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Abstract: In recent years, an increasing number of machine learning applications in tribology and
coating design have been reported. Motivated by this, this contribution highlights the use of
Gaussian processes for the prediction of the resulting coating characteristics to enhance the design
of amorphous carbon coatings. In this regard, by using Gaussian process regression (GPR) models,
a visualization of the process map of available coating design is created. The training of the GPR
models is based on the experimental results of a centrally composed full factorial 2% experimental
design for the deposition of a-C:H coatings on medical UHMWPE. In addition, different supervised
machine learning (ML) models, such as Polynomial Regression (PR), Support Vector Machines
(SVM) and Neural Networks (NN) are trained. All models are then used to predict the resulting
indentation hardness of a complete statistical experimental design using the Box-Behnken design.
The results are finally compared, with the GPR being of superior performance. The performance of
the overall approach, in terms of quality and quantity of predictions as well as in terms of usage in
visualization, is demonstrated using an initial dataset of 10 characterized amorphous carbon
coatings on UHMWPE.

Keywords: machine learning; amorphous carbon coatings; UHWMPE; total knee replacement;
Gaussian processes

1. Introduction

Machine Learning (ML) as a subfield of artificial intelligence (AI) has become an
integral part of many areas of public life and research in recent years. ML is used to create
learning systems that are considerably more powerful than rule-based algorithms and are
thus predestined for problems with unclear solution strategies and a high number of
variants. ML algorithms are used from product development and production [1] to
patient diagnosis and therapy [2]. ML algorithms are also playing an increasingly
important role in the field of medical technology, for example, in coatings for joint
replacements.

Particularly in coating technology and design, the use of ML algorithms enables the
identification of complex relationships between several deposition process parameters on
the process itself as well as on the properties of the resulting coatings [3,4]. From this view
on the complex relationships between the deposition process parameters, coating
designers can base their experiments and obtain valuable insights on their coating designs
and the necessary parameter settings for coating deposition.

This contribution looks into the application of a possible ML algorithm in the coating
design of amorphous carbon coatings. It first provides an overview of the necessary
experimental setup for data generation and the concept of machine learning and its
algorithms. Likewise, the deposition of amorphous carbon coatings and their properties
are presented. Subsequently, the capabilities of the selected supervised ML algorithms:
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Polynomial Regression (PR), Support Vector Machines (SVM), Neural Networks (NN),
Gaussian Process Regression (GPR) are explained and the resulting data visualization is
shown. Afterwards, the obtained results are discussed, with the GPR being the superior
prediction model. Finally, the main findings are summarized and an outlook is given as
well as further potentials and applications are identified.

2. Related Work and Main Research Questions
2.1. Amorphous Carbon Coating Design

An example of a complex process is the coating of metal and plastic parts, as used for
joint replacements, with amorphous carbon coatings [5]. In the field of machine elements
[6,7], engine components [8,9] and tools [10,11], amorphous carbon coatings are
commonly used. In contrast, amorphous carbon coatings are rarely used for load-bearing,
tribologically stressed implants [12,13]. The coating of engine and machine elements has
so far been used with the primary aim of reducing friction, whereas the coating of forming
tools has been used to adjust friction while increasing the service life of the tools.
Therefore, the application of tribologically effective coating systems on the articulating
implant surfaces is a promising approach to reduce wear and friction [14-16].

The coating process depends on many different coating process parameters, such as
the bias voltage [17], the target power [18], the gas flow [19] or the temperature, which
influence the chemical and mechanical properties as well as the tribological behavior of
the resulting coatings [20]. Therefore, it is vital to ensure both the required coating
properties and a robust and reproducible coating process to meet the high requirements
for medical devices. Compared to experience-based parameter settings, which are often
based on trial-and-error, ML algorithms provide clearer and more structured correlations.

However, several experimental investigations focus on improving the tribological
effectiveness of joint replacements [21-23] and lubrication conditions in prostheses [24—
26], some experimental investigations are complemented with computer-aided or
computational methods to improve the prediction and findings [27-29]. Nevertheless, the
exact interactions of coating process parameters and resulting properties are mostly
qualitative and only valid for certain coating plants and in certain parameter ranges.

