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Abstract: This research presents the effects of carbon nanotori structures (CNst) dispersed as rein-
forcement for metal-working and metal-forming lubricants. Synthetic (SL) and deep drawing (DD)
nanolubricants were prepared following a two-step method at 0.01 wt.%, 0.05 wt.%, and 0.10 wt.%
filler fractions. Slight increases in viscosity (<6%) for nanolubricants were observed as filler fraction
was increased through various measured temperatures. Tribological behavior of nanolubricants
displayed superb improvements under antiwear and extreme pressure conditions. The load carrying
capacity (poz) increased by 16% and 22% at merely 0.01 wt.% CNst reinforcement and up to 73% and
107% at 0.10 wt.% filler fraction for SL and DD nanolubricants, respectively, compared to conventional
materials. Additionally, at 0.10 wt.% wear scar evaluations showed a highest benefit of 16% and 24%,
for SL and DD nanolubricants, respectively. This enhancement is attributed to diverse mechanisms
such as rolling/sliding and load bearing effects, tribofilm formation, and CNst tribosintering behav-
ior (at high pressures) onto metallic surfaces due to nanostructures size and morphology and their
interlayer relationship among conventional lubricants.

Keywords: friction; wear; nanolubricant; carbon nanotori; plastic deformation

1. Introduction

Sustainable and environmentally friendly materials are being developed and incor-
porated to diverse industrial metal-mechanic manufacturing processes such as grind-
ing, milling, turning, stamping, punching, and hydroforming, among others [1–8]. For
lightweight purposes, thinner materials with higher mechanical properties are used in
fields such as automotive and agriculture, among others. These materials require higher
processing loads, needing a more robust performance of lubrication due to higher friction
and wear among tooling and base substrates.

The incorporation of diverse nanostructures to cutting fluids and lubricants for plastic
deformation processes has demonstrated great benefits, particularly for improving the
efficiency, quality, and production in industrial operations. Through the comparison of
tribological properties, researchers have been able to determine effective methods of im-
proving lubricants under specific conditions such as antiwear (AW) and extreme pressures
(EP). According to diverse studies, the most relevant advantages and improvements of
using nanostructures as additives are: coefficient of friction (COF) and wear reduction,
hence, decreasing machining operations cutting forces as well as energy consumption [9,10].
Another critical aspect is the improvement on the surface finishing of the produced compo-
nents, which has a great impact on quality and post-processing. Tooling and machinery
components are also benefited by using nanofluids and nanolubricants, such as also acting
as thermal transport of the generated heat by metal-to-metal contact [11–14].
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The reinforcing role of nanostructures in decreasing friction, wear, and improving
plastic deformation manufacturing processes [14–16] attracts attention and substantial
interest for its micro-rolling effect, self-repairability, polishing effect, and tribolayer forma-
tion [10,17]. These nanostructures, due to their intrinsic physico-chemical characteristics,
convey desired performance characteristics to the conventional materials [16]. Due to the
size and morphology of nanostructures, they possess high surface energies; thus, these are
susceptible to agglomerate and sediment. The filler fraction of these nanostructures also
contributes to this phenomenon, which is very important for machinery and devices.

Lubrication mechanisms using carbonaceous structures such as single wall/multiwall
carbon nanotubes (SWCNTs/MWCNTs), graphene nanoplatelets (GNPs), carbon fibers
(CFs), nanodiamonds (NDs), carbon nano-onions, and carbon nanotori structures (CNst)
have attracted significant attention as potential lubrication reinforcement for conventional
fluids and lubricants [18–23] due to their good corrosion behavior, superb mechanical
properties, high thermal conductivity, and excellent lubricating properties. Widely studied
carbon nanotubes (CNTs) have demonstrated superb enhancements in tribological behavior
when incorporated as additives or reinforced solid material of diverse systems [24], showing
enhancement with diverse mechanisms such as tribofilm formation, rolling/sliding, and
load bearing effects [7,21,25].

According to Jansson et al. [26] carbon nano-allotropes structures may contribute to
the tribochemical layer creation through their chemical reactivity, rather than through their
surface functional groups [26]. Conventional fluids and lubricants depend on their intrinsic
characteristics such as chemical properties and structural parameters, among others. Ali
et al. observed outstanding improvements in wear and friction reduction for diverse fluids
and lubricants by adding carbon and graphene nanostructures [27].

