computational efficiency of the proposed 

method needs to be enhanced. Deutsch et al. [171] presented a diagnostic model of deep 

belief network and feedforward neural network (DBN-FNN) algorithms to predict the 

health status of bearings as well as their remaining lifetime. For this diagnostic model, a 

set of restricted Borman machines is pretrained to automatically learn bearing fault fea-

tures, which solves the gradient vanishing problem caused by partial deep networks. 

While the proposed method works better in life prediction, the computational accuracy 

of the proposed method in fault diagnosis is not fully developed. Zhang et al. [172] sug-

gested a wide convolutional neural network (WDCNN) for intelligent fault diagnosis of 

bearings, as shown in Figure 17. Deep learning models have enhanced fault diagnosis 

accuracy with their multi-layer nonlinear mapping capabilities. It features a wide kernel 

for the first regularization layer, which takes raw vibrational signals as input and em-

ploys a wide kernel to extract features and suppress high-frequency noise, thereby in-

creasing the domain adaptation capability of the model. 
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Figure 17. Architecture of the proposed WDCNN model (The first convolutional layer extracts 

features from the input raw signal. The classification stage consists of two fully connected layers 

for classification. In the output layer, a softmax function is used to transform the logarithm of the 

ten neurons so that it matches the form of the probability distribution for the ten different bearing 

health conditions.) (Adapted from [172]). 

Ji et al. [173] applied a deep transfer learning approach for analysis and prediction 

of rolling bearing fault data. The method was built by using various types of faults of 

bearings under the same operating conditions to build a deep migration learning model. 

In addition, a sparse self-encoder was added for noise reduction to extract further pic-

ture features of the bearing state. This deep transfer learning approach outperforms reg-

ular CNN in terms of accuracy and adaptability, but model creation is challenging. Liu 

et al. [174] proposed a bearing temperature anomaly detection method based on spa-

tio-temporal fusion decision-making. The method mainly established the normal tem-

perature rise model of the bearing based on historical data through the analytical hier-

archical process (AHP) entropy method. The temperature characteristics of the bearing 

under different time and space distributions are analyzed based on the temperature sig-

nal. In addition, by comparing the actual temperature rise and the predicted tempera-

ture rise, the abnormal diagnosis of the bearing is realized. This approach provides a 

superior early warning capability and a lower false alarm rate for diagnosing anomalous 

temperature rises. The structure of the bearing temperature prediction model is shown 

in Figure 18. 
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Figure 18. AHP-entropy-based model for detecting the abnormal temperature rise of the bearings 

[174]. 

By examining the temperature power distribution of wind turbine gearbox bear-

ings, Guo et al. [175] proposed a multi-hidden layer method based on giant neural net-

works and convolutional neural networks, and they created a bearing temperature rise 

prediction model using bearing temperature history data. Experiments have shown that 

the over-temperature fault model created by this method can produce quick judgments 

and warnings and lower the cost of maintaining wind turbine bearings. However, this 

method needs to be analyzed in conjunction with the real-time operating data of the 

bearings. The temperature rise model based on temperature signals does not allow for 

accurate and effective determination of failures that occur in the short term. Figure 19 

depicts the block diagram of the diagnosis process. 

 

Figure 19. Block diagram of multi-hidden layer method based on the convolutional neural network 

[175]. 
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Chen et al. [176] proposed a bearing fault diagnosis method based on acoustic 

emission signal and subspace embedded feature distribution alignment (SADA). The 

method constructed the spectral dataset by acquiring the acoustic emission signals from 

the bearings. The subspace alignment (SA) method is used to align the basis vectors of 

the two domains, and then a classifier is trained to predict the target domain. Based on 

this, a kernel function classifier is constructed to identify and diagnose faults. This ap-

proach also further demonstrates the applicability of acoustic signals for real-time fault 

diagnostics of rolling bearing conditions in wind turbines. Liu et al. [177] introduced the 

monitoring method which is based on the capsule network model for the troubleshooting 

of wind turbine bearings. The method has established a dynamic model that can respond 