2.2. Coating Process and Design Parameters

The use of ML algorithms is a promising approach [30] to not only qualitatively
describe such interactions, which have to be determined in elaborate experiments, but also
to quantify them [21]. Using ML, the aim is to generate reproducible, robust coating
processes with appropriate, required coating properties. For this purpose, the main
coating properties, such as coating thickness, roughness, adhesion, hardness and
indentation modulus, of the coating parameter variations have to be analyzed and trained
with suitable ML algorithms [31].

Within this contribution, the indentation modulus and the coating hardness are
examined in more detail, since these parameters can be determined and reproduced with
high accuracy and have a relatively high predictive value for the subsequent tribological
behavior, such as the resistance to abrasive wear [32,33].

2.3. Research Questions

Resulting from the above-mentioned considerations it was found that existing
solutions are solely based on a trial-and-error approach. ML was not considered in the
specific coating design in joint replacements. So, in brief, this contribution wants to answer
the following central questions. The first one is can ML algorithms predict resulting
properties in amorphous carbon coatings? Based on this, the second one is how good is
the resulting prediction of resulting properties in terms of quality and quantity? And
lastly, can ML support in visualizing the coating properties results and the coating
deposition parameters leading to those results? When ML can be used in these cases, the
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main advantages would be a more efficient approach to coating design with fewer to none
trial-and-error steps and, lastly, the co-design of coating experts and ML. The following
sections are to present the materials and methods used in trying to answer the stated
research questions and provide an outlook on what would be possible via ML.

3. Materials and Methods

First, the studied materials and methods will be described briefly. In this context, the
application of the amorphous carbon coating to the materials used (UHMWPE) as well as
the setup and procedure of the experimental tests to determine the mechanical properties
(hardness and elasticity) are described. Secondly, the pipeline for ML and the used meth-
ods are explained. Finally, the programming language Python and the deployed toolkits
are described.

3.1. Experimental Setup
3.1.1. Materials

The investigated substrate was medical UHMWPE [34] (Chirulen® GUR 1020,
Mitsubishi Chemical Advanced Materials, Vreden, Germany). The specimens to be coated
were flat disks, which have been used for mechanical characterization (see [35]). The
UHMWPE disks had a diameter of 45 mm and a height of 8 mm. Before coating, the spec-
imens were mirror-polished in a multistage polishing process (Saphir 550-Rubin 520,
ATM Qness, Mammelzen, Germany) and cleaned with ultrasound (Sonorex Super RK 255
H 160 W 35 Hz, Bandelin electronic, Berlin, Germany) in isopropyl alcohol.

3.1.2. Coating Deposition

Monolayer a-C:H coatings were prepared on UHMWPE under two-fold rotation us-
ing an industrial-scale coating equipment (TT 300 K4, H-O-T Harte- und Oberflachentech-
nik, Nuremberg, Germany) for physical vapor deposition and plasma-enhanced chemical
vapor deposition (PVD/PECVD). The recipient was evacuated to a base pressure of at least
5.0 x 10 Pa before actual deposition. The recipient was not preheated before deposition
on UHMWEPE to avoid the deposition-related heat flux into UHMWPE. The specimens
were then cleaned and activated for 2 min in an argon (Ar, purity 99.999%)*ion plasma
with a bipolar pulsed bias of =350 V and an Ar flow of 450 sccm. The deposition time of
290 min was set to achieve a resulting a-C:H coating thickness of approximately 1.5 to 2.0
um. Using reactive PVD, the a-C:H coating was deposited by medium frequency (MF)-
unbalanced magnetron (UBM) sputtering of a graphite (C, purity 99.998%) target under
Ar—ethyne (C2Hz) atmosphere (C2Hy, purity 99.5%). During this process, the cathode (di-
mensions 170 x 267.5 mm) was operated with bipolar pulsed voltages. The negative pulse
amplitudes correspond to the voltage setpoints, whereas the positive pulses were repre-
sented by 15% of the voltage setpoints. The pulse frequency f of 75 kHz was set with a
reverse recovery time RRT of 3 us. A negative direct current (DC) bias voltage was used
for all deposition processes. The process temperature was kept below 65 °C during the
deposition of a-C:H functional coatings on UHMWPE. In Table 1, the main, varied
deposition process parameters are summarized. Besides the reference coating (Ref), the
different coating variations (C1 to C9) of a centrally composed full factorial 23 experi-
mental design are presented in randomized run order. In this context, the deposition pro-
cess parameters shown here for the generation of different coatings represent the basis for
the machine learning process.
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Table 1. Summary of the main deposition process parameters for a-C:H on UHMWPE.
Desienation  Coatin Sputtering Bias Combined Ar and

