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Abstract: All the static performance, dynamic characteristics, and stability are strongly associated
with the flow field inside the aerostatic bearings. Therefore, a high-precision numerical method
is beneficial for the detailed description of the bearing flow field. To this end, a modified interior
penalty discontinuous Galerkin method was introduced here. Actually, a lift operator was included
to eliminate the so-called homogeneity tensor connecting the viscous term and variable gradient,
which could improve the numerical feasibility. The accuracy of the above numerical method has been
comprehensively validated through viscous cases, including Couette flow and shear-driven cavity
flow. Then, the flow fields of three aerostatic bearings were simulated with different orifice geometries.
As a result, the Mach number distributions and static pressure could be estimated together with the
integration of the pressure acting upon the thrust surface. The acceleration within the orifice and air
film could be detected, and the influence of the orifice geometry has been systematically discussed.

Keywords: aerostatic bearing; discontinuous Galerkin method; computational fluid dynamics

1. Introduction

Aerostatic bearings have been widely adopted in various industries, such as electronics
and semiconductors [1], metrology and ultra-precision machine tools [2], turbomachin-
ery [3], the medical industry [4], etc. They always encounter extremely high working
requirements, including high precision, high stability, and high speed. Therefore, it remains
challenging to develop high-performance aerostatic bearings [5].

All the static performance, dynamic characteristics, and stability are strongly associ-
ated with the flow field inside the aerostatic bearing. Therefore, it is extremely important
to simulate the details of the flow field accurately, including shock wave/boundary layer
interaction, rarefaction wave, shear layer, etc. [6].

Traditionally, many flow models have been proposed to analyze the performance
of aerostatic bearings, which always introduce assumptions to simplify the governing
equations [7]. Therefore, the intrinsic driving force of the oscillation could not be compre-
hensively depicted. Along with the development of computational fluid dynamics (CFD),
numerical simulations have been conducted to analyze the flow structures together with the
overall performances of the bearings [8]. Turbulence models, including Reynolds-averaged
Navier–Stokes (RANS) models [9] and the large eddy simulation (LES) method [7], have
been systematically implemented. With the help of the CFD method, the details of flow
status inside the air film, such as the pressure contour, the velocity vectors, and streamlines,
could be observed. For example, three-dimensional, turbulent, Navier–Stokes simula-
tions for compressible air flow were presented in [6], where the k-ε turbulence model
was adopted. The computational flow visualization in the inlet region showed the co-
alescing of compression waves into shock waves, the reflection shocks, and a region of

Lubricants 2022, 10, 360. https://doi.org/10.3390/lubricants10120360 https://www.mdpi.com/journal/lubricants

https://doi.org/10.3390/lubricants10120360
https://doi.org/10.3390/lubricants10120360
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/lubricants
https://www.mdpi.com
https://orcid.org/0000-0001-9249-0366
https://orcid.org/0000-0002-0710-7455
https://doi.org/10.3390/lubricants10120360
https://www.mdpi.com/journal/lubricants
https://www.mdpi.com/article/10.3390/lubricants10120360?type=check_update&version=1


Lubricants 2022, 10, 360 2 of 11

shock/boundary layer interaction. Meanwhile, the LES method was employed to calculate
the transient flow field in the bearing clearance in [7] numerically. Repeated pressure
depression (in space) and fluctuation (in time) could be observed in the bearing clearance
when vortex shedding occurred. Both steady and transient flow calculations were carried
out in [8]. On this basis, radial basis function (RBF) models were established, and design
optimization was performed. It was found that shock-wave-induced flow separation and
vortices in the air film made the local pressure and the total distribution dramatically
fluctuate over time.

To overcome the difficulty of describing complex geometrical configurations and
fluid-structure interactions (FSI), Chen et al. proposed a dynamic mesh technique (DMT)
based on CFD software to study the dynamic characteristics of multi-restrictor aerostatic
bearings with shallow recesses [10]. Then, the DMT method was also applied to calculate
the dynamic performance of the aerostatic thrust bearings with orifice restrictors, multiple
restrictors, and porous restrictors, respectively [8].

Although the CFD method has played an important role in the flow field simulation
and mechanism analysis of aerostatic bearings, most of the research is conducted within
the framework of the finite volume method (FVM) and commercial software. However,
along with the abrupt increase of Reynold’s numbers, the requirement of delicate flow
structure resolution emerges. Numerical methods with high precision could resolve more
flow field details compared to the finite volume method, which has become an important
tendency of CFD in the last two decades [11]. There are several candidates for high-
precision calculation, among which the discontinuous Galerkin methods (DGM) have
become popular for the solution of systems of conservation laws [12]. Apart from the well-
known high-order characteristics, it also combines the ease of finite element approximations
in handling complex geometry and adaptation with the shock-capturing abilities of the
finite volume method [13]. Therefore, the DGM has many attractive features: (1) It has
useful mathematical properties in terms of conservation and convergence. (2) It can be
extended to a higher order (>2nd order). (3) It is well suited for complex geometries as it
can be applied to unstructured grids. (4) It is highly parallelizable due to its compactness.

