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Abstract: For wet disk clutches, the energy input is strongly influenced by its friction behavior. 
However, the friction behavior cannot be simulated and therefore is mostly derived from 
experimental data for specific clutch systems. This paper presents a new approach for the 
identification and validation of linear friction models using analysis of variance (ANOVA) and 
stepwise regression. Therefore, we use experimental data of three different friction systems with 
paper- and carbon-based friction lining. The designed experiments support an efficient parameter-
based analysis of the friction behavior. The obtained models can be used as an input for thermal 
simulations, for example, but can also support a better understanding of the main influencing 
factors and are applicable to various friction systems. For validation, the obtained models are 
applied to measured data. A good correspondence between the simulated and measured friction 
behavior can be shown for speeds in the investigated operating range. The presented procedure can 
be easily adapted, for different factors and operation modes, as well as other applications. 
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1. Introduction 
Modelling the friction behavior of wet multi-plate clutches is difficult, whereas at the 

same time, the friction behavior is the key parameter defining thermal loads and comfort 
characteristics [1]. However, simulation of the thermal behavior of wet clutches is 
essential during the design phase as thermal loads determine lifetime and performance 
[2,3]. In addition to high quality modeling approaches, reliable input data, especially for 
Coefficient of Friction (CoF), which defines the energy input, is needed for the calculation 
of the thermal behavior [4]. Experimental research on the friction behavior of wet clutches 
shows various influencing factors, e.g., lubricant, material and applied load (a.o., [5–8]). 
Due to the lack of hands-on applicable friction models, energy input is often modeled 
with constant CoF, friction maps (e.g., [9]) or models lacking any possible physical 
interpretation (e.g., [10]). The development of state-of-the-art friction models is based on 
physical modelling or curve fitting methods. Sophisticated physical modelling 
approaches exist in the case of elastohydrodynamic lubrication (EHL) based on Reynolds 
linear elasticity, solid mechanics and load balance equations [11]. In general, the 
deviations between numerical predictions and experiments of CoF are, for low 
entrainment speeds during ball on disc tests, less than 10 % [11]. However, the application 
of EHL methods to wet clutches is not appropriate due to low contact pressure and very 
small hydrodynamic film buildup [12]. Nevertheless, there are physical models from the 
application of dynamic pressure lubrication theory and Hertz contact theory, which make 
it possible to estimate the CoF in wet clutches and help to understand the friction 
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mechanisms [13,14]. However, their practical relevance is limited due to the assumptions 
and simplifications made during model derivation. 

In addition to these physical approaches, there are many empirical models, 
parametrized by curve fitting with measurement data. The models consist of 
linear/quadratic (a.o., [15]), logarithmic (a.o., [15,16]), exponential (a.o., [17]), hyperbolic 
(a.o., [18]) or combinations of these terms (a.o., [15,19]). Another approach is fitting of the 
Stribeck curve to measurement data (a.o., [20–22]. All these models have the sliding 
velocity (or rotational speed) as an input parameter in common, sometimes extended by 
clutch pressure and contact temperature [13,19,21]. Logarithmic approaches are 
motivated by the logarithmic dependence of shear stress of the organic friction modifier 
boundary films [12], but need special treatment for zero sliding velocity. Stribeck-curve 
models separate the friction behavior in the static and kinetic friction coefficient and try 
to combine curve fitting methods with the possibility of physical interpretation. Most of 
these empirical models concentrate on reproducing the friction behavior of a single 
friction system. Furthermore, sliding velocity is often considered to be the only variable 
model input parameter.  

Recent research also applies data mining [23] and machine learning [24] techniques 
to the torque transfer behavior of wet clutches. The data mining approach analyses friction 
behavior and states the main influences on the CoF of the studied tribological system in 
descending order, such as clutch pressure, friction surface temperature, feeding lubricant 
temperature and differential speed. The authors state their approach as superior to 
classical one factor at a time and designed experiment approaches but do not rate the high 
effort of experiments in applying their method [23]. The machine learning approach 
focuses on non-linear torque transfer function representing the whole clutch system and 
is therefore not a contribution for modelling the CoF [24]. 

In addition, there is ongoing research on the design of experimental test methods for 
the characterization of the friction behavior of new friction systems A reduction in test 
duration is focused by most test methods as it directly reduces costs and effort. Screening 
tests offer the possibility of evaluating the friction behavior of new tribological systems 
within hours under various load conditions and of differentiating the performance of 
different systems (a.o., [8,25,26]). However, it requires a high level of experience to meet 
application relevant conditions. 