8 8 Power/kW Voltage/V C:H: Flow/sccm
Ref 0.6 -130 187

C1 0.6 -90 187

C2 2.0 -170 91

C3 1.3 -130 133

C4 2.0 -90 187

-C:H

cs5 a-C 0.6 170 91

Cé6 2.0 -170 187

Cc7 0.6 -170 187

C8 0.6 -90 91

9 2.0 -90 91

3.1.3. Mechanical Characterization

According to [36,37], the indentation modulus Eir and the indentation hardness Hir
were determined by nanoindentation with Vickers tips (Picodentor HM500 and WinHCU,
Helmut Fischer, Sindelfingen, Germany). For minimizing substrate influences, care was
taken to ensure that the maximum indentation depth was considerably less than 10% of
the coating thicknesses [38,39]. Considering the surface roughness, lower forces also
proved suitable to obtain reproducible results. Appropriate distances of more than 40 um
were maintained between individual indentations. For statistical reasons, 10 indentations
per specimen were performed and evaluated. A value for Poisson’s ratio typical for amor-
phous carbon coatings was assumed to determine the elastic—plastic parameters [40,41].
The corresponding settings and parameters are shown in Table 2. In section 3, the results
of nanoindentation are presented and discussed.

Table 2. Settings for determining the indentation modulus Err and the indentation hardness Hir.

Parameters Settings for a-C:H Coatings
Maximum load/mN 0.05
Application time/s 3
Delay time after lowering/s 30
Poisson’s ratio v 0.3

3.2. Machine Learning and Used Models
3.2.1. Supervised Learning

The goal of machine learning is to derive relationships, patterns and regularities from
data sets [42]. These relationships can then be applied to new, unknown data and prob-
lems to make predictions. ML algorithms can be divided into three subclasses: supervised,
unsupervised and reinforced learning. In the following, only the class of supervised learn-
ing will be discussed in more detail, since algorithms from this subcategory were used in
this paper, namely Gaussian process regression (GPR). Supervised ML was used because
of the available labelled data.

In supervised learning, the system is fed classified training examples. In this data, the
input values are already associated with known output data values. This can be done, for
example, by an already performed series of measurements with certain input parameters
(input) and the respective measured values (output). The goal of supervised learning is to
train the model or the algorithms using the known data in such a way that statements and
predictions can also be made about unknown test data [42]. Due to the already classified
data, supervised learning represents the safest form of machine learning and is therefore
very well suited for optimization tasks [42].
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In the field of supervised learning, one can distinguish between the two problem
types of classification and regression. In a classification problem, the algorithm must di-
vide the data into discrete classes or categories. In contrast, in a regression problem, the
model is to estimate the parameters of pre-defined functional relationships between mul-
tiple features in the data sets [42,43].

A fundamental danger with supervised learning methods is that the model learns the
training data by role and thus learns the pure data points rather than the correlations in
data. As a result, the model can no longer react adequately to new, unknown data values.
This phenomenon is called overfitting and must be avoided by choosing appropriate
training parameters [31]. In the following, basic algorithms of supervised learning are pre-
sented, ranging from PR and SVM to NN and GPR.

3.2.2. Polynomial Regression

At first, we want to introduce polynomial regression (PR) for supervised learning.
PR is a special case of linear regression and tries to predict data with a polynomial regres-
sion curve. The parameters of the model are often fitted using a least square estimator and
the overall approach is applied to various problems, especially in the engineering domain.
A basic PR model can lead to the following equation [44]:

Y, =Byt Byxin + By xip to P Xt fori=1,2,...,n (1)

with B being the regression parameters and e being the error values. The prediction
targets are formulated as y, and the features used for prediction are described as x;. A
more sophisticated technique based on regression models are support vector machines,
which are described in the next section.