Recently, due to the development of BR1/BR2 [14], interior penalty (IP) [15], and
reconstructed DG (RDG) methods [13], the calculation of viscous terms could be imple-
mented within the DGM framework. Among the above methods, the IP method has been
widely adopted due to its compactness and ease of implementation, which refers to the
IPDG method here. This method could easily be reinterpreted as the combination of a
large number of Galerkin finite element problems, which are coupled by internal boundary
conditions across the interfaces [15]. For example, the application of the IPDG method to
implicit LES of free and wall-bounded equilibrium turbulence has been conducted in [16].
In detail, the method has been applied to the simulation of decaying homogeneous isotropic
turbulence at a very high Reynolds number and the turbulent channel flow simulation.
Therefore, it is possible to deliver a high-precision simulation of the bearing system based
on the IPDG method.

However, in the traditional IPDG method, there is a fourth-order homogeneity tensor
connecting the viscous terms and variable gradients, which is difficult to calculate and
program. In the present study, the DGM with a modified IP method was introduced
to discretize the convection and diffusion terms of the Navier–Stokes equations of test
cases and aerostatic bearing flow field. The accuracy has been comprehensively validated
through viscous incompressible and compressible cases. To our knowledge, it is the first
attempt to conduct a high-precision simulation with DGM in the field of aerostatic bearing
flow field analysis. In practice, the flow fields of three aerostatic bearings have been
simulated with different orifice geometries. It turns out that the orifice without contraction
has the best bearing capacity, while geometrical contraction might lead to an early transition
to supersonic flow within the orifice.

The remainder of the paper is arranged as follows: The numerical framework and
validation of the IPDG method are presented in Section 2. The bearing case description and
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mesh information are introduced in Section 3. Numerical results and analysis are reported
in Section 4. Concluding remarks are given in Section 5.

2. Numerical Framework and Validation

As mentioned above, the IPDG method was adopted for the discretization of the
compressible Navier–Stokes equations (shown in Equation (1)). We assume that the
computational domain could be subdivided into shape-regular meshes. The averages
and jumps at the interior edges of the mesh are denoted as {U} = (U+ + U−)/2 and
[U] = (U+ ⊗ n+ + U− ⊗ n−).

∂U
∂t

+∇ · Fc(U)− 1
Re
∇ · Fν(U,∇U) = 0 (1)

The vector U in Equation (1) represents the conserved variables. Fc and Fν indicate
the convection and viscous fluxes. Then, let ϕ be smooth vector functions inside each mesh
element. The inner product of Equation (1) with a smooth test function ϕ and integrating
by parts gives the following:∫

Ωk

∂Uh
∂t ·ϕhdΩ +

∫
∂Ωk

(
Fc(Uh) ·

→
n − Fν(Uh,∇Uh) ·

→
n
)
· ϕhdΓ

−
∫

Ωk

∇ϕh : (Fc(Uh)− Fν(Uh,∇Uh))dΩ = 0
(2)

Here, subscript h means that the equations have been rewritten into the discrete form
of finite element space. Due to the integration of parts with the test function and high-order
features of variable distribution, the DG method has high-precision characteristics, which
are beneficial for the resolution of delicate flow structures.

Since the viscous terms are one order higher than the convection terms, an auxiliary
variable Θ = Fν(U,∇U) = Gij(U) : ∇U is introduced here, where Gij(U) is a fourth-order
tensor (i.e., the so-called homogeneity tensor) representing the relationship between the
viscous terms and variable gradients. Then, integration by parts was conducted for the
auxiliary variable.∫

Ωk

Θ : ∇ϕhdΩ

=
∫

Ωk

(
Gij : ∇U

)
:∇ϕhdΩ

=
∫

Ωk

∇U :
(

GT
ij : ∇ϕh

)
dΩ

:=
∫

∂Ωk

{U} ⊗→n :
(

GT
ij : ∇ϕh

)
dΓ−

∫
Ωk

U · ∇ ·
(

GT
ij : ∇ϕh

)
dΩ

:=
∫

Ωk

Θ : ∇ϕhdΩ +
∫

∂Ωk

Gij : ({U} −U)⊗→n : ∇ϕhdΓ

(3)

