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Abstract: Rolling bearings are frequently subjected to high stresses within modern machines. To 
prevent bearing failures, the topics of condition monitoring and predictive maintenance have be-
come increasingly relevant. In order to efficiently and reliably maintain rolling bearings in a predic-
tive manner, an estimate of the remaining useful life (RUL) is of great interest. The RUL prediction 
quality achieved when using machine learning depends not only on the selection of the sensor data 
used for condition monitoring, but also on its preprocessing. In particular, the execution of so-called 
feature engineering has a major impact on prediction quality. Therefore, in this paper, various meth-
ods of feature engineering are presented based on rolling–bearing endurance tests and recorded 
structure-borne sound signals. The performance of these methods is evaluated in the context of a 
regression-based RUL model. Furthermore, the way in which the quality of RUL prediction can be 
significantly improved is demonstrated, by adding further processed, time-considering features. 

Keywords: rolling bearings; remaining useful life; machine learning; feature engineering; condition 
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1. Introduction 
Modern machines with rotating components tend to use rolling bearings for their 

bearing arrangements. For reasons of energy efficiency and limited design space, the bear-
ings are laid out as small as possible, which can lead to them being operated at the limits 
of their durability. An unforeseen failure of a bearing can cause considerable damage to 
the entire machine and its environment. Especially in the case of safety-relevant systems, 
an unforeseen failure must be avoided in any case. In order to prevent such unforeseen 
failures, condition monitoring and predictive maintenance are becoming increasingly im-
portant [1]. Condition monitoring involves using suitable sensors to record measurement 
data during operation, which is then processed to draw conclusions about the condition 
of the component [2]. If the condition is judged to be critical in this process, corrective 
actions such as maintenance can be planned. To be able to carry out such planning with 
as little risk as possible, it is essential to estimate the remaining useful life (RUL) of com-
ponents [3]. 

Rolling bearing damage can occur in various ways. The damage can be caused by 
lack of lubrication, short-term overload or material fatigue due to long-term stress. Mate-
rial fatigue usually manifests itself in the form of propagating pitting within the raceway 
surfaces [4]. Recently, for bearing damage detection, traditional condition monitoring 
methods have been increasingly combined with Artificial Intelligence (AI). Machine 
learning (ML), as a subfield of AI, plays an essential role here. ML algorithms can be used 
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to recognize complex structures in data and to evaluate these structures [5]. This offers 
the possibility of automated inference from the data. Applied to the challenge of RUL 
prediction, these are approaches to automatically draw conclusions about the RUL from 
the data measured at the component. Among the machine learning algorithms used for 
RUL predictions there are different variants of neural networks, such as convolutional 
neural networks (CNN) [6], recurrent neural networks (RNN) [7], long short-term 
memory (LSTM) [8], and generative adversarial networks (GAN) [9]. Furthermore, there 
are contributions to state detection using random forest algorithms [10]. Machine learning 
is therefore becoming increasingly relevant, not least in the field of tribology [11]. 

When using machine learning, the achievable prediction quality is highly dependent 
on the type and quality of the data as well as the preprocessing used. Targeted data pre-
processing has a significant impact on both the achievable prediction accuracy and the 
computational speed of the implemented algorithms [12,13]. In the context of rotating ma-
chinery, the measurement of structure-borne sound has proven particularly useful for 
drawing conclusions about the components’ condition [14–16]. Therefore, the present ar-
ticle will also use structure-borne sound measurements to investigate the condition of roll-
ing bearings and to predict their RUL. 

Recent approaches for predictive maintenance based on electrical impedance meas-
urements of rolling bearings can complement or even replace structure-borne sound 
measurements with in situ information [17]. The quality of the underlying model is con-
tinuously increased by considering unloaded rolling elements and modeling the detailed 
rolling contact geometry [18]. ML approaches are used to further enhance the predictive 
capabilities [19]. 

In a previous paper presented by the present authors, the influence of feature engi-
neering on condition monitoring of rolling bearings was shown using a random forest 
regressor [20]. A feature engineering approach is presented in the previous work, which, 
compared to features from Lei et al. [21], achieves particularly good results in struc-
ture-borne sound-based condition detection. Based on these results, the feature-engineer-
ing approach is optimized and extended in this study regarding the prediction of remain-
ing useful life. The aim is to develop a methodology that leads to a RUL prediction model 
with high accuracy and good traceability. Therefore, the investigations are focused on fea-
ture engineering and the consideration of information from the temporal past. In order to 
predict the RUL of rolling bearings, a methodology based on a random forest condition 
regression is presented. 