3.2.3. Support Vector Machines

Originally, support vector machines (SVM) are a model commonly used for classifi-
cation tasks, but the ideas of SVM can be extended to regression as well. SVM try to find
higher order planes within the parameter space to describe the underlying data [45].
Thereby, SVM are very effective in higher dimensional spaces and make use of kernel
functions for prediction. SVM are widely used and can be applied to a variety of problems.
In this regard, SVM can also be applied nonlinear problems. For a more detailed theoret-
ical insight, we refer to [45].

3.2.4. Neural Networks

Another supervised ML technique is neural networks (NN), which rely on the con-
cept of the human brain to build interconnected multilayer perceptrons (MLP) capable of
predicting arbitrary feature-target correlations. The basic building block of such MLP are
neurons based on activation functions which allow the neuron to fire when different
threshold values are reached [46]. When training a NN, the connections and the parame-
ters of those activation functions are optimized to minimize training errors; this process
is called backpropagation [31].

3.2.5. Gaussian Process Regression

The Gaussian processes are supervised generic learning methods, which were devel-
oped to solve regression and classification problems [43]. While classical regression algo-
rithms apply a polynomial with a given degree or special models like the ones mentioned
above, GPR uses input data more subtly [47]. Here, the Gaussian process theoretically
generates an infinite number of approximation curves to approximate the training data
points as accurately as possible. These curves are assigned probabilities and Gaussian nor-
mal distributions, respectively. Finally, the curve which fits its probability distribution
best to that of the training data is selected. In this way, the input data gain significantly
more influence on the model, since in the GPR altogether fewer parameters are fixed in
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advance than in the classical regression algorithms [47]. However, the behavior of the dif-
ferent GPR models can be defined via kernels. This can be used, for example, to influence
how the model should handle outliers and how finely the data should be approximated.

In Figure 1, two different GPR models have been used to approximate a sinusoid.
The input data points are sinusoidal but contain some outliers. The model with the
lightblue approximation curve has an additional kernel extension for noise suppression
compared to the darkblue model. Therefore, the lightblue model is less sensitive to outli-
ers and has a smoother approximation curve. This is also the main advantage when using
GPR compared to other regression models like linear or polynomial regression. GPR are
more robust to outliers or messy data and are also relatively stable on small datasets [47]
like the one used for this contribution. That is why they were mainly selected for the later-
described use case.
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Figure 1. Gaussian process regression for the regression of a sinusoid.

3.2.6. Python

The Python programming language was chosen for the present work, as it is the de-
facto standard language for ML and Data Science. This programming environment is par-
ticularly suitable in the field of machine learning, as it allows the easy integration of ex-
ternal libraries. In order to use machine learning algorithms in practice, many libraries
and environments have been developed in the meantime. One of them is the open-source
Python library scikit-learn [48]. For the above-described methods, the following scikit-
learn libraries were used: the scikit-learn module Polynomial Features for the modeling
of the PR models, which was combined with the Linear Regression module to facilitate a
PR model for prediction of coating parameters. For modeling via SVM, the SVR or support
vector regressor module of scikit-learn was used. The NN were modeled via the MLP
Regressor module and lastly the GPR were implemented using the Gaussian Process Re-
gressor module of scikit-learn. All models were trained using the standard parameters,
and only for the GPR model was the kernel function smoothed via adding some white
noise; this was necessary because the GPR of scikit-learn has no real standard parameters.

4. Use Case with Practical Example in a-C:H Coating Design
4.1. Data Generation

The average indentation modulus and indentation hardness values are presented in
Figure 2 Obviously, elasticity and hardness differed significantly between the various
coated groups. A considerable influence of the sputtering power on the achieved Err and
Hir values was revealed. For example, C2, C4, C6 and C9, which were produced with a
sputtering power of 2.0 kW, had indentation modulus between 13.3 and 16.4 GPa and
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indentation hardness between 3.7 and 5.1 GPa. In contrast, specimens Ref, C1, C5, C7 and
C8 exhibited significantly lower Err and Hir values, ranging from 3.6 to 4.9 GPa and 1.2 to
1.5 GPa, respectively. Compared to the latter, the central point represented by C3 did not
indicate significantly higher elastic—plastic values. The variation of the bias voltage or the
combined gas flow did not allow us to derive a distinct trend, especially concerning the
standard deviation. In general, increased sputtering power could increase Eir and Hir by
more than a factor of three. Accordingly, the higher coating hardness is expected to shield
the substrates from adhesive and abrasive wear and also to shift the cracking towards
higher stresses [28,35]. At the same time, the relatively lower indentation modulus leads
to an increased ability of the coatings to sag without flowing [33]. As a result, the pressures
induced by tribological loading may be reduced by increasing the contact dimensions [49].
Thus, it can be considered that the developed a-C:H coatings enable a very advantageous
wear behavior [28,50].
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Figure 2. Averaged values of indentation modulus Err and indentation hardness Hir and standard
deviation of the different a-C:H coatings (1 = 10).