In addition to classical approaches, the application of the method of designed 
experiments and ensemble techniques facilitates the application of statistical methods 
(e.g., ANOVA) and derivation of regression models during data evaluation (e.g., [27,28]). 
These methods have been successfully applied to examine the effects of non-uniform 
torque [29], to develop regression models for describing the vibration-reducing effect of 
wet clutch systems [30] and to build regression models of clutch engagement [31]. 

The literature review shows work in progress in identifying appropriate friction 
models of wet clutches. However, most models are tested with one system only and it is 
therefore not clear if the results are applicable to different clutch systems. Furthermore, 
there is a lack of published data on the experimental setup for deriving these models.  

This contribution describes a new approach for the identification and evaluation of 
friction models, with focus on facilitating and improving the estimation of CoF as an input 
parameter for simulation models such as thermal calculations. The experimental 
investigation is based on designed experiments to enable the application of analysis of 
variance (ANOVA) and stepwise regression. We develop easy-to-use linear friction 
models of three different clutch designs from serial production and validate the results 
with measurement data. We discuss the quality and transferability of the linear friction 
models. Furthermore, the applied methods allow the determination and characterization 
of significant influencing parameters on the CoF of the investigated friction systems. 
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2. Experimental Setup and Data Collection 
The experimental investigations are carried out on a wet brake component test rig 

ZF/FZG KLP-260. The description of the test rig is according to [26,32]. The test rig 
operates in brake mode with a fixed outer carrier and rotating inner carrier, as pictured in 
Figure 1. 

 
Figure 1. ZF/FZG KLP-260 test rig—schematic sketch according to [32]. 

The test rig enables mounting of a complete clutch pack with corresponding carriers. 
Inner plates are placed on the inner carrier which is connected to the inner shaft and 
connected to the fly wheels (J1, J2). Friction work of the clutch can be adjusted through 
variable configurations of the fly wheels J1 and by engaging inertia J2. 

Axial force is applied to the plates by a force controlled hydraulic piston. Friction 
torque is measured at the outer carrier. Cooling oil can be supplied centrally in the inner 
carrier, externally from the top of the housing or by oil sump. The oil flow rate and the 
thermostat-controlled feeding temperature can be adjusted over a wide range. For brake 
engagement tests, the main shaft with inner carrier and fly wheels is accelerated by the 
speed-controlled main drive up to a defined speed n. During engagement, the main drive 
and the inner shaft are decoupled through an electromagnetic coupling. Under creeping 
conditions and in non-steady and constant slip mode a defined axial force is applied to 
the clutch plates. Either creep or main drive then accelerates the inner shaft up to a defined 
slip speed. The rotational speed in low-speed creep and slip modes is measured with high 
resolution by an incremental encoder. Table 1 shows the technical data of the test rig. 

Table 1. Technical data of ZF/FZG KLP-260 test rig according to [33]. 

variable small fly wheels J1 = 0.12 … 0.75 kgm² 
basic inertia J2 = 1.0 kgm² 

plate diameters d = 75 … 260 mm 
max. torque Tf,max = 2000 Nm 

differential speed Δn = 0 … 7000 rpm 

slip speed Δn = 0 … 140 rpm (creep drive) 
Δn = 0 … 7000 rpm (main drive) 

torque in slip mode Tf,slip,max = 2000 Nm (creep drive) 
Tf,slip,max = 60 Nm (main drive) 

max. axial force Fa,max = 40 kN 
feeding oil temperature ϑoil = 30 … 150 °C 

feeding oil flow rate vሶ oil = 0 … 7 L/min 
feeding oil pressure poil = 0 … 6 bar 
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The measurement accuracy of the test rig is determined by applying the rules of the 
Guide to the Expression of Uncertainty in Measurement (GUM) [24] and DIN EN ISO 
14253-2 [25] to the ZF/FZG KLP-260 test rig as published in [33,34]. Table 2 summarizes 
the measurement accuracy for the FZG/ZF KLP-260 test rig. 

Table 2. Overview of measurement accuracy on the ZF/FZG KLP-260 test rig (confidence level 95 
%) extended version according. to [33]. 