2. Materials and Methods 
To evaluate the developed feature engineering methods in the context of RUL pre-

dictions, a methodology in which all other model components and their parameters re-
main constant as boundary conditions is used. The approach used for this purpose is il-
lustrated in Figure 1. The individual model parts are described in more detail within the 
subsequent sections. 
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Figure 1. Overview of the methodology used. 

2.1. Experiments 
The investigations are based on structure-borne sound measurement data, which is 

recorded on a rolling bearing test rig. The concept of the FE9 test rig used was originally 
designed for testing rolling bearing greases. An electric motor drives the test head shaft 
via a belt. On one side of the shaft, an ancillary bearing is mounted, which is provided 
with circulating oil lubrication. The grease-lubricated test bearing, the wear of which is to 
be examined, is located on the other side of the shaft. In order to accelerate grease aging 
and thus, its wear, the test bearing is heated. An axial load is applied with the aid of a 
spring preload. The test head of the FE9 test rig can be seen in Figure 2. 

 
Figure 2. Test head of the FE9 test bench, adapted with permission from [22]. 

In the case of the tests evaluated in this work, the test bearings used are of type 
6206-C-C3 (Schaeffler AG, Herzogenaurach, Germany) and lubricated with a low-temper-
ature grease. The grease is used beyond the limits of its specification due to the applied 
thermal load, which is why the operating life is greatly reduced. A constant speed of 
6000 rpm is present at the test head shaft. The axial load is 1500 N and the temperature of 
the heater on the test bearing is set to 140 °C. The sensor used is a three-axis piezo accel-
erometer of type PCB-356A15 (PCB Piezotronics, Depew, NY, USA). The sensor is 
mounted close to the test bearing, as shown in Figure 3. 
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Figure 3. Placement of the accelerometer on the test bench, adapted with permission from ref. [20]. 

For the investigations carried out here, only data from the sensor’s X-axis, which is 
aligned radially to the bearing, is analyzed. The data is acquired at a sampling rate of 
20 kHz. An imc CRONOSflex (imc Test & Measurement GmbH, Berlin, Germany) data 
acquisition system is used in the measuring chain with an 8th order Cauer LP anti-aliasing 
filter having a cut-off frequency of 8 kHz. The amplitude is resolved with 24 bits. The 
measurement data is recorded at intervals of 1 s with intervening pauses of 59 s. A total 
of nine endurance runs are investigated. A threshold value in the power consumption of 
the driving electric motor is defined as a termination criterion for the experiments. This 
leads to test run times ranging from 10 h to 20 h. At the end of the tests, the test bearings 
show very similar damage patterns in the form of pitting. Figure 4 shows an example of 
the inner ring of one bearing after endurance testing. 

 
Figure 4. Pitting on a ball bearing inner ring after its test run, reprinted with permission from ref. 
[20]. 

2.2. Data and Labeling 
The aim of the procedure used here is to directly infer the bearings remaining useful 

life from the trained ML model. Therefore, a supervised learning approach in terms of a 
regression is used. The label must represent the progressive bearing damage. As already 
shown in [20], a label that linearly increases from 0 to 1 is used for this purpose. A similar 
labeling approach has also been presented in [23]. Figure 5 shows the label based on the 
structure-borne sound signals of a single test run. From a mathematical point of view, the 
label can be described as the normalized test run duration. The value 0 represents the 
original condition of the bearing, while 1 indicates the end of its useful life. 
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Figure 5. Measurement and assigned label for an exemplary test run. 

2.3. Feature Engineering 
A wide variety of feature-engineering methods have already been described in the 

literature [13,24]. The focus of the research conducted here is on the comparison of differ-
ent feature-engineering methods that consider the temporal past in the context of feature 
generation. As a basis, the so-called averaged-frequency-band (afb) features are used, 
which have already been shown in [20] to be particularly performant and computationally 
efficient compared to the features proposed by Lei et al. [21]. The studies in [20] were 
based on the same data set also used for the present work. Starting from the afb features, 
additional features are now to be generated, which contain the information of the tem-
poral past. The influence of these processed features on the RUL prediction is to be inves-
tigated. 