4.2. Data Processing
4.2.1. Reading in and Preparing Data

After the coating characterization, the measured values were available in a standard-
ized Excel dataset, which contains the plant parameters and the resulting coating charac-
teristics for each sample. It could also be possible that the relevant measurements are al-
ready in a machine-readable format, for example the tribAln ontology [51], but for our
case we focused on the data handling via Excel and Python. To facilitate the import of the
data into Python, the dataset had to be modified in such a way that a column-by-column
import of the data was possible. Afterwards, the dataset needed to be imported into our
Python program via the pandas library [52]. To facilitate further data processing, the plant
parameters sputtering power, bias voltage and combined Ar and C:Hz were combined in
an array of features and the coating characteristic such as the indentation hardness as a
target for prediction.

4.2.2. Model Instantiation

The class Gaussian Process Regressor (GPR) of the scikit-learn package class allows
the implementation of Gaussian process models. For the instantiation in particular, a def-
inition of a kernel was needed. This kernel is also called covariance function in connection
with Gaussian processes and influences the probability distributions of the Gaussian pro-
cesses decisively. The main task of the kernel is to calculate the covariance of the Gaussian
process between the individual data points. Two GPR objects were instantiated with two
different kernels. The first one was created with a standard kernel and the second one was
additionally linked with a white noise kernel. During the later model training, the hy-
perparameters of the kernel were optimized. Due to possibly occurring local maxima, the
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passing parameter n_restarts_optimizer can be used to determine how often this optimi-
zation process should be run. In the case of GPR, a standardization of the data was carried
out. This standardization was achieved by scaling the data mean to 0 and the standard
deviation to 1.

4.2.3. Training the Model

As described before, one of the main tasks of machine learning algorithms was the
training of the model. The scikit-learn environment offers the function fit(X,y), with the
input variables X and y. Here, X was the feature vector, which contains the feature data of
the test data set (the control variables of the coating plant). The variable y was defined as
the target vector and contains the target data of the test data set (the characteristic values
of the coating characterization). By calling the method reg_model fit(X,y) with the availa-
ble data and the selected regression model (GPR, in general reg_model) the model was
trained and fitted on the available data.

Particularly with small datasets, there was the problem that the dataset shrank even fur-
ther when the data was divided into training and test data. For this reason, the k-fold cross-
validation approach could be used [31]. Here, the training data set was split into k smaller sets,
with one set being retained as a test data set per training run. In the following runs, the set
distributions change. This approach can be used to obtain more training datasets despite small
datasets, thus significantly improving the training performance of the model.

4.2.4. Model Predictions

After the models were trained on the available data, the models can compute or pre-
dict corresponding target values for the feature variables that were previously unknown
to the model. Unknown feature values are equally distributed data points from a specified
interval as well as the features of a test data set. For the former, the minima and maxima
of the feature values of the training data set were extracted. Afterwards, equally distrib-
uted data points were generated for each feature in this min-max interval.

For predicting the targets, the scikit-learn library provides the method predict(x),
where the feature variables are passed as a vector x to the function. Calling the method
reg_model.predict(x) then returns the corresponding predicted target values. The predic-
tions for the test data were further evaluated in terms of the root mean squared error, the
mean absolute error and the coefficient of prognosis (CoP) [53] and showed good quality,
especially for the GPR model (see Table 3).

Table 3. Prediction quality of the models based on the initial dataset.