Tribological effects of graphene nanoflakes-blended within engine oil were studied
by Rasheed et al. [28]. At merely 0.01 wt.% graphene within conventional engine oil, COF
was reduced by 21%. It was also observed that graphene nanostructures also reduce the
ring wear over extended hour engine evaluation. Bhaumik et al. [29] observed that adding
MWCNTs enhanced the AW characteristics and load-carrying capacity of conventional
mineral oil. Wear reduction of 80% was reported for the nanolubricant at 0.05 wt.%.
MWCNTs were incorporated as additives for synthetic and mineral oils for metal-working
processes. At 0.1 wt.% reinforcement, an enhancement of 21% and 36%, respectively, in
the load-carrying capacity was observed [30]. Kumar et al. investigated [31] MWCNTs
and SWCNTs as additives in SAE10W40 motor oil. Using these reinforcements, worn
scar diameter was reduced by 67% and 38%, respectively. The average COF was also
decreased by 48% and 56%, respectively. One important aspect is that nanolubricants
viscosity raised by increasing the CNTs filler fraction. Kumar et al. concluded that the
AW mechanism is due to the accumulation of SWCNTs and MWCNTs on the material’s
surface, reducing shearing stress and improving the tribological performance. Mohamed
et al. [32] demonstrated that 1.0 wt.% of CNTs incorporated to lithium grease contributed to
improvements in EP performance and load-carrying capacity by 52%, and COF reduction
by 82%. Other research on commercial greases reinforced with MWCNTs at various filler
fractions showed an increase of 10% at 0.05 wt.% [33]. According to Ni et al. [34], this
improvement may be due to the flattening behavior of the nanostructures by compression
at high pressures, making them move between surfaces similar to a “tank belt”. Hong
et al. [35] investigated the behavior of CNTs-based greases within PAO (polyalphaolefin) oil
with incorporation of 1.0 wt.% MoS2 and other commercial greases (lithium, calcium, etc.).
A COF reduction of 28% was observed for the CNTs-based grease with MoS2, compared to
conventional grease.

Another critical aspect of lubrication is the material’s viscosity. The lubricant viscosity
is one parameter for optimizing drawing processes, for instance. Viscosity is related to tem-
perature; a system with high temperature reduces the protecting lubricant layer thickness
and generates higher pressures. In diverse studies, dynamic viscosity effects with the addi-
tion of nanofillers were observed. In general, viscosity of nanofluids and nanolubricants
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increases with the addition of solid nanostructures; however, the flow characteristics, such
as rheology, depend on diverse parameters and operating circumstances [36–39]. Sadegh-
inezhad et al. [40] observed that viscosity performance of GNP-based nanofluids depends
on temperature and reinforcement filler fraction. In their study, GNP concentrations vary
from 0.025 wt.% to 0.1 wt.%. Viscosity increments were 9−38% compared with distilled
water, from room temperature to 60 ◦C. Similar research by Mehrali et al. [40] demonstrated
that viscosity behavior of GNP nanofluids was reduced with filler fraction and temperature
increase. Similarly, Moghaddam et al. [41] found that viscosity decreases with shear rate
and temperature increments. Particularly, viscosity of GNP nanofluid at 0.1 wt.% was
increased by 44%, when compared with conventional material. Afrand et al. [42] studied
the effects of hybrid MWCNT- SiO2 nanostructures dispersed in concentrations from 0 to
1 vol.% within SAE40 lubricant. Kinematic viscosity was evaluated over a 25 ◦C to 60 ◦C
temperature range. In general, viscosity increases with a filler fraction raise, and decrease
with temperature increase. The maximum observed improvement in viscosity was 37% for
the 1.0 vol.% filler fraction at 60 ◦C. According to Dhanola et al. [43], the reason for the high
viscosity of canola-reinforced lubricants is attributed to the incorporation of small amounts
of nanoadditives, which attracted each other due to Van der Waals bonding. Furthermore,
agglomeration of additives was observed due to the high concentration of reinforcement,
leading to an increase in viscosity [43].