Actually, integration by parts has been implemented twice so that the viscous term in
Equation (2) could be directly updated. Different from the BR1 and BR2 methods, the gov-
erning equation of the auxiliary variable is not indispensable within the IPDG framework,
which has ease of implementation. Eventually, according to our previous study [17], a lift
operator has been introduced here L = Gij : ({U} −U)⊗→n = Fν

(
{U},− 1

2 [U]⊗→n
)

, anal-
ogous to the viscous term. Therefore, the fourth-order tensor Gij(U) could be eliminated.
Therefore, the N-S equations could be expressed in the following form:∫

Ωk

∂Uh
∂t
· ϕhdΩ +

∫
∂Ωk

(
Fc ·→n − Fν ·→n

)
· ϕhdΓ−

∫
Ωk

∇ϕh : (Fc − Fν)dΩ +
∫

∂Ωk

L : ∇ϕhdΓ = 0 (4)

The Interior penalty method is utilized for the numerical flux of the viscous term,
where Cip is a constant and h f is the characteristic length of the element.
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Fν
(
U−h , U+

h
)
·→n =

1
2
(

Fν
(
U−h
)
+ Fν

(
U+

h
))
·→n − Cip

p2

h f
Fν

(
1
2
(
U−h + U+

h
)
,

1
2
(
U+

h −U−h
)
·→n
)
·→n (5)

Meanwhile, numerical fluxes of convection terms are also introduced at the edges
of the elements with the help of the Lax-F scheme. The accuracy of the above numerical
method has been comprehensively validated through viscous cases, including Couette flow
and shear-driven cavity flow.

3. Couette Flow

Couette flow is a steady viscous flow with a static lower boundary and a moving
upper boundary U within the laminar regimes. The exact solution to the problem is

u = y
H U v = 0

T = T0 +
y
H (T1 − T0) +

µU2

2κ
y
H (1− y

H )
P = const ρ = P

RT

(6)

where H = 2 is the distance between the upper and lower boundaries. The non-dimensional
velocity of the upper surface is U = 1, while the non-dimensional temperature of the upper
and lower surfaces is T0 = 0.8 and T1 = 0.85, respectively. Moreover, µ represents the
viscosity. As shown in Figure 1, the H-topology grid system has been constructed and
the information on the grid resolution is listed in Table 1. As a result, the distribution of
velocity is also demonstrated in Figure 1.
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Table 1. Error and numerical order of Couette flow.

Element
Number

IPDG (1) IPDG (2) IPDG (3) IPDG (4)

Error Order Error Order Error Order Error Order

50
(10 × 5) 0.0096 NA 9.5 × 10−5 NA 8.3 × 10−7 NA 4.2 × 10−9 NA

200
(20 × 10) 0.0055 0.81 2.4 × 10−5 2.00 1.1 × 10−7 2.88 2.6 × 10−10 4.00

800
(40 × 20) 0.0029 0.92 6.2 × 10−6 1.94 1.5 × 10−8 2.95 1.5 × 10−11 4.09

The accuracy of the modified IPDG method is validated with different mesh resolu-
tions, as indicated in Table 1. The number in the brackets of the IPDG method indicates the
theoretical accuracy. It could be observed that the numerical accuracy of our simulation
is consistent with the ideal one. Along with the increase in numerical order, the error
monotonously declines.
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4. Shear-Driven Cavity Flow

The laminar incompressible flow in a square cavity whose top wall moves with a
uniform velocity in its own plane has served over and over again as a model problem for
testing and evaluating numerical techniques.

A computational mesh with 1600 (40× 40) elements was constructed and the Reynolds
number is 1000. The velocity profiles at x = 0.5 and y = 0.5 are illustrated in Figure 2. The
reference profiles come from the numerical results of Ghia et al. [18]. The finite difference
method was adopted, and 16,641 elements were included, which could be regarded as
dense enough to obtain accurate numerical results. In general, the results of the second-
order IPDG method (p = 1) deviate from the reference, the discrepancy of which is more
obvious near the cavity boundaries. In contrast, the results of the third (p = 2)- and fourth
(p = 3)-order are more accurate. In essence, the numerical dissipation of the second-order
DG method could account for the degradation of velocity gradients near cavity boundaries.
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Based on the above simulations, the accuracy of the present high-precision IPDG
method could be validated, the advantages of which could be quantitatively observed.
Actually, smaller errors could be obtained with coarse mesh resolution. It will be more
remarkable when industrial problems are simulated with a higher Reynolds number.