Root Mean Mean Absolute  Coefficient of
Model .
Squared Error Error Prognosis
Gaussian Process Regressor 540 GPa 474 GPa 91%
Polynomial Regression 699 GPa 653 GPa 45%
Support Vector Machine 955 GPa 677 GPa 29%
Neural Network 3405 GPa 3307 GPa 16%

From Table 3, it follows that the GPR model is the most suitable model for further
evaluation in our test case since it shows the highest coefficient of prognosis. Therefore,
we selected the GPR model for the demonstration and visualization of our use case.

4.2.5. Visualization

The Python library matplotlib was used to visualize the data in Python. This allowed
an uncomplicated presentation of numerical data in 2D or 3D. Since the feature vector
contained three variables (sputter power P sputter, gas flow ¢ and bias voltage Ubis), a
three-dimensional presentation of the feature space was particularly suitable. Here, the
three variables were plotted on the x-, y- and z-axis and the measurement points were
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placed in this coordinate system. For the presentation of the corresponding numerical tar-
get value, color-coding serves as the fourth dimension. The target value of the measuring
point could then be inferred from a color bar.

This presentation was especially suitable for small data sets, e.g., to get an overview
of the actual position of the training data points. For large data sets with several thousand
data points, a pure 3D visualization is too confusing, since measurement points inside the
feature space were no longer visible. For this reason, a different visualization method was
used to display the results of ML prediction of uniformly distributed data.

This visualization method is based on the visualization of computer tomography
(CT) data set using a slice-based data view. Here, the 3D images of the body are skipped
through layer-by-layer to gain insights into the interior of the workings level-by-level.
Similar to this principle, the feature space was also traversed layer-by-layer.

Two feature variables span a 2D coordinate system. The measured values were again
colored and displayed in the x-y plane analogous to the 3D display.

The third feature vector served as a run variable in the z-axis, i.e., into the plane.
Employing a slider, the z-axis can be traversed, and the view of the feature space was then
obtained layer-by-layer.

5. Results and Discussion
5.1. Gaussian Process Regression and Visualization

For the above-described initial dataset created from a design of experiments approach,
different GPR models were trained. Before training the different models, the dataset was
scaled to only contain values between 0 and 1. This was especially useful for GPR, to reduce
training effort and stabilize the optimization of the model parameters. The main difference
between the different GPR models was the used kernel function for the gaussian processes.
The used GPR supports a variety of different kernel functions which were optimized during
the training of the GPR model. It was found that with a dot product kernel with some addi-
tional white noise the prediction capabilities of the model were enhanced to reach a mean
absolute error of around 440 GPa. Moreover, the root mean squared error was around 387
GPa. This results in an CoP of around 90%, which means that the prediction quality and quan-
tity is acceptable to classify this model for a prediction model. For model training, a train-test-
split of 80-20% was used and the training data was shuffled before training. The overall pre-
diction quality is a notable finding since the dataset used for training is relatively small. Here
also GPR with little white noise show their strengths on sparse datasets. However, model per-
formance can further benefit from more data. This prediction model is also capable of visual-
izing the prediction space, see Figure 3.
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Figure 3. Predicted space in a 20-color colormap for better differentiation between the different areas
of resulting hardness for minimum combined gas flow.
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The striped pattern emerges from the usage of a 20-color-based colormap for draw-
ing. This is done to further show the different sections of the predicted data. The whole
plot can be viewed as a process map. In order to find the ideal coating properties, the
tribology experts need to look for their color in indentation hardness and then easily see
the bias voltage and sputtering power needed. For tuning purposes, the gas flow can be
changed via the slider at the bottom. The plot for the maximum combined gas flow is
depicted in Figure 4.
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Figure 4. Predicted space for maximum combined gas flow.

The space for lower indentation hardness is getting bigger and the highest indenta-
tion hardness of around 4.2 GPa vanished. This correlates with the experience made from
initial experimental studies. It was expected that the gas flow —especially the C2H: gas
flow [15]—influenced the hydrogen content and thus the mechanical properties and fur-
ther affected the tribologically effective behavior. Based on these visualizations, it can be
easily seen which parameters lead to the desired indentation hardness. This visualization
technique benefits the process of where to look for promising parameter sets for ideal
indentation hardness.