Measured Variable Uncertainty 
axial force +/− 1.3 % 

torque +/− 0.4 % 
CoF +/− 1.3 % 

speed (main drive) +/− 0.2 % 
speed (creep drive) +/− 0.9 % 

thermocouple type K class 1 
+/− 1.8 K (DIN)/+/− 0.3 K  

(Estimated from calibration)  
feeding oil pressure +/− 0.1 bar 

axial force +/− 1.3 % 

For the experimental studies, we use steel (outer) and friction (inner) plates from the 
serial production of automotive applications with organic friction linings (paper MP/car-
bon MC). Three tribological systems are investigated. We vary the clutch size, character-
ized by the mean diameter of the clutches (88/117 mm), friction lining material (MP-A/MP-
C/MC-B) and lubricant (L-103/L-201/L-205). All friction plates have a multi-segmented 
groove pattern. One clutch package consists of five steel plates and four friction plates. 
Thus, there are eight friction interfaces (z = 8). The nominal clearance between each friction 
plate and steel plate is 0.20 mm. Figure 2 pictures the steel and friction plates. 

Steel plate D117 Friction plate D117, MP-C  

  

 

Steel plate D88 Friction plate D88, MP-A Friction plate D88, MC-B 

   
Figure 2. Steel and friction plates. 

We measure mass temperatures in the center steel plate at several evenly spaced cir-
cumferential positions with thermocouples (NiCrNi Type K Class 1, Ø 0.25/0.5 mm, re-
sponse time approximately 10/30 ms calculated according to [35], as sketched in Figure 3. 
Therefore, we apply a high-density polysynthetic silver thermal compound to the ther-
mocouples and place them in a circumferential drill hole (Ø 0.3/0.6 mm) approximately 
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down to the mean diameter (dm) positioned in the midplane of the respective steel plate. 
To determine the mass temperature of the steel plate, the signals of the thermocouples 
distributed around the circumference are averaged. 

 
Figure 3. Position of thermocouples. 

Table 3 summarizes the technical data obtained from the lubricants’ data sheets. 

Table 3. Technical data of the test lubricants. 

Lubricant Kinematic Viscosity at 40 °C Kinematic Viscosity at 100 °C 
L-103 35 mm²/s 7 mm²/s 
L-201 47 mm²/s 9 mm²/s 
L-205 30 mm²/s 6 mm²/s 

Table 4 summarizes the friction systems consisting of the clutch packages and the 
corresponding lubricants. 

Table 4. Friction systems. 

System Mean Diameter Friction Lining Lubricant 
D117 117 mm MP-C L-205 
D88 88 mm MP-A L-103 
D88 88 mm MC-B L-201 

During the experiment, the clutches operate in a non-steady slip condition. Figure 4 
shows an example of the course of the axial force (Fa) and differential speed (Δn) during 
non-steady slip. The clutch is closed by applying the axial force. The following multiple 
slip phases are characterized by acceleration of the clutch to a maximum differential speed 
Δn and immediately after reaching this differential speed, it is decelerated again with the 
same gradient to the initial speed of zero. The slip phases are repeated for a defined num-
ber of times (in this study 5). After the last slip phase, the clutch is briefly released. A 
cooling phase follows to allow the clutch components to cool down. This is defined by a 
fixed differential speed of Δn = 20 rpm and an axial force of Fa = 100 N, which is maintained 
until the middle steel plate reaches a steady temperature. The low axial force ensures dis-
tribution of the cooling oil in the grooves around the circumference of the clutch. 

 
Figure 4. Courses of axial force (Fa) and differential speed (Δn) in non-steady slip. 
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As suggested in [36], all designed experiments are performed after 100 running-in 
collectives in non-steady slip to eliminate non-linear effects occurring in the first engage-
ments. The running-in load stages are summarized in Table 5. A running-in collective 
consists of the six load stages (LS) running in the order E1 … E6, whereas a cooling phase 
(EC) is held after each load stage for 20 s. The specific oil flow rate is 1 mm³/mm²s and the 
oil injection temperature is 80 °C during running-in collectives. 

Table 5. Parameters of load stages during running-in. 

