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Abstract: The monitoring and replacement of lubricating oil has an important impact on mechanical
equipment. In this study, based on the infrared spectroscopy monitoring method, an acid value index
prediction model is established. The support vector machine regression method is used to quantitatively
analyze the acid number of the oil sample, which verifies the stability and predictive ability of the
quantitative prediction model, and we provide a theoretical basis and practical examples for the online
monitoring of oil indicators. In addition, a support vector machine regression model is established by
observing the changing law of the spectral absorption peak and selecting the dominant wavelength,
and it is compared against the prediction algorithm of the long- and short-term memory network. By
comparing the deviation relationship between the predicted value and the real chemical value, the
feasibility of the infrared spectroscopy prediction model is verified. The experimental results show
that the correlation coefficient between the predicted value of the model and the actual measured
value reaches 0.98. This proves that the prediction effect of the prediction model based on the infrared
spectrum data and the support vector machine regression method is better than that of the long- and
short-term memory network trend prediction model, and the predicted results are reliable.

Keywords: lubricating oil; oil monitoring; mid-infrared spectroscopy; acid number; support
vector regression

1. Introduction

Lubricating oil, which provides the functions of lubrication, cleaning, cooling, sealing,
anti-wear, anti-rust, anti-corrosion, etc., has a profound effect on the operating conditions
of various devices. Lubricating oil comes into direct contact with metal during use and
is affected by various environmental factors. Due to the oxidation reaction during use,
the physical and chemical properties are changed and corresponding metamorphic sub-
stances are derived. The substances will be eroded by sand and dust, which results in large
amounts of harmful substances in the oil [1]. However, once the impurities and oxides in
the oil exceed the standard, the production of an oil film during use becomes difficult. As a
result, the anti-corrosion and lubricating properties of the oil are significantly weakened.
This leads to serious friction and wear of the equipment, and even serious failures [2]. Thus,
oil quality has a profound impact on the service life of the equipment. Furthermore, the
use of low-quality oil will make it difficult for the equipment to maintain normal operating
conditions. This will result in some or all of the functions being unrealized, leading to
reduced operation efficiency, increased instability of the system operation, and increased
noise pollution. Simultaneously, it will cause a risk of high wear of the moving parts in
the device, high temperature of the supercharger, and even engine damage [3]. According
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to statistical data, 80% of mechanical device operation failures are due to increased wear
caused by substandard oil quality, which in turn causes failure and damage to the mechani-
cal equipment [4]. Conclusively, the quality of the oil has a decisive influence on the service
cycle and operating efficiency of the equipment [5], and, hence, it is necessary to monitor
the quality of lubricating oil.

Infrared spectroscopy can measure important indicators such as the oxidation value, acid-
base value, and moisture in oil. The monitoring of oil quality can be achieved by monitoring
these indicators in the oil. The benefits of this method are its ease of operation, faster detection
speed as compared to other methods, and lack of direct contact with the oil. The main
detection methods based on infrared spectroscopy include the neutralization reaction [6,7],
nitrate sulfide value and oxidation value combined with total acid number [8,9], partial least
square regression method [10,11], neural network method [12], and other methods [13,14].
In recent years, Lingfei Shi [15] used the method of combining least squares and support
vector machine to establish a lubricating oil acid number model, and compared it with the
accuracy of prediction based on the radial basis function model. Yanjun Zhang [16] and
others established a rapid quantitative detection model of acid content based on artificial bee
colony support vector regression and Raman spectroscopy. This method demonstrated higher
prediction accuracy. Juxiang Wang et al. [17] used the spectral variables after feature selection
to establish an acid number analysis model based on the correlation vector machine algorithm,
and verified the accuracy. FRVD Voortd et al. [18] used infrared spectroscopy to determine
the acid number and number of bases in lubricating oil, and eliminated the matrix effect
through a signal transduction method combining chemometrics and differential spectroscopy.
R Chakravarthy [19] and others used mid-infrared spectroscopy to determine the naphthenic
acid number in petroleum crude oil and its fractions. Ran Zhiyong et al. established the
relationship between near-infrared spectroscopy and oil use times, and used forward interval
partial least squares (FiPLS) and backward interval partial least squares (BiPLS) to screen
feature intervals [20].

The above research illustrates the feasibility and wide application of infrared spec-
troscopy in the detection of the lubricating oil acid number, and all experiments verified the
accuracy of infrared spectroscopy monitoring. It is not difficult to find that algorithms are
increasingly used in infrared spectroscopy From data acquisition methods to chemometric
methods used in regression modeling, continuous improvements are being made, and
the scope of application is gradually expanding. The stability of the model is gradually
improving, and the deviation of prediction is gradually shrinking. However, most of
the known research methods involve the prediction of the existence of oil samples with
different oxidation times. Therefore, a prediction method for the production of oxidized lu-
bricating oil at a future time is needed. In this study, a prediction method based on support
vector machine is proposed. Given its high accuracy, the use of infrared spectroscopy for
oil quality prediction research is able to achieve results closer to the actual state.