5. Supersonic NACA0012 Airfoil

To discuss the accuracy of shock capture, the third-order IPDG method was adopted to
simulate the flow field of the NACA0012 airfoil under the conditions of Ma∞= 2, Re = 500,
and α= 10◦. The distributions of the Mach number and pressure coefficient are demon-
strated in Figure 3. The resolution of the shock wave is acceptable and the coincidence
of numerical and reference pressure coefficients [19] could validate the accuracy of the
modified IPDG method under compressible circumstances. Meanwhile, the influence of
viscosity could be observed from the velocity gradient within the boundary layer.
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6. Bearing Case Description and Mesh Information

The geometries of aerostatic bearings are illustrated in Figure 4 and Table 2. Actually,
there are three different selections in the present study. The diameter of the inlet is 1 mm
and the clearance height h = 0.035 mm for all the cases. The difference mainly lies in the
geometrical parameters of the orifice. In detail, the diameters of the upper and lower
surfaces of the orifice are listed in Table 2. Therefore, the influence of orifice contraction
could be analyzed.
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Table 2. Geometrical parameters of the aerostatic bearings.

Parameter Case 1 Case 2 Case 3

Du 0.2 mm 0.4 mm 0.2 mm
Dl 0.05 mm 0.2 mm 0.2 mm
h1 0.53 mm 0.47 mm 0.53 mm
h2 0.3 mm 0.3 mm 0.3 mm

The inlet pressure is 0.5 MPa for all the cases. Since the orifice obviously contracts,
the velocity should be much higher at the orifice outlet. Since the Reynolds number of
aerostatic bearing is relatively low here, direct numerical simulation (DNS) was conducted
without any turbulence model. The structured grid system was constructed in the present
study. “O-H” Topology was adopted for the grid generation in line with the geometry of
the aerodynamic bearing, as shown in Figure 4b. First, the height of the first layer of the
mesh is 2.7 × 10−6 m according to the y+ = 1 requirement and the growth ratio ≈ 1.15
to guarantee the grid resolution within the boundary layer. There are 80 and 90 grids in
the circumferential and axial directions, respectively. In detail, there are 30 grids in the
normal direction of clearance to resolve the flow structures. Consequently, the overall grid
number is around 0.27 M, the side and vertical views of which are illustrated in Figure 5.
The non-reflection condition was imposed on the outlets of bearings. The grid generation
was accomplished with PointwiseV18.3R1 software.
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7. Numerical Results and analysis

As a result, a vertical slice is extracted across the axis line. The distributions of the
static pressure and Mach numbers of Case 1 and Case 2 are demonstrated in Figures 6 and 7,
respectively. The influence of orifice contraction could be discussed. The flow mechanism
is quite delicate as shown in Figure 6b. In detail, the flow becomes supersonic at the outlet
of the orifice. Then, the velocity magnitude dramatically decreases near the stagnation
point with an increase in static pressure, as shown in Figure 6a. At the entrance of the air
film, the flow becomes supersonic again within a short distance due to the geometrical
contraction. It turns out that the static pressure in the air film is relatively low, leading to
poor bearing capacity.
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grids in the circumferential and axial directions, respectively. In detail, there are 30 grids 
in the normal direction of clearance to resolve the flow structures. Consequently, the over-
all grid number is around 0.27 M, the side and vertical views of which are illustrated in 
Figure 5. The non-reflection condition was imposed on the outlets of bearings. The grid 
generation was accomplished with PointwiseV18.3R1 software. 
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Figure 5. Sketches of the computational mesh. 

7. Numerical Results and analysis 
As a result, a vertical slice is extracted across the axis line. The distributions of the 

static pressure and Mach numbers of Case 1 and Case 2 are demonstrated in Figures 6 and 
7, respectively. The influence of orifice contraction could be discussed. The flow mecha-
nism is quite delicate as shown in Figure 6b. In detail, the flow becomes supersonic at the 
outlet of the orifice. Then, the velocity magnitude dramatically decreases near the stagna-
tion point with an increase in static pressure, as shown in Figure 6a. At the entrance of the 
air film, the flow becomes supersonic again within a short distance due to the geometrical 
contraction. It turns out that the static pressure in the air film is relatively low, leading to 
poor bearing capacity. 

  
(a) Static pressure (b) Mach number 

Figure 6. Physical quantity distributions on the vertical slice of Case 1.
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With a gentle contraction compared with Case 1, the acceleration inside the orifice is
not acute in Case 2, as shown in Figure 7b. However, the velocity magnitude resides in the
supersonic regime in the air film and the static pressure suddenly decreases at the inlet of
the air film, as shown in Figure 7a, indicating a great pressure gradient.