For validation of our model, we performed another experimental design study based
on a Box-Behnken design with 3 factors and two stages (see Table 4). Initially, the inden-
tation hardness was predicted using our GPR model. Subsequently, the GPR model was
evaluated —after coating the specimens—by determining the indentation hardness exper-
imentally. For illustrative purposes, the prediction of the central point, which was depos-
ited at a sputtering power of 3 kW, a bias voltage of 200 V, and a combined gas flow of
108 sccm, is shown in Figure 5. In this context, it should be noted that the prediction space
included a significant extension of the training space and thus could be influenced by
many factors.
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Figure 5. Predicted extended space for probe points.

Table 4. Summary of main deposition process parameters and predictions for a-C:H on UHMWPE,
prediction of Hir by the GPR model as well as experimental determination of Hir based on the aver-
age values and standard deviations of the different a-C:H coatings (1 = 10).

Designation Coating Sputtering Bias Combined Ar and GPR Model Pre- E)g::elrnx:::;ly
Power/kW Voltage/V C:H: Flow/Scem  diction of Hii/GPa
Hir/GPa
P1 2 -230 108 3397 3040 +223
P2 2 -170 108 3355 2441 + 537
P3 2 -200 125 3363 3069 + 401
P4 2 -200 91 3389 2965 + 328
P5.1 3 -200 108 4576 4699 + 557
P5.2 3 -200 108 4576 4577 +731
P5.3 3 -200 108 4576 4837 + 634
pPé6 a-C:H 3 -170 125 4542 4180 + 399
p7 3 -170 91 4568 4256 + 622
P8 3 -230 125 4584 4627 + 1055
P9 3 -230 91 4610 4415 + 675
P10 4 -170 108 5755 5081 + 1361
P11 4 -200 91 5789 5476 + 1637
P12 4 -230 108 5797 4313 + 1513
P13 4 -200 125 5763 6224 +1159

As shown in Figure 5 and Table 4, the Hir values of the previously performed predic-
tion of the GPR model largely coincided with the experimentally determined Hir values.
Especially with regard to the standard deviation of the experimentally determined Hir
values, all values were in a well-usable range for further usage and processing of the data.
Despite a similar training space, the prediction for the coating variations P1-P4 showed a
slightly lower accuracy than for the coating variations beyond the training space, but this
could be attributed to the difficulty of determining the substrate-corrected coating hard-
ness. Thus, during the indentation tests, the distinct influence of the softer UHMWPE sub-
strate [54,55] was more pronounced for the softer coatings (P1-P4), which were coated
with lower target power than for the harder coatings (P5-P13). However, the standard
deviation of the hardness values increased with hardness, which could be attributed to
increasing coating defects locations and roughness. In brief, the predictions match with
the implicit knowledge of the coating experts. This is the only physical conceivable con-
ceptual model that can be considered when looking at the results presented, as the coating
deposition is a complex and multi-scale process.
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Though the visualization of the prediction space in Figure 5 differed slightly from
the prediction spaces in Figure 3 and in Figure 4 due to steeper dividing lines, the predic-
tion space in Figure 5 spanned larger coating process parameter dimensions.

Generally, the prediction quality and especially the quantity of the model was very
good, so the model can be used for further coating development processes and adjust-
ments of the corresponding coating process parameters. An extension of the GPR model
to other coating types, such as ceramic coatings, e.g., CrN, or solid lubricants, e.g., MoSz,
or different coating systems on various substrates is conceivable.

5.2. Comparison to Polynomial Regression, Support Vector Machines and Neural Network
Models

For the purpose of comparing our results and trained models with the other models
described previously, Table 5 shows the different predictions generated by the models for
the previously unknown dataset in our test study.

Table 5. Comparison of the predictions of the different models used in this contribution.

Designation Experimentally De- GPR Model Predic- PR Model Predic- SVM Model Pre- NN Model Predic-
termined Hir/GPa  tion of Hir/GPa tion of Hit/GPa diction of Hir/GPa tion of Hir/GPa
P1 3040 +223 3397 3861 4220 1402
P2 2441 + 537 3355 3566 4218 1153
P3 3069 + 401 3363 3567 4219 1346
P4 2965 + 328 3389 4101 4219 1209
P5.1 4699 + 557 4576 4863 4219 1281
P5.2 4577 +731 4576 4863 4219 1281
P5.3 4837 + 634 4576 4863 4219 1281
P6 4180 + 399 4542 4548 4217 1225
pP7 4256 + 622 4568 4850 4218 1088
P8 4627 + 1055 4584 5063 4219 1475
P9 4415 + 675 4610 5376 4220 1336
P10 5081 + 1361 5755 4912 4218 1160
P11 5476 + 1637 5789 5447 4219 1216
P12 4313 + 1513 5797 5659 4220 1409
P13 6224 + 1159 5763 5366 4219 1354