to the bearing temperature by heat transfer and other theories. In addition, based on this 

dynamic model, the input matrix consisting of the characteristic parameters of the bear-

ing temperature rise for the simulation is obtained. Finally, the feature extraction of the 

state matrix is performed using a capsule network, and the remote diagnosis of the gen-

erator bearing is realized. However, this approach has only been tested for the main 

bearings of direct-drive wind turbines and is non-universal. Guo et al. [178] built a gen-

erator thermal model that was based on the nonlinear state estimation technique (NSET) 

for wind turbine temperature signals. The model applies a modified memory matrix 

construction methodology to estimate the residuals between real-time measured gener-

ator temperatures. When the temperature residuals become significant, early dynamo 

failures can be diagnosed from them. However, this approach has only been tested for 

dynamo bearings and has not been experimentally validated for bearings in other wind 

turbine components. 

Currently, artificial intelligence technology has also been applied in SCADA sys-

tems. In order to monitor and diagnose the main bearings of wind turbines, Zhao et al. 

[179] used a deep learning technique based on a layer-by-layer coded network of 

SCADA condition monitoring data. To build a deep learning network model, this tech-

nique uses a constrained Boltzmann machine to learn layer-by-layer the primary bearing 

sample data and abstract their representation. The overall condition of the main bearing 

is reflected by a generative model using SCADA data. This technique also shows how 

effective the layer-wise coded network deep learning approach is for detecting bearing 

faults. Wei et al. [180] presented a wind turbine bearing failure warning method based on 

the extreme gradient boosting (XGBoost) algorithm. This approach first uses the XGBoost 

algorithm to extract historical data on bearings from SCADA and to build a predictive 

model for dynamo dynamic shifts in bearing temperatures. On this basis, the bearing 

failure warning threshold is determined by combining the 3σcriterion. When the critical 

threshold is exceeded, the fault diagnosis system will monitor the abnormal bearing 

signal in advance and automatically raise the alarm. Like reference [180], Yin et al. [181] 

developed a temperature residual model in the time–frequency domain to diagnose 

generator bearings. This model simulated and modeled the temperature residual char-

acteristics based on the gated recurrent unit (GRU) neural network and performed a 

time–frequency domain analysis with temperature and vibration characteristics, which 

was integrated to establish an XGBoost fault identification model to realize the fault di-

agnosis and identification of bearings. Nevertheless, due to the lack of experimental 

testing on the bearings in different parts of a wind turbine, an in-depth discussion is still 

needed in practice. Encalada-Dávila et al. [182] introduced a data-based fault diagnosis 

method. The proposed method enables fault diagnosis of bearings via SCADA data. A 

behavioral model was established with normal (healthy) operating data and validated 

with actual operating data from wind farms, which proved the effectiveness of the es-

tablished approach. However, this methodology consumes too much time when per-

forming data collection. Later, Encalada-Dávila et al. [183] used the GRU neural network 

to collect SCADA data and trained them. The effectiveness of the method was demon-

strated by testing the data in a wind farm. However, this approach requires a large 

amount of SCADA data. Similarly, Dao et al. [184] suggested a method for wind turbine 
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fault diagnosis based on SCADA data. The method was based on the Chow test method, 

and a multiple linear regression model was formed with gearbox and generator temper-

ature data as the independent variables with speed data as the dependent variable. Ex-

periments proved that the model can reliably detect abnormal problems. Liu et al. [185] 

developed a fault warning method for generator and gearbox bearings based on the 

SCADA system. By extracting the oil temperature as the entry point for fault warning, 

the XGBoost algorithm is used to establish a wind turbine component normothermia re-

gression prediction model. However, the speed and accuracy of data feature selection 

still needs to be improved. Natili et al. [186] coordinated the integration of SCADA and 

turbine condition monitoring (TCM) data to perform multiscale analysis. The tempera-

ture trend of the bearing was studied using support vector regression, and the faulty 

unit was used as a target for vibration data analysis in the time domain, where faults 

were accurately identified after calculating statistical features. However, this method 

does not accurately identify faulty components. In order to reduce wind turbine opera-

tion and maintenance costs, McKinnon et al. [187] compared three fault diagnosis mod-

els, one-class support vector machine (OCSVM), isolation forest (IF), and elliptical enve-

lope (EE), using SCADA data. The experiment demonstrated that IF and OCSVM are 

more accurate than EE. 

The essence of wind power bearing fault diagnosis based on artificial intelligence is 

to combine the existing computer network technology to mine the characteristics of 

faults from the monitoring data and after that, by establishing neural networks with dif-

ferent hierarchical structures, and self-learning, interpreting, and analyzing the input 

data. Meanwhile, the network weights are automatically adjusted and updated accord-

ing to the input data features, which makes the network model thoroughly exploit the 

signal feature information to achieve fault diagnosis [188–190]. In the field of wind 

power bearings, artificial-intelligence-based fault diagnosis methods have been widely 

used. These methods rely primarily on the network structure and training algorithm, 

and they are more accurate than conventional diagnostic methods in terms of feature 

extraction and fault classification. However, model building still needs further devel-

opment. 

5. Summary and Conclusions 

Wind power has developed into the most promising renewable generation resource 

as a result of recent considerable increases in wind turbines’ installed capacity and en-

ergy generation [191]. Premature bearing failure, however, exacerbates the expense of 

wind power production [192]. Monitoring of wind turbine bearings is necessitated for 

the early diagnosis of failures to increase power output while minimizing O&M costs 

[193]. The common failure modes, causes, and fundamental tribological problems of 

wind turbine bearings are fully discussed in this paper. On this basis, the mechanism 

and procedure for diagnosing bearing failures are examined, which enable the reader to 

better understand the basic tribological problems and their characteristics. Subsequently, 

the current research on wind turbine bearing fault diagnosis methods is reviewed to 

provide a comprehensive reference for future researchers for more reliable and 

cost-effective wind turbine bearing diagnosis methods. Finally, a summary of the prob-

lems in the development process is provided, along with anticipated future research tra-

jectories. According to a review of earlier works, the following areas will require a sig-

nificant amount of theoretical and experimental investigation in the future. 

5.1. Research on Failure Analysis for Wind Turbine Bearings 

• As can be seen from earlier studies, researchers have examined wind turbine bearing 

failure issues in great detail and have a thorough understanding of the various 

bearing failure modes and causes. The cause of early bearing failure is still not fully 

understood, and most studies assessing the mode of bearing failure in wind turbines 

have been validated only under ideal laboratory conditions. In addition, because of 



Lubricants 2023, 11, 14 26 of 34 
 

 

the complexity of bearing failure modes, it is recommended that more basic work be 

completed to understand the root cause of the failures. 

• In terms of the tribological failures of wind turbine bearings, comparatively less at-

tention has been focused on main shaft bearings, pitch bearings, and generator 

bearings. Therefore, more basic research on bearings of such components is needed 

to understand their failure mechanisms and damage modes. 

• In terms of the formation mechanism of the mode of bearing failure, while some 

progress has been made in the form of failure and maintenance measures for wind 

power bearings, the formation mechanism of the mode of failure is not yet clear. An 

in-depth combination of bearings’ structure and working characteristics is needed 

in the future. Starting from the aspects of coatings, lubricants, and heat treatment, 

corresponding research will be conducted to analyze the influence of different fac-

tors on bearing failure modes and reduce maintenance costs. 

• The root cause of premature bearing failure is primarily related to lubrication and 

the materials used. During manufacturing, installation, operation, and mainte-

nance, the quality of the components should be controlled to avoid breaking parts 

and debris entering the bearings. In addition, the conditions of the lubricant, in-

cluding the temperature and color, should be closely monitored to ensure better lu-

brication. 

• Regarding the identification of the failure modes of wind power bearings, most of 

the current research is directed towards the identification of singular faults. How-

ever, in practice it is usually a compound of multiple faults, a more complex failure 

mode, which is also an important direction for follow-up studies. 

• With the widespread presence of offshore and large-scale wind turbines, a thor-

ough database of wind power bearing failures is indispensable. By diversifying the 

content of the bearing failure knowledge base to handle natural damage and other 

failure types, interoperability of failure data can be accomplished. 

5.2. Research on Bearing Fault Detection Methods for Wind Turbines 

• Failure of wind turbine bearings can cause a sequence of changes in physical char-

acteristic quantities, while a single physical characteristic quantity could also be 

caused by several failures. Therefore, the failure of bearings in different parts and 

the variability of different units should be combined. In addition, the data of mul-

ti-characteristic quantities are integrated and analyzed to seek the features of the 

failure data of the bearings in each part and its variation patterns. 

• At present, wind power bearing fault diagnosis is still focused on theoretical aspects, 

while in the practical domain there will be noise, temperature, and other factors that 

can affect the judgment outcome. Therefore, various factors should be considered to 

accurately identify the location and type of faults. 

• In the area of fault diagnosis, a point-to-point bearing dynamic data monitoring 

system should be established. Fault data for wind power bearings generally comes 

from SCADA systems. However, such systems have a low information sampling 

frequency, and most diagnostics are off-line analysis of steady-state signals. There-

fore, it is necessary to build a dedicated dynamic bearing fault detection system 

based on the real-time operation of wind turbines. 

• Achieving all-round information fusion for bearing fault diagnosis is a crucial future 

research direction, as the current non-stationary signal analysis method still has 

many urgent problems in practical application. Therefore, the advantages of various 

disciplines such as mathematics, material science, mechanics, and artificial intelli-

gence should be effectively integrated into fault diagnosis to further promote fault 

diagnosis research. 

• Current methods for bearing fault signal processing in wind turbines extract fea-

tures by analyzing the bearing vibration signal measured from a single sensor and 

thus suffer from many problems. The use of multiple sensors to collect bearing op-
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eration data at various measurement points can obtain additional information and 

increase the accuracy and robustness of fault diagnosis. Thus, multi-sensor-based 

feature fusion techniques are the future trend in the field of fault diagnosis. 

• Spectral analysis methods refer to a process of decomposing signals by Fourier 

transform and expanding them into frequency functions in frequency order and 

then investigating and manipulating the signals in the frequency domain. Spectral 

analysis techniques typically used for wind power bearing diagnostics include FFT 

power spectroscopy, cepstrum spectroscopy, refined spectroscopy, etc. By per-

forming an analysis of the power spectrum and cepstrum of the signal, the specific 

fault of the system can be located. Defect diagnostics for wind power bearings are 

currently widely used using spectral analysis, but spectral map analysis is still not 

accurate enough. Therefore, the next stage is to focus on the creation of intelligent 

spectral analysis systems and the intelligent identification of spectral analysis using 

neural networks. 

• Wavelet analysis, a signal processing technique for time–frequency analysis, helps 

resolve the conflict between the time and frequency resolution of classical Fourier 

analysis in the detection of faults in wind turbine bearings. Its primary use is wave-

let decomposition, which successfully separates fault signals from bearing vibra-

tions by choosing appropriate wavelet and scale parameters. The problem sites of 

the bearing vibrations are then identified by comparing the energy distribution in 

each frequency band. Wavelet-analysis-based diagnosis of wind power bearings is a 

useful technique for signal denoising and feature extraction. Bearing defect detec-

tion can be performed more effectively by combining wavelet analysis with addi-

tional techniques such as wavelet-neural networks, wavelet-support vector ma-

chines, and wavelet-fuzzy inference. 

• Artificial-intelligence-based fault diagnosis for wind power bearings first requires 

training and self-learning of the problem and normal bearing operation data, and 

then realizing fault diagnosis through deduction and decision-making processes. To 

increase the accuracy of defect detection, artificial intelligence techniques make it 

possible to accomplish more difficult diagnostic tasks without human interaction. 

By creating a current network model, a huge data platform, and an intelligent cloud, 

artificial intelligence should be applied as a model for bearing fault diagnosis in the 

process of future development so that the operational status of wind turbine bear-

ings can be assessed in advance and fault identification can be achieved. 
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