2.3.1. Averaged-Frequency-Band Features 
As base features, the so-called averaged-frequency-band features are used, the calcu-

lation method of which is visualized in Figure 6. To calculate the afb features for each 1 s 
measurement interval, the data of the interval is first transformed into the frequency do-
main by means of an FFT. The resulting amplitude spectrum is divided into frequency 
bands of equal width. Finally, the average values of the amplitudes within the formed 
frequency bands are used as features. Thus, an afb feature describes the average value of 
the amplitudes within a frequency band. 
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Figure 6. Determination of the averaged-frequency-band features, adapted with permission from 
ref. [20]. 

Based on preliminary investigations and in order to keep the total number of features 
and thus the model complexity at a moderate level, the number of frequency bands in this 
case is set to 8. 

2.3.2. Rolling Mean Features 
In order to utilize information from the temporal past, rolling means can be used. In 

the case presented here, these rolling means were calculated from the afb features pre-
sented previously. To be able to represent the short-term dynamics as well as the long-
term behavior, several averages are formed over different time spans. Progressively in-
creasing time spans seem to make sense for this use, which was confirmed in preliminary 
studies. The progressive staggering of rolling means is shown in Figure 7 for three rolling 
mean durations using the time course of afb1(8). 

 
Figure 7. Progression of an averaged-frequency-band and three associated rolling means. 

2.3.3. Cumulative Features 
Another way to account for temporal information is to use accumulated quantities. 

Already in [25], the cumulative sum of values was proposed to generate features with 
monotonic behavior. These accumulated features provide long-term trends, which helps 
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the ML algorithm in its decision making. In the case presented here, the afb features are 
used for accumulation. Each afb feature is summed up cumulatively from the beginning 
of the experiment. 

2.4. Machine Learning 
The goal of the machine learning is to approximate an unknown function, which 

maps the input features to the label. Since the label is defined in the form of a continuous 
variable, this is supervised learning in terms of a regression [26]. In the field of machine 
learning, there is a wide variety of regression algorithms [5]. A comprehensive overview 
of the available Deep Learning methods can be found in [27]. In [10], a random forest 
approach has already been used to detect the state of journal bearings. The aim of the 
present work is to show the influence of targeted feature engineering on RUL prediction 
performance. Therefore, traceability shall be as good as possible. For this reason, deep 
learning algorithms are not used here, instead, a random forest regressor is chosen. A 
random forest is an ensemble method based on decision trees [28]. It is considered to be 
very robust and to provide continuously good results compared to other regression algo-
rithms. 

In the workflow used here to investigate feature engineering, the machine learning 
algorithm is considered as a constant boundary condition. Therefore, the parameters of 
the random forest are kept fixed. Based on preliminary studies, the number of trees is set 
to 500, and the maximum tree depth is limited to 20. The models used in this work are 
implemented in Python using the numpy, pandas, scipy, and matplotlib libraries. Addi-
tionally, the library Scikit-learn is used for the implementation of the random forest and 
metrics for result evaluation. 

To evaluate the models built with the different feature engineering methods, a 9-fold 
cross-validation is used. Out of the total nine endurance test runs available, eight endur-
ance tests are used for training. The remaining test run is used for the test data set, which 
means that the test data is always completely separated from the training data. This is 
repeated a total of nine times so that the data from each test is used as independent test 
data once. 

The quality of the prediction is evaluated using metrics. For this purpose, the MAE 
and the R2 are chosen. The MAE (Mean Absolute Error) provides a directly interpretable 
result of the regression quality in the context of the label used here. For example, an MAE 
of 0.05 means that the prediction of the current bearing condition is on average 5 % from 
the true value. Consequently, the MAE tends to 0 in case of a perfect model. In addition, 
the R2, which is called the coefficient of determination, provides a general measure of the 
quality of a regression. It tends towards a maximum value of 1 for optimal predictions. 
The smaller the value, the worse the prediction [29]. For the overall evaluation in the re-
sults section below, the average value of the nine metrics calculated during cross-valida-
tion is considered. This ensures an evaluation of the model quality based on the entire 
data set. 