It is shown that only the GPR model is capable of producing meaningful outputs,
while the other models are not able to achieve a prediction quality close to the GPR model.
When comparing the training results on root mean squared error, mean absolute error
and coefficient of prognosis set, the story becomes even more clearer (see Table 6).

Table 6. Comparison of the prediction qualities of the models on the unknown data set.

Root Mean Mean Absolute Coefficient of
Model .
Squared Error Error Prognosis
Gaussian Process Regressor 551 GPa 415 GPa 78%
Polynomial Regression 720 GPa 587 GPa 71%
Support Vector Machine 991 GPa 781 GPa 0.1%
Neural Network 3156 GPa 2999 GPa 1%

The results show that the GPR model was the best model compared to PR, SVM and

NN. It is worth noting that we have used polynomial degree of 2 for the PR models, as
this produced the best prediction results, a higher polynomial degree of 3 to 5 led to a
decrease in RMSE, MAE and CoP. This also shows that especially the SVM and NN are
not capable of producing meaningful prediction output. The PR fitting overall shows
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acceptable prediction quality of around 70%, however the GPR has better RMSE and MAE
values, so it would be selected for further consideration. Furthermore, GPR provided bet-
ter results on the training dataset. It is important to always evaluate RMSE, MAE and CoP
together, as all three values allow a thorough evaluation of the prediction model. In brief,
RMSE and MAE characterize the spread predictions better than the CoP, the CoP returns
an overall performance score of the model. The weak performance of SVM can possibly
be explained by the small dataset used for training, since SVM need way more training
data, as the model only scores around 30% CoP on the training dataset. For extrapolation
on the test dataset the trained SVM model was not feasible. The same could be the case
for the NN, as NN rely on big datasets for training and show weaker extrapolation capa-
bilities.

6. Conclusions

This contribution evaluated the use of Gaussian processes and advanced data visu-
alization in the design of amorphous carbon coatings on UHMWPE. This study focused
on elaborating an overview of the required experimental setup for data generation and
the concepts of ML, and also provided the corresponding ML algorithms. Afterwards, the
deposition and characterization of amorphous carbon coatings were presented.

The use of ML in coating technology and tribology represents a very promising ap-
proach for the selective optimization of coating process parameters and coating proper-
ties. In particular, this could be demonstrated by the GPR models used to optimize the
mechanical properties of the coatings and, consequently, the tribological behavior, by in-
creasing the hardness and thus the abrasive wear resistance. However, further experi-
mental studies and parameter tuning are needed to obtain better predictive models and
better process maps. The initial results of these visualizations and the GPR models pro-
vide a good basis for further studies. For our approach the following conclusions could
be drawn:

e The GPR models and the materials used showed the potentials of the selected ML
algorithms. One data visualization method using the GPR was detailed;

e The usage of ML looked very promising in this case, which can benefit the area of ML
in coating technology and tribology. The prediction accuracy of the hardness values
with our approach showed a high agreement with the experimentally determined
hardness values;

e The used data visualization (see Figure 3 and Figure 4) is a neat feature for coating
process experts to tune their parameters into the desired parameter space. The plotted
process maps can further enhance the coating design or other coating types.

For our use case we implemented a four-step process, mainly consisting of data gen-
eration via design of experiments to create the initial dataset. This initial dataset was then
analyzed via Python-based scripting tools, to create meaningful prediction models via
GPR. Those GPR models are then used for the presented visualization approach. To put
it all together one Python script was created to lead through the process. This Python
script can be configured to look into different values, however we focused on indentation
hardness.

Based on this work, further experimental studies will be conducted, and the pro-
posed models will then be re-trained using the available data. The dataset generated for
this article was considered as a starting point for the ML algorithms used and will be sup-
plemented with future experimental data and thus grow. When more data is available,
maybe different ML models like neural networks will come into perspective.
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