Name p/N/mm² ∆n/rpm Number of Slip Phases 
E1 0.75 25 5 
E2 3.0 25 5 
E3 1.5 25 5 
E4 1–5 50 5 
E5 0.75 50 5 
E6 3.0 50 5 
EC 0 20 1 

The designed test plan is based on a randomized two-level, four-factor, full-factorial 
design. We vary the oil injection temperature, feeding oil flow rate, clutch pressure and 
differential speed on two levels, thus resulting in 16 load stages in non-steady slip opera-
tion. Oil is supplied centrally during all runs. The measurements of systems D117/MP-C 
and D88/MC-B are repeated once, resulting in 32 runs in total. We use blocking to search 
for significant differences between the first and second run. 

The measured value is µtop which represents the value of the CoF at maximum differ-
ential speed. Figure 5 shows an explanation for the measured value for two types of fric-
tion characteristics (course of CoF over sliding velocity) leading to equivalent values of 
µtop. We evaluate µtop of the last slip phase of each slip cycle. We use the mean average of 
µtop from the last five slip cycles of each load stage as an input parameter for our linear 
friction models. The values µtop are used as output values for the model. 

 
Figure 5. Explanation of µtop for two types of friction characteristics with equivalent values of µtop. 

Each slip cycle is repeated 10 times with the same factor settings (load stages). The 
duration of the cooling phases at the end of each slip cycle is varied such that the temper-
ature in the center steel plate at the beginning of the next slip cycle is nearly constant. The 
oil is supplied centrally to the inner carrier. The application of the full-factorial design 
defines 16 load stages as summarized in Table 6. The sequence of load stages is random-
ized, except for oil injection temperature. All specific values are normalized by gross fric-
tion surface area. The load stages cover typical working conditions of the clutch in practi-
cal applications. In addition to the load stages mentioned in Table 6, the steel plate tem-
perature (Symbol E) is measured as covariate. All mentioned factors and the covariate are 
possible input variables for the models. 
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Table 6. Load stages and settings in the full-factorial design. 

Symbol A B C D 

Factor 
Oil Injection 
Temperature 

Feeding Oil  
Flow 

Clutch 
Pressure 

Max. Differen-
tial Speed 

Low Level (−) 40 °C 0.25 mm³/mm²s 1 N/mm² 25 rpm 
High Level (+) 90 °C 2 mm³/mm²s 3 N/mm² 100 rpm 

Name Factor Level 
LS1 + + + + 
LS2 + + + − 
LS3 + + − + 
LS4 + + − − 
LS5 + − + + 
LS6 + − + − 
LS7 + − − + 
LS8 + − − − 
LS9 − + + + 
LS10 − + + − 
LS11 − + − + 
LS12 − + − − 
LS13 − − + + 
LS14 − − + − 
LS15 − − − + 
LS16 − − − − 

Figure 6 shows the measurement of the varied factors (oil injection temperature, 
nominal feeding oil flow rate, clutch pressure, maximum differential speed) and the meas-
ured variable (µtop) of each slip cycle of system D117/MP-C during the first run of the full-
factorial test. Each block consists of 160 data samples, respectively slip cycles.  

 
Figure 6. Trend plot of full factorial design of system D117/MP-C—values per cycle of varied pa-
rameters (oil injection temperature, nominal feeding oil flow rate, clutch pressure, maximum differ-
ential speed) and the measured variable (µtop). 

3. Methods 
To analyze the gathered data, we apply and implement two methods for statistical 

analysis in MatLab (The MathWorks, Inc., Natick, MA, USA). The scope is the evaluation 
of the impact of the main effects and their interactions on the characteristic value µtop. 
This is the basis for identifying statistically significant factors and an appropriate linear 
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friction model as a combination of factors. A model consisting of a constant, nf main ef-
fects and all their two-fold interactions according to [27] can be described as  

Here, the model constants c and the input variables x give an approximation for the 
output variable y with the model deviation ε. This deviation should be small for an ap-
propriate model. The first sum describes the main effects. The combined sum describes 
the two-fold interaction terms. 

The first method is the analysis of variance (ANOVA), which establishes the null hy-
pothesis that all factor groups have the same mean value. The variability in the dataset is 
described by the total sum of squares (TSS), which then gets split into two components. 
The variability between the groups (Sum of Squares Between; SSB) describes the effect of 
the corresponding factor, while the variability within the groups (Sum of Squares Within; 
SSW) can be interpreted as measurement noise or model error. For every available factor, 
the F-value is defined as the ratio of factor effect to error level. The p-value describes the 
probability of obtaining the F-value if the factor is not significant. Therefore, it quantifies 
the risk of falsely rejecting the null hypothesis and classifying an apparent effect as signif-
icant. We apply a typical threshold for p of 5 % for statistical significance. 