2.5. RUL Prediction 
To infer the predicted remaining useful life 𝑅𝑈𝐿୮୰ୣୢ based on the predictions of the 

label within the regression, the following equation is used: 𝑅𝑈𝐿୮୰ୣୢ = ௧௬౦౨౛ౚ ∙ (1 − 𝑦୮୰ୣୢ)  (1)

Here, 𝑡 is the current operating time and 𝑦୮୰ୣୢ  is the label predicted at the corre-
sponding time. The described mathematical relationship results from the background of 
the selected label, which corresponds to the normalized test-run time. At the beginning of 
the measurement, where the predicted label 𝑦୮୰ୣୢ is close to zero, RUL prediction is not 
practical due to large inaccuracies, which can be directly justified by equation (1). Divid-
ing by small 𝑦୮୰ୣୢ then leads to very large fluctuations in the RUL prediction, caused by 
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only slight variations in the predicted label. For this reason, RUL prediction is evaluated 
exclusively for the second half of the test runs. The result evaluation by means of the RUL-
based MAE is also performed exclusively on the second half of the test runs. 

In order to compare the predicted with the true remaining useful life 𝑅𝑈𝐿୲୰୳ୣ, the 
latter must also be calculated. This is performed using the total operating time until bear-
ing failure 𝑇 and the true label at the respective time 𝑦୲୰୳ୣ: 𝑅𝑈𝐿୲୰୳ୣ = 𝑇 ∙ (1 − 𝑦୲୰୳ୣ)  (2)

3. Results 
The previously presented feature engineering approaches are now compared to each 

other. In detail, the three approaches listed in Table 1 are considered. 

Table 1. Feature engineering approaches used. 

Abbreviation Description No. of Features 

afb(8) Averaged-frequency-band features using 
8 frequency bands 

8 

rollingmeans(10, 80, 600) 
Time domain rolling means calculated 

based on the afb(8) with window sizes of 
10, 80 and 600 min 

24 

cumsum Cumulative sum of the afb(8) 8 

The first feature set is denoted as afb(8). No temporal past information is used with 
this feature set. It therefore serves as a reference. For the second feature set, the afb(8) 
approach is combined with the rollingmeans(10, 80, 600) approach. The third feature set 
is a combination of the reference features afb(8) and the cumsum approach. 

To compare the three feature sets mentioned above, the workflow shown in Figure 1 
is used, keeping the boundary conditions constant. The resulting regression and RUL pre-
dictions are shown in Figure 8 using a single test data set. While the plots on the left show 
the regression results of the trained machine learning algorithm, the plots on the right 
visualize the RUL prediction derived from it. The metrics MAE and R2 of the visualized 
results are entered within Figure 8. 
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Figure 8. Results of regression (a,c,e) and RUL prediction (b,d,f) visualized based on the cross-
validation run of test bearing No. 1 for the three different feature sets. 
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The prediction scatters strongly when using only afb(8) features, see Figure 8a. Sev-
eral states can be identified in the predicted label, between which the prediction changes 
quite abruptly. In the case of an ideal prediction, all prediction points (blue) would be 
exactly on top of the reference line. Thus, the vertical deviation of the predictions from the 
reference line visualizes how inaccurate the prediction is. The same applies to the map-
ping of the RUL. Here, with optimal prediction, the test data points would align with the 
orange line, representing the true RUL. The corresponding RUL prediction using the 
afb(8) features is very inaccurate due to the large prediction spread of the regression re-
sults and poorly represents the true RUL, as can be seen in Figure 8b. A significant im-
provement in prediction quality is achieved by adding the rolling-means, as shown in 
Figure 8c,d. On average, the forecast shows similar trends, but is much less scattered. This 
is evident not only in the predicted label, but also within the resulting RUL prediction. 
Further improvement of the results is achieved with the combination of the afb(8) and 
cumsum features, which is visualized in Figure 8e,f. The steps visible with the other two 
feature sets disappear almost completely here. These improvements of the results can be 
determined not only visually, but also based on the metrics calculated. Smaller MAEs and 
larger R2s represent the prediction improvements. 