A toroidal form of carbon nanotubes, or toroidal “crop circles” as some authors name
them, were experimentally observed by Liu et al. [44] while investigating laser-grown
single-wall carbon nanotube (SWCNT) materials. Carbon nanotori structures are novel
configurations of carbon-based materials considered as prospect objects for many investiga-
tions, with similar mechanical properties and characteristics as CNTs. These structures have
been emerging as a sustainable option for improving industrial manufacturing processes.
Most recently, nanotori structures have been utilized in the evaluation of the thermal dissi-
pation of oil-based and synthetic lubricants [45]. These structures have been found to have
excellent properties for reinforcing the enhancing thermal transport behavior of common
lubricants. This has led to findings that show carbon nanotori structures significantly
improve the thermal transport properties of lubricants [46].

Through the comparison of tribological properties, researchers have been able to
determine effective methods of improving lubricants under EP and AW conditions. The
primary method is preparing lubricants with additives such as carbon nanotori structures.
Examining these properties before and after using different additives can help organizations
in several ways such as increasing tool life, reducing energy consumption, and decreasing
surface damage and COF. The rest of this paper is dedicated to an in-depth review of
topics in tribology, focusing on the previous topics mentioned and how they can benefit
individual organizations and the industry.

Due to the superb properties of carbon nanotori (CNst) (high mechanical properties
such as elastic modulus ~1 TPa and tensile strengths [19]), their characteristics, and likeness
to CNTs, these nanostructures are a suitable alternative to reinforce fluids and lubricants
for plastic deformation manufacturing processes. In our work, deep drawing (DD) and
synthetic (SL) nanolubricants at various concentrations (by weight) of CNst are evaluated
for their effect in tribological performance and viscosity behavior over a temperature range
of up to 70 ◦C (343 K).

2. Materials and Methods
Nanolubricants Preparation

Two common lubricants for metal-working and metal-forming processes (stamping,
drawing, and punching, among others) (FUCHS Industry) were investigated (see Table 1).
The synthetic lubricant (SL) possesses high lubricity properties which reduces the forma-
tion of cracks or severe surface damage (galling). The DD lubricant is a pre-emulsified
automotive deep drawing compound. The SL and DD medium viscosity lubricants provide
a thin protective and effective layer within the metal sheets and tooling to reduce wear
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and dissipate the generated heat due to friction. Nanolubricants prepared with carbon
nanotori homogenously dispersed structures were obtained by a two-step method in three
concentrations: 0.01, 0.05, and 0.10 wt.%, according to the procedure by Kharissova [47].

Table 1. Material Characteristics.

Materials Properties

Base lubricant Density (15 ◦C) Kinetic Viscosity (mm2/s) Water: oil ratio
4:1Deep-drawing (DD) 0.967 g/cm3 2.02 @ 24 ◦C; 0.86 @ 70 ◦C

Synthetic (SL) 1.033 g/cm3 63.3 @ 24 ◦C; 40.7 @ 70 ◦C 6:1
Nanoparticles Size Polydispersity index Zeta potential

Carbon Nanotori
structures (CNst)

Torus diameter ~130
nm Tube diameter

~40 nm
0.248 −26.5 mV

MWNTs with 35–50 nm in diameter were functionalized with carboxylic acid groups.
The next step was to dissolve them in a solution of DiW, potassium permanganate, nitric
acid, hydrochloric acid, and sulfuric acid. The solution was maintained in an ice bath
which was magnetically stirred for 60 h. Afterwards, the solution was centrifuged and the
supernatant was collected to obtain carbon nanotori from other carbon-based materials.
Henceforth, nanotori structures were homogeneously incorporated within SL and DD
lubricants at various concentrations.

The zeta-potential of the SL and DD nanolubricants at 0.10 wt.% CNst is found to be
~22 mV and 18 mV, indicating the stability of the nanolubricants.

3. Experimental Details
3.1. Tribological Evaluations

A four-ball tribotester was employed to evaluate the load-carrying capacity of nanol-
ubricants under EP conditions and COF. Tests were conducted according to the ITeE-PIB
evaluation methodology to evaluate materials under scuffing criteria [48]. This methodol-
ogy was chosen since it is more sensitive to EP additives [49], and it is also less material
and time consuming.