The ANOVA method usually starts with a full model, containing all main effects and 
interactions according to Equation (1). Factors with the highest p-values are removed from 
the regression model to reduce model complexity with minimal impact on the model’s 
quality. During this reduction, factors are removed individually since every reduction 
step results in a change in model error, leading to new F and p-values. To preserve model 
integrity, factors are only removed if they do not appear in higher order interactions. 

In each reduction step, we evaluate two characteristic model coefficients. The coeffi-
cient of determination R2  describes the model quality and continuously decreases with 
the removal of factors. It can be interpreted as the percentage of variability that can be 
described by the model and is defined as Rଶ = SSBTSS. (2) 

The adjusted coefficient of determination Radj2  can be interpreted as a criterion for 
model efficiency as it also takes the available amount of measuring points nr and the 
number of factors included in the model nm into account: 

Radj
2  = 1- nr - 1

nr -nm
 ⋅ ൫1- R2൯. (3) 

Therefore, removing the most insignificant factors can lead to an increase in Radj2 . 
Figure 7 shows a representative example of the behavior of the two coefficients over the 
amount of remaining model parameters. This number also includes the additional con-
stant parameter of the regression model. 

Local maxima in Radj2  are marked in red and can be seen as suitable models with high 
efficiency due to a good ratio of model quality and number of parameters. If no clear max-
imum can be found, a sudden drop off in both coefficients can also mark interesting mod-
els. Here, the remaining parameters contribute more to the quality of the model, than the 
ones just removed. 

Both RMSE values in Figure 7 result from a five-fold cross validation that the models 
of every optimization step are analyzed with. We use it to detect overfitting, where the 
model fails to perform with new data points that were not used in the original model fit. 
For cross validation, the available dataset is split into five subsets, whereof one is used as 
a validation set, while the four remaining sets are used as a training set. This process is 
repeated so that every subset is used as a validation set once. The resulting models are 

y = c଴ + ෍ c୧x୧ + ෍ ෍ c୧୨x୧x୨ + ε୬౜
୨ୀ୧ାଵ

୬౜ିଵ
୧ୀଵ

୬౜
୧ୀଵ . (1)
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evaluated using the root mean square error (RMSE). Overfitting can be assumed if the 
average RMSE for the cross validation is of higher magnitude than the RMSE for the orig-
inal model fit using the full dataset. This can be observed on the left-hand side of Figure 
7, where the models consist of more than 15 parameters. 

 
Figure 7. Representative example of behavior of coefficients R2 and Radj

2  and RMSE values for 
model and cross validation over number of parameters np, D88 MC-B, L-201. 

After finding a suitable model, its residuals are analyzed to validate three statistical 
prerequisites. Figure 8 is a representative example depiction of the residual plots used for 
validation. Orange lines indicate measurement uncertainty of the test rig for CoF. Histo-
gram (I) is supposed to resemble a bell curve. Residuals in the normal probability plot (II) 
should follow a diagonal. Additionally, if there are no apparent deviations to the right or 
left, these plots indicate normally distributed residuals. The residuals in the run order plot 
(III) should be evenly distributed around the x-axis, which implies the independence of 
the model errors. The last graph (IV) plots the residuals against the predicted values. An 
even distribution without any patterns indicates that the residuals have the same variance 
across all factor settings. Therefore, all necessary statistical prerequisites are fulfilled. 

  

  
Figure 8. Representative example of residual plots, D88 MC-B, L-201 (model 1). 
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In addition to the ANOVA method for model reduction, we use stepwise regression. 
An automatic stepwise addition of factors is implemented in MatLab to build a regression 
model from any start model as simple as a single constant. We define criteria such as the 
p-value or the model efficiency Radj2 . Corresponding thresholds for adding and removing 
factors are chosen to control the model optimization. In every step, the algorithm evalu-
ates the available factors and adds the one with the highest positive impact on the chosen 
criterion. If no factor reaches the threshold for addition, the algorithm checks if any in-
cluded factors became redundant due to the addition of others and now reach the thresh-
old for removal. The resulting models are then also analyzed with a k-fold cross validation 
to avoid overfitting and residuals are also visually checked. 