Since Figure 8 only illustrates one of the total of nine cross-validation runs, the overall 
cross-validation results are summarized in Table 2. For this purpose, the average of the 
regression MAE and the regression R2 calculated via cross-validation are entered. Addi-
tionally, the averaged MAE of the RUL prediction as well as the relative deviation of the 
MAE with respect to the test run times are evaluated in the last two rows. 

Table 2. Results of cross-validated regression and RUL prediction. 

Cross-validated met-
rics of regression 

afb(8) afb(8) + rolling-
means(10, 80, 600) 

afb(8) + cumsum 

∅ MAE of regression 0.0892 0.0753 0.0506 
∅ R2 of regression 0.841 0.875 0.95 

Test bear-
ing No. 

Experi-
ment 

runtime in 
min 

MAE of RUL prediction in min 

afb(8) afb(8) + rolling-
means(10, 80, 600) afb(8) + cumsum 

1 927 100.7 62.4 52.1 
2 1073 197.6 75.7 86.5 
3 808 91.1 68.1 47.8 
4 824 155.3 224.1 107.6 
5 1011 123 94.9 48.2 
6 882 73.5 70.9 48.7 
7 1191 146.7 79 117.9 
8 746 92.4 47.3 60 
9 668 132.9 154.5 133.8 
∅ 903.3 123.7 97.4 78.1 

∅ relative error of 
RUL prediction 13.8 % 11.4 % 8.9 % 

Looking at the averaged metrics from cross-validation, the results already obtained 
in Figure 8 are supported. Adding the rolling mean features to the afb(8) yields a signifi-
cant improvement, with the cumulative features performing even better compared to the 
rolling mean features. In the MAE of the individual test bearings’ RUL, it is noticeable that 
this sequence of model performance does not apply quantitatively in the same way for 
each test bearing. Consequently, there is a non-negligible dispersion of the individual test 



Lubricants 2022, 10, 48 11 of 13 
 

 

data sets. A possible explanation for this dispersion is the different physical wear behavior 
of the various bearing endurance test runs used. 

4. Discussion 
Based on the experimental data used, the results presented show that a clear im-

provement in RUL prediction is possible with the help of temporal information, imple-
mented by means of time-considering features. By using a well-defined workflow where 
only the feature sets are changed, the impact of the different features on the RUL predic-
tion performance is evaluated. For the RUL prediction, a random forest regression ap-
proach is used. Comparing the two presented ways of incorporating temporal past infor-
mation in the form of extended feature sets, the approach of cumulatively generated fea-
tures performs particularly well. By using this extended feature set, the averaged MAE of 
RUL predictions can be reduced by 37 % in comparison to the use of base features only. 
Calculating rolling means with progressively staggered window widths also adds value 
in terms of predictive accuracy, although the results are slightly worse than those obtained 
with the cumulative approach. In the case presented here, the base features are formed 
from the so-called averaged-frequency-bands, which have already been shown to perform 
particularly well on the data used in [20]. The authors assume that the methodology pre-
sented here will lead to improved RUL predictions for other base features in an analogous 
manner. A validation of this hypothesis is still pending at this point. 

It should be noted that the evaluations carried out here are based on test data ob-
tained on a rolling bearing test rig under constant operating conditions. Limitations are to 
be expected when implementing the methodology proposed here in a real application, 
with varying boundary conditions such as speeds, loads or temperatures. In particular, 
the formation of accumulated features could be error-prone, since each individual point 
in time has an influence on the entirety of the following time span. Thus, continuous and 
reliable measurement data acquisition is indispensable for the correct determination of 
accumulatively formed features. 

Future work can investigate further approaches of feature engineering and the pos-
sibilities of considering temporal information. The implementation of further RUL predic-
tion methods and the possibilities of deep learning algorithms have been omitted here in 
order to focus on the integration of temporal information via extended feature engineer-
ing approaches. For comparison purposes, it seems reasonable to also consider deep learn-
ing methods, such as CNNs, RNNs or LSTMs, which natively offer the possibility to take 
temporal information into account. However, with these methods, the comprehensibility 
of decision making is lost. Furthermore, with regard to hybrid models, it seems promising 
to motivate the development of novel features by physical backgrounds. The investiga-
tions should also be extended to additional data that are recorded at non-constant bearing 
operating conditions. In order to achieve satisfactory RUL prediction results even at non-
constant operating conditions, the methods may have to be extended. 
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