Case 3 could be regarded as an intermediate state between Case 1 and Case 2, with
the same Du of Case 1 and the same Dl of Case 2. As a result, a supersonic region around
the film inlet could be identified as shown in Figure 8b, which could be interpreted with
the abrupt contraction. High pressure could be found near the stagnation point and an
obvious positive pressure gradient emerges inside the film, as shown in Figure 8a. Due
to the combined effects of the pressure gradient and viscosity, the variation of velocity
magnitude along the air film is complicated. It decreases near the inlet of the film and
accelerates to a supersonic regime near the outlet.
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Pressure distribution curves along the mid-plane of the air film from the symmetrical
axis to the outlet, which are extracted from the above figures, are shown in Figure 9. The
critical pressure is an important value for analyzing the nozzle flow field, which is the
key point from subsonic to supersonic conditions. Since the velocity at the inlet of the air
bearing is small, the pressure at the inlet could be regarded as the stagnation pressure.
Regardless of the influence of the boundary layer, the air bearing can be approximately
regarded as a one-dimensional isentropic flow before the contraction. Therefore, the critical

pressure ratio can be analytically given in the form pcr
p∗ =

(
2

γ+1

) γ
γ−1 , where pcr is the critical

pressure and p∗ is the stagnation pressure. Since γ = 1.4 in the present study, the critical
pressure ratio is 0.528, which is consistent with our numerical results in Figure 9. Therefore,
the numerical accuracy could be validated to some extent. Corresponding to the pressure
distribution mentioned above, an obvious pressure gradient emerges near the inlet of the
air film at 0.1 R in Case 2 and Case 3. Although the peak value at the stagnation point
is higher in Case 2, the overall effect of the static pressure is more pronounced in Case 3
due to the contribution inside the film. The performance of Case 1 is poor due to an early
transition to the supersonic regime before the entrance of the air film.
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In addition, an attempt with refined grid resolution has also been delivered. In
detail, the number of computational grids is increased to 0.57 M, in contrast with 0.27 M
according to the original grid resolution. Actually, the “O-H” topology of the grid system
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was maintained, and the grid resolution in all three directions (i.e., the circumferential,
axial, and radial directions) has been refined at a ratio of 1.3. The coincidence of the
numerical results from the original and refined mesh systems in Figure 9 indicates the grid
independence.

As a result, the integration of the pressure upon the thrust surface could be obtained,
as shown in Table 3. Consistent with the pressure distribution mentioned above, Case 3 has
the best performance in terms of bearing capacity, while the pressure integration of Case
2 is lower. It indicates that orifice contraction has to be accurately optimized, although it
could create a higher pressure value near the stagnation point.

Table 3. Pressure integration in different cases.

Parameter Case 1 Case 2 Case 3

Pressure integration(N) 0.0233 0.0813 0.0826

The local distributions of the Mach number in the vicinity of the air film inlet are
shown in Figure 10. Coincident with the above conclusions, the flow structures in Case 1
are more complicated due to the compact geometry and flow interaction. The low-speed
region in Case 3 is relatively inconspicuous, indicating a minor loss of kinetic energy.
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8. Conclusions

Since the static and dynamic performances are strongly associated with the flow field
of aerostatic bearing, a high-precision numerical method is beneficial for the detailed
description of the bearing flow field. Among the candidates, the high-order characteristics
and the convergence of DGM have been proven. To this end, a modified IPDG method
was introduced here. Meanwhile, a lift operator was included to eliminate the fourth-
order homogeneity tensor connecting the viscous term and variable gradient, which could
somehow improve the numerical feasibility. The accuracy of the above numerical method
has been comprehensively validated through viscous cases, including Couette flow, shear-
driven cavity flow, and supersonic airfoil flow field.

Then, the flow fields of three aerostatic bearings were simulated with different orifice
geometries. As a result, the distributions of Mach number and static pressure could be
estimated together with the integration of the pressure acting upon the thrust surface.
Meanwhile, the pressure distribution curve in the air film is also calculated.

The tendency could be extracted to evaluate the influence of orifice geometry. It turns
out that the orifice without contraction has the best bearing capacity. The critical point is
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that geometrical contraction might lead to an early transition to supersonic flow within the
orifice.

Actually, for higher Re, IPDG simulations with LES models would be expected in the
near future with the help of experimental references. Therefore, the feasibility and accuracy
of the present framework would be thoroughly validated. Meanwhile, the influence of the
film thickness would be systematically discussed. Eventually, the flow field is in the mixed
compressible/incompressible regime; therefore, the resolution of the low Mach number
perturbations and the control of dissipation are important [20,21]. Corresponding research
has been accomplished in the FVM framework, which could be extended to the IPDG
framework in the near future.
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