4. Results 
4.1. Application of ANOVA with Cross Validation for Model Derivation 

We apply the ANOVA method to the data of all tribological systems listed in Table 
4. It is possible to evaluate the influence of the investigated factors on the characteristic 
value µtop and to identify different models fulfilling the statistical requirements. 

Before focusing on the other factors, the reproducibility of the data is verified for two 
tribological systems. For D88, MC-B the repeated measurements with the same clutch 
pack and for D117, MP-C the repetitions with two clutch pack are both split into two 
blocks. We then use this blocking in the ANOVA to evaluate the influence of the repeti-
tions. In both cases, there is no significant difference between the first and the second run 
compared to the other factors with p-values above 0.05. The blocking can therefore be re-
moved from the models. 

We continue model identification with a full model containing all four main effects, 
the covariate 𝜗ௌ௉ and all interactions. The ANOVA method is used to find and remove 
the factors with the highest p-values. The order in which the factors are removed aligns 
with a preceding analysis using main effect and interaction diagrams. Due to a small main 
effect and weak interactions, the feeding oil flow rate is generally the first main factor to 
be removed. While the maximum differential speed has a similarly small main effect, its 
interactions are remarkable which is why they turned out to be more significant than the 
feeding oil flow rate. 

The behavior of the two RMSE values strongly differ for a high number of parame-
ters. RMSE in the fivefold cross validation is magnitudes higher than for the model fitted 
with the full original dataset. This can be interpreted as an indicator of overfitting and 
generally appears above 13 to 15 parameters (compare Figure 7). Most of the suitable mod-
els according to the behavior of R2 and Radj2  has a smaller number of parameters. There-
fore, every ANOVA analysis leads to a range, where the number of parameters is low 
enough to avoid overfitting and high enough to allow for an accurate representation of 
the characteristic value µtop. After validating the statistical prerequisites with the residual 
plots, the models in Table 7 are chosen as the most promising ones. Friction systems D88, 
MC-B and D117, MP-C are used to derive models. Friction system D88, MP-A was only 
used for validation of those models and was not used for model derivation itself. Model 
1 and model 2 show values of R2 and Radj2  greater 99.5%, model 3 shows R2 = 97.4% and Radj2  = 96.7%. 

Table 7. Models chosen from ANOVA analysis. 

Friction 
System 

Number of 
Parameters 

Model 

D88, MC-B 7 c0+cA⋅A+cC⋅C+cD⋅D+cE⋅E+cAC⋅AC+cAD⋅AD (model 1) 
D88, MC-B 8 c0+cA⋅A+cC⋅C+cD⋅D+cE⋅E+cAC⋅AC+cCD⋅CD+cDE⋅DE (model 2) 
D117, MP-C 7 c0+cA⋅A+cC⋅C+cD⋅D+cE⋅E+cAC⋅AC+cDE⋅DE (model 3) 
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The analysis of D88, MC-B provides conclusive results, where the behavior of the 
coefficients and diagrams allows a clear decision on which models to choose. D88, MP-A 
shows a very strong dependency of CoF on steel plate temperature. However, maximum 
differential speed and its interactions are identified as insignificant early in the optimiza-
tion process. The resulting model shows good behavior regarding residuals and has no 
dependency on the maximum differential speed. This correctly represents the friction be-
havior of this clutch, but it cannot be properly validated with the existing experimental 
design, which is strongly characterized by clutch speed ramps. D117, MP-C has a very 
consistent CoF. The analyzed factors show only little influence on the friction behavior. A 
suitable model with good residual behavior can be found at a sudden drop in both R2 
and Radj2  after the factor of feeding oil flow rate is removed. This drop suggests that the 
remaining factors contribute more to the quality of the model. 

4.2. Application of Stepwise Regression with Cross Validation for Model Derivation 
Using the dataset of D88, MC-B, we choose the p-value known from the ANOVA 

method as the first criterion for the stepwise regression algorithm. The threshold for add-
ing a factor is set to p < 0.05 and the threshold for removal is p > 0.06. Starting from an 
empty model containing only a constant, the factors A, C and B are added consecutively. 
The order in which the factors are added makes the algorithm overlook the factor E that 
is known to be valuable from the ANOVA method before. 