The evaluation involves the application of a load over a top ball, which acts against a
set of three stationary bottom balls on a cylindrical container (oil cup) (Figure 1), which
are fully covered with the sample nanolubricant while the upper ball rotates at 500 rpms,
at room temperature (~24 ◦C). The applied load increased progressively up to 7200 N in
a period of 18 s. For each set of evaluations, four to six evaluations are performed. Each
test consisted of pouring 12.5 mL of nanolubricant over the bottom stationary balls. Ball
material is an AISI 52,100 steel grade, 12.7 mm in diameter, with surface roughness average
(Ra) of 0.29 µm and 63 HRc. If a seizure occurred, the loading would stop, which means
that the protective lubricant film on the balls was damaged or destroyed. This point is
where the torque reached 10 N m. Here, the load corresponds to the seizure load (Poz).
If the 10 N m frictional torque is not achieved, Poz is considered as the maximum load of
7200 N. After the evaluation is performed, the wear scar diameter (WSD) is measured
for the three bottom balls with the aid of an optical microscope. Average values are then
employed to determine the load-carrying capacity (poz) of the nanolubricants according to
the following equation:

poz = 0.52
Poz

WSD2

[
N/mm2

]
(1)

Furthermore, the nanolubricant with the better tribological characteristics will be
obtained with the greater load-carrying capacity. This evaluation helps to determine the
EP behavior of nanolubricants, the load, and time at which the loss of lubricant film and
wear occur.
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Figure 1. Schematic of four-ball testing setup.

3.2. Viscosity Evaluations

Rheological performance of nanolubricants has remarkable importance due to the rela-
tionship among shear rates, viscosity, pressure drop, and other characteristics. For instance,
viscosity is associated with temperature, pressure, and tribofilm form [25]. Higher viscosity
indicates higher flow resistance. Hence, as lubricant viscosity increases, a thicker tribofilm
is created [50]. It controls the sealing effect of lubricants and the oil consumption rate.
It also determines the ease of machine operation under varying temperature conditions,
particularly in cold environments.

Therefore, in our research, the viscosity of nanolubricants is investigated. Shear
viscosity evaluations were measured with an ARES rheometer (TA Instruments) with a
Couette holder configuration. Temperature-dependent evaluations were obtained at room
temperature (~300 K), 30 ◦C (303 K), 40 ◦C (313 K), 50 ◦C (323 K), 60 ◦C (333 K), and
70 ◦C (343 K) as well as varying filler fraction as reinforcement of the metal-working and
metal-forming lubricants.

4. Results and Discussion
4.1. Tribological Performance

Improvements in tribological behavior with the incorporation of CNst within SL
and DD lubricant systems have been obtained. Figure 2 depicts the scanning electron
micrographs (SEM) of worn steel balls for SL and DD nanolubricants at the evaluated
concentrations. For SL material, a reduction of 16% in the WSD was shown for the 0.10 wt.%
nanolubricant. Furthermore, DD lubricants reflected a 24% improvement at the same filler
fraction of CNst. This behavior for both lubricants is mainly associated with the size and
morphology of the incorporated carbon nanotori structures, whose sliding-rolling effect
acted as a promotor for reducing wear and minimizing COF. Viscosity of base lubricants
also played a paramount factor, together with its relationship to applied pressure and
temperature, which are responsible for the formed tribolayer thickness and, subsequently,
the effect on the tribological properties.

As filler fraction increases, a favorable benefit is reflected in the SL nanolubricants. For
instance, at merely 0.01 wt.% an enhancement of 16% is observed, achieving a maximum in-
crement of 73% at 0.10 wt.%. DD nanolubricants displayed a similar effect on load-carrying
capacity. Figure 3 shows the effect of the incorporation of CNst at various concentrations.
In this case, load carrying capacity was higher than observed for SL lubricants, which is
attributed to the affinity of carbon nanotori structures to deep drawing lubricant. Therefore,
their dispersion is easy without using additives or surfactants. For instance, at 0.01 wt.% a
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reduction of 22% was observed, increasing to 53% at 0.05 wt.% and reaching a maximum
improvement of 107% at 0.10 wt.%.
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Table 2 shows the enhancements during four-ball evaluations by carbon nanotori struc-
tures reinforcing SL and DD lubricants under EP conditions. Seizure load (Poz), pressure
loss limit (poz), and WSD are integrated into this table, with enhancement in parentheses.
The solid nanostructures are pushed into the metal contacts, forming a protective film, as
other authors have also seen and called the tribo-sintering effect [51–53]. The observed
improvements can be attributed to this tribo-sintering effect of the carbon nanotori struc-
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tures onto worn areas, filling valleys or vacancies and the shearing mechanism of captured
nanostructures at the surfaces interface, hence providing smoothness and reducing the fric-
tional forces. Another critical characteristic can be associated with the substrate hardness
and the tribo-layer formation, as other authors have also described [7,45,47,52–54].