2. Materials and Methods

Using the infrared spectroscopy detection method, the correlation between the pre-
dicted spectral data and the data results measured in the laboratory environment can be
analyzed, which is conducive to the rapid determination of oil products. The regression
method of support vector machine was used to construct a corresponding quantitative
model to analyze the acid number of oil, which was then used to verify the accuracy of the
acid number compared to that measured by infrared spectroscopy.

2.1. Collection of Experimental Data
2.1.1. Infrared Spectrum Collection

The lubricating oil sample used in the experiment was L-TSA46 steam turbine base oil.
First, 100 mL of L-TSA46 steam turbine oil in a round-bottom flask was weighed, and then
a digital heater was used to heat the base oil at the same temperature to simulate oxidation.
In total, 37 samples for different dates were collected. A Nicolet Avatar 360 FT-IR Fourier
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Transform Infrared Spectrometer (Thermo Nicolet Corporation, Madison, WI, USA) was
used to analyze the oil sample, and measure and record its spectral data. The infrared
spectrum of the sample was collected at a room temperature of 25 ◦C, with the atmospheric
environment as the background. The spectrum collection range was 4000~400 cm−1, the
resolution was 4 cm−1, and the number of scans was 32.

2.1.2. Acid Number Data Determination

The acid number, which refers to the amount of alkali consumed in the process of
neutralizing the acidic components in 1 g of oil, and whose unit is mgKOH·g−1, is one of
the most important research parameters of oil [21]. In this research work, the acid number
detection method for petroleum products was used to test the acid number of the sample.
Potassium hydroxide solution was then used for titration detection. Combined with the
amount of the final titration solution, the acid number of the sample was calculated. The
testing equipment used was the Mettler G20S automatic titrator (METTLER TOLEDO,
Zurich, Switzerland).

According to the standard measurement method, the acid number measurement
results for the 37 samples are listed in Table 1.

Table 1. Acid numbers of lubricating oil samples.

Number Acid Number
mgKOH/g Number Acid Number

mgKOH/g Number Acid Number
mgKOH/g

1 0.032 14 0.043 27 0.043
2 0.035 15 0.046 28 0.046
3 0.036 16 0.036 29 0.048
4 0.034 17 0.038 30 0.047
5 0.036 18 0.04 31 0.049
6 0.038 19 0.038 32 0.046
7 0.033 20 0.038 33 0.048
8 0.037 21 0.041 34 0.049
9 0.042 22 0.045 35 0.05

10 0.039 23 0.042 36 0.051
11 0.035 24 0.047 37 0.053
12 0.045 25 0.04 - -
13 0.042 26 0.042 - -

2.2. Data Processing
2.2.1. Choice of Dominant Bands

Under the influence of oxidation, chain alkyl radicals reacted with oxygen early to
generate oxygen radicals. It was then formed from another hydrocarbon that extracts
hydrogen from hydrogen peroxide and another free radical. With the production and
accumulation of hydrogen peroxide, the final oxidation process of the oil was terminated.
The production of carboxylic acids increased the acidity of the oil. The absorption peaks
of the functional groups of the above substances were generally distributed across the
entire spectrum. Under the influence of hydroxyl absorption, the absorption bands of
carboxylic acid substances appeared to be diffuse, and the absorption peak width ranges
were from 3770 to 3100 cm−1. However, this segment overlapped with the absorption peak
of moisture and hence could not be used as a basis for the quantitative analysis of the acid
number. Moreover, 1300~1000 cm−1 was the C-O single bond stretching vibration peak
of the oxygen-containing compound. However, in addition to carboxylic acids, the acidic
substances in the oil also included a variety of organic acids and acidic additives, or other
unknown substances that could react with the -OH bonds. Therefore, this section could not
be selected for quantitative analysis. Referencing the ASTM E 1421-99 (2015) e1 standard,
1800~1600 cm−1 is an important indication range for determining the oxidation value of
oil by infrared spectroscopy. The absorption peak in this waveband displayed obvious
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changes. Therefore, the band of 1800~1600 cm−1 could be used to characterize the acid
number. Figure 1 presents the infrared spectra of some oil samples.
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Figure 1. Infrared spectra of lubricating oil samples.

2.2.2. Selection of Spectral Preprocessing Method

In the measurement link, the infrared spectrum data will inevitably produce errors, so
the infrared spectrum information needs to be preprocessed [22]. The value of preprocessing
work is to eliminate irrelevant data information in the detection information and reduce
information noise, which effectively reduces the influence of irrelevant elements on the
spectrum. As a result, the reliability of the model and the accuracy of the results are
improved. The maximum and minimum acid numbers of the lubricating oil obtained by
the test were 0.053 mgKOH·g−1 and 0.032 mgKOH·g−1, respectively, which did not exceed
the standard range, and the average value was 0.042 mgKOH· g−1.

2.2.3. Sample Division

In this experiment, the Kennard–Stone method was used to divide the 37 samples of
lubricants into a training set and a validation set at a ratio of 4:1, i.e., 30 samples were used
as the training set and 7 samples were used as the validation set for training. The details
are shown in Table 2.

Table 2. Sample division.

Sample Set Number Acid Number Range
mgKOH/g

Average Value
mgKOH/g

Standard Deviation
mgKOH/g

Training set 30 0.032~0.048 0.040 0.0045
Validation set 7 0.046~0.053 0.049 0.0022

2.3. Modeling and Preprocessing
2.3.1. Modeling

The LIBSVM toolbox was selected in MATLAB 2020b (MathWorks, Natick, MA, USA)
for modeling. It is a toolbox with SVM pattern recognition and regression functions,
developed by Zhiren Lin scholars, which can effectively solve the open-source support
vector machine classification and regression problems [23].
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2.3.2. Normalization

In order to improve the modeling efficiency and computing speed, this research used
normalization to preprocess the lubricant sample data. Because of the differences in the
light absorption capacity of different substances, the corresponding data on the acid number
of lubricating oils were also different. Therefore, when training samples with different
data ranges were used, data convergence would slow down during the modeling process,
affecting the modeling work. In the experiment, the mapminmax function of MATLAB was
used to realize the normalization of the interval [–1,1].

2.3.3. Optimization of Parameters

The penalty function c and the kernel function g are key functions in the model
building process. The generalization ability of the model is deeply affected by the penalty
factor. At present, the commonly used penalty functions include root mean square error
and mean square error.

The root mean square error (RMSE) calculation formula is as follows:

RMSE =

√√√√ 1
T

T

∑
t=1

(yt − ŷt)
2 (1)

The mean square error (MSE) calculation formula is as follows:

MSE =
1
T

T

∑
t=1

(yt − ŷt)
2 (2)

In the above formula, yt —predicted value; ŷt—measured value; T—the number of
predicted values.

In the process of this research, the penalty parameter c was searched within a certain
range, and at the same time, a limited condition was added. Therefore, the parameter
combination with the smaller penalty parameter c was preferentially selected. In addition,
for the regression prediction model, the degree of fit (R2) was used to evaluate the accuracy
of the model.

R2 = 1 − ∑T
t=1(yt − ŷt)

2

∑T
t=1(yt − yt)

2 (3)

The research results show that the kernel function g of the LIBSVM toolbox satisfies
the conditions of the kernel function theorem. However, in the actual application process,
the alternative kernel functions are RBF, polynomial, linear, and sigmoid, with four types
of kernel functions in order, which can effectively verify the effect of the kernel function on
the performance of the regression model in this experiment. The research results showed
that when RBF was selected as the kernel function, the generalization ability of the model
achieved the best outcome. Therefore, in this research work, the RBF kernel function was
selected in terms of the kernel function. When using this function, due to its own parameter
gamma, i.e., the parameter g, there is a negative correlation between the size of g and the
number of support vectors. However, the number of the latter has a profound impact
on the speed of training and prediction of the entire SVR model. The gamma calculation
formula in the RBF kernel function is shown below.

k(x, z) = exp

(
−d(x, z)2

2σ2

)
= exp

(
−gamma·d(x, z)2

)
(4)

Based on the physical meaning of g, it can be inferred that when the gamma is set
to be too large, the predictive ability will be weakened. It can only predict the vicinity of
the sample and is unable to predict the unknown sample, which causes training problems.
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However, if the value is set too low, it will cause the smoothing effect to be too significant,
and the accuracy of the validation set and training set will be weakened.

3. Results and Discussion

On the basis of the above research, the method of support vector machine regression
was used in MATLAB and the method of long short-term memory (LSTM) [24] trend predic-
tion was used in Python to establish a quantitative prediction model for the lubricating oil
acid number. In the modeling process, the hyperparameters of the model were determined
by the grid search method. The hyperparameters of the LSTM trend prediction model are
shown in Table 3. Substituting the infrared spectrum data and acid number data into the
model, the prediction results of the training set and prediction set were obtained, as shown
in Figures 2 and 3.

Table 3. LSTM model hyperparameters.

Hyperparameter Name Value

Dropout 0.02
Epochs 100

Batch_size 2
Activation function Tanh

Optimizer Adagrad
Number of neural network layers 3
Number of hidden layer neurons 64

Loss function MSE
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Figure 2. SVM training set prediction results. Figure 2. SVM training set prediction results.

Using the results in Figures 2 and 3, the errors and relative errors between the mea-
sured and predicted values in the SVM model and LSTM model verification set could be
calculated, respectively, as shown in Tables 4 and 5.

Table 4. Error of SVM measured value and predicted value.

Index Measured Value
mgKOH/g

Predictive Value
mgKOH/g

Deviation
mgKOH/g Relative Error %

1 0.049 0.04991 0.00091 1.86
2 0.046 0.04861 0.00261 5.67
3 0.048 0.04988 0.00188 3.92
4 0.049 0.05036 0.00136 2.78
5 0.050 0.05075 0.00075 1.50
6 0.051 0.05105 0.00005 0.10
7 0.053 0.05168 −0.00132 2.49
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Table 5. Error of LSTM measured value and predicted value.

Index Measured Value
mgKOH/g

Predictive Value
mgKOH/g

Deviation
mgKOH/g Relative Error %

1 0.049 0.04669 0.00231 4.72
2 0.046 0.04788 −0.00188 4.10
3 0.048 0.04693 0.00107 2.23
4 0.049 0.04769 0.00131 2.66
5 0.050 0.04736 0.00264 5.28
6 0.051 0.04868 0.00232 4.56
7 0.053 0.04964 0.00336 6.33

The results obtained from Formula (1) are shown in Table 6.

Table 6. RMSE value of the model.

Model SVM LSTM

RMSE 0.00147994 0.00224797

It is observed that the relative error of the SVM model varies within the range of
0.004% to 0.016%, which indicates that the model based on the SVM algorithm has a small
relative error and a better prediction effect. At the same time, the RMSE of the SVM model
is smaller than that of the LSTM model, which indicates that the regression prediction
effect of the SVM model is better than that of the LSTM trend prediction model. The
coefficients of determination R2 of the acid number of the training set and the verification
set and the related infrared spectrum data are 0.959 and 0.960, respectively. This shows that
the accuracy rate of the lubricating oil acid value calculated by infrared spectrum data is
96%. Therefore, the correlation coefficient R can also be calculated to be 0.979 and 0.980,
respectively. According to the corrected standard deviation (SEC) and predicted standard
deviation (SEP) formulas, SEC and SEP can be calculated as 0.0012 and 0.0027, respectively.
The small value indicates that the support vector regression model has strong predictive
ability and a good fitting effect. It shows that the infrared spectrum data of the lubricating
oil sample have a significant correlation with its acid number.
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Through the above analysis, it can be deduced that support vector regression modeling
can predict the acid number of lubricating oil well within the standard, with a small
prediction error, and the prediction effect is better than that of the LSTM trend prediction
model. The study confirmed that it is very feasible to determine the acid number of
lubricating oil samples through Fourier transform mid-infrared spectroscopy data.

4. Conclusions

In this paper, the relationship between the acid number of lubricating oil and infrared
spectroscopy detection technology was studied, the influence of changes in the physical
and chemical indicators of lubricating oil was analyzed, and the principles, advantages,
and disadvantages of infrared spectroscopy detection technology were analyzed. The
data analysis methods of infrared spectroscopy were studied, including the preprocessing
method, the selection of the characteristic wavelength, the analysis of commonly used
quantitative modeling algorithms, and the support vector machine regression model.
Finally, the infrared spectrum of the acid number of lubricating oil was quantitatively
analyzed. By comparison with the trend prediction model of the lubricating oil acid
number based on the LSTM algorithm, it is found that the stability and accuracy of the
model built by the support vector machine regression method is better, and the correlation
coefficient of the verification set is 0.98. Therefore, acid value prediction based on mid-
infrared spectroscopy is a feasible method to evaluate the period for oil replacement. This
has guiding significance for the protection of mechanical components.

In this experiment, infrared spectroscopy was selected as the monitoring method of
oil quality because of its strong accuracy. The acid number, as an indicator for judging
the degree of oil deterioration, can be obtained by monitoring acid-containing groups in
oil by infrared spectroscopy. Since the oxidation products of lubricating oil have clear
infrared spectral characteristics, the correlation between functional groups and oil quality
is more reliable. In addition, its analysis speed is fast. However, for oil detection, infrared
spectroscopy detection technology still has a certain scope of application. It can only
characterize the molecular structure and functional groups, and is unable to reflect the
indicator status of metal particles, atoms, and dissolved ions. Therefore, there may be slight
errors in the monitoring of highly contaminated oils.
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