Consequently, factors A, C and E, which fulfill the criterion in the first step of the 
algorithm, are then used as part of the start model. With this configuration and the same 
thresholds, the algorithm manages to choose a final model equal to the first one in Table 
7. Using all five factors (A-E) as a starting model makes the algorithm choose the interac-
tions DE, AC and CD, before removing the main effect B of feeding oil flow rate. This 
behavior matches the experience from the ANOVA method and the preceding analysis of 
main effect and interaction diagrams. The resulting model is equal to the second model in 
Table 7. The fact that both models created with the manual ANOVA reappear in the au-
tomatic stepwise algorithm demonstrates the compatibility of the two methods. We then 
choose the change in the adjusted coefficient of determination Radj2  as an optimization cri-
terion. This allows the model to be directly optimized for efficiency. The threshold for 
adding factors is set to Radj2  > 0, so that any improvement in model efficiency can be con-
sidered. After obtaining models with high Radj2  from the ANOVA method, the threshold 
for removal is set to −0.0001. Starting from an empty model with only one constant, the 
result is the same as before, where the algorithm overlooks the factor E. Using the factors 
A, C and E as a starting model results in the same order. Therefore, the algorithm chooses 
the first model in Table 7 as before with the p-value.  

4.3. Model Validation 
To validate the created models from Table 7, we exemplarily compare the calculated 

CoF from these models with measurement data. CoF for load stage LS3 is determined with 
all models and compared to the measured data in Figure 9. Between the five slip phases, 
all models calculate a high CoF even though the clutch speed is 0 rpm. One reason might 
be that the ANOVA and the model fit is executed with data within the range of 25 to 100 
rpm. Therefore, the models cannot be applied to clutch speeds below 25 rpm. 
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Figure 9. Comparison of measurement and simulation of CoF for load stage LS3 for three models 
fitted to D88, MC-B. 

We restrict the visual model evaluation to clutch speeds above 1 rpm. For lower 
clutch speeds, CoF is set to 0. Figure 10 shows that this adjustment only affects the area 
between the slip phases. At the beginning and at the end of each slip phase, the clutch 
speed is between 1 and 25 rpm. In this area of extrapolation, the models show the biggest 
deviations from the measurement and the biggest differences between each other. In the 
middle of the slip phase, the clutch speed is between 25 and 100 rpm. In this area, all 
models show a good representation of the measurement. 

 
Figure 10. Comparison of measurement and simulation of CoF for load stage LS3 for three models 
fitted to D88, MC-B, restricted to ∆n > 1 rpm. 

The load stage LS1 in Figure 11 has higher pressure (3 N/mm²) compared to LS3, 
while the other factors stay the same. Higher pressure causes a faster rise in steel plate 
temperatures. Conversely, the CoF decreases over the slip phases. This behavior is well 
reproduced by all three models. In this high-pressure scenario, model 1 is closer to the 
measurement for the low-speed areas of the later slip phases. In the low-pressure scenario, 
models 2 and 3 performs better in these areas. Both plots show linear behavior of the mod-
els, which cannot perfectly match the non-linear behavior of the measured CoF. 
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Figure 11. Comparison of measurement and simulation of CoF for load stage LS1 for three models 
fitted to D88, MC-B, restricted to ∆n > 1 rpm. 

To compare transferability of the models between all tribological systems, only the 
last slip phases are observed. Figure 12 shows the influence of clutch pressure on CoF with 
the dotted lines representing 1 N/mm² (p−) and the solid lines representing 3 N/mm² (p+). 
Although each model was derived for one specific friction system, all models react to the 
change in clutch pressure for all friction systems and can reproduce the level of CoF. Con-
sidering the behavior of CoF, the models perform differently in specific areas. In particu-
lar, the non-linear and asymmetric behavior of D117-MP-C L-204, caused by strong tem-
perature dependence of CoF, is not reproduced by the linear models. Here, friction system 
D88-MP-A L-103 is used for validation only. 

 
Figure 12. Comparison of measurement and simulation of CoF for load stages LS13 and LS15 with 
different pressures 1 N/mm² and 3 N/mm², restricted to ∆n > 1 rpm. 

Figure 13 shows the influence of feeding oil temperature. Dotted lines represent feed-
ing oil temperature 40 °C (ϑ−) and solid lines 90 °C (ϑ+). It can be observed that all models 
react to the change in oil temperature and can reproduce the level of the CoF.  
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Figure 13. Comparison of measurement and simulation of CoF for load stage LS1 for three models 
fitted to D88, MC-B, restricted to ∆n > 1 rpm. 

5