Table 2. Enhancements by CNst reinforcement to SL and DD lubricants under EP conditions.

Lubricant Seizure Load, Poz (N) Load-Carrying Capacity, poz
(N/mm2) (Enhancement)

WSD (mm)
(Reduction)

Synthetic lubricant (SL) 4950 705 1.93
@ 0.01 wt.% CNst 5435 826 (16%) 1.85 (4%)
@ 0.05 wt.% CNst 5760 1007 (42%) 1.72 (10%)
@ 0.10 wt.% CNst 6150 1218 (73%) 1.62 (16%)

Deep drawing lubricant (DD) 6100 3300 0.98
@ 0.01 wt.% CNst 6400 4018 (22%) 0.91 (7%)
@ 0.05 wt.% CNst 6700 5055 (53%) 0.83 (15%)
@ 0.10 wt.% CNst 7200 6840 (107%) 0.74 (24%)

As previously explained, during the four-ball evaluations an extreme pressure is
applied. A tribo-membrane is formed, resulting from a chemical response among the nanol-
ubricants and the working surfaces. Due to the carbon nanotori morphology, higher loads
could be supported, maintaining the lubrication layer between metal components. The
load-bearing effect provided by the CNst-nanolubricants due to the high elastic modules is
promoted at EP conditions.

4.2. Viscosity Evaluations

Temperature-dependent measurements for shear viscosity behavior for various filler
fractions of nanolubricants are shown in Figure 3. Viscosity slightly increased with re-
inforcement of carbon nanotori structures to both lubricants, as expected. Moreover, for
SL lubricants (Figure 3a), viscosity is reduced with temperature raise (from 63 mm2/s at
room temperature to 40 mm2/s at 70 ◦C), while a slight increment in viscosity due to the
incorporation of carbon nanotori (<6%) was observed.

Similar to reported research [37,55–58], an incremental viscosity behavior trend is
seen as filler fraction is increased, as well as a decrease in viscosity with temperature
raise. Figure 3b shows the viscosity behavior for DD nanolubricants over the evaluated
temperatures. In this case, due to the initial low viscosity of the DD lubricant, viscosity
increments due to the incorporation of reinforcing nanostructures is minimal, at less
than 4%.

5. Conclusions

Two common lubricants for metal-working and metal-forming processes were in-
vestigated. Carbon nanotori structures (CNst) at diverse concentrations reinforced SL
and DD lubricants. CNst demonstrated good affinity and improved tribological behavior
under EP conditions, providing a sliding-rolling effect that promotes the wear reduction.
Tribological performance was greatly benefited; the load carrying capacity was observed
to be enhanced by 16% and 22% at merely 0.01 wt.% reinforcement and up to 73% and
107% at 0.10 wt.% for SL and DD nanolubricants, respectively, compared to pure lubricants.
Wear scar evaluations were performed; the highest improvement was found at 0.10 wt.%
reinforcement of 16% and 24%, for SL and DD, respectively. This improvement may be
due to diverse mechanisms such as rolling effect and their tribo-sintering behavior (at high
pressures) onto metal surfaces and their spacer effect due to the size and morphology of
nanostructures as well as the interlayer relationship with conventional lubricants. Fur-
ther investigation is needed to fully show these effects. Viscosity behavior was analyzed
by comparing nanolubricants and pure lubricants. The incorporation of nanostructures
slightly increased (<6% at 0.10 wt.%) the viscosity of conventional lubricants, as expected.
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Carbon nanotori as reinforcing material for lubricants in industrial applications such as
in metal-mechanic plastic deformation processes is an emerging alternative. Furthermore,
predictive simulations and methodologies for tribological performance is an opportunity
field in which additional development could be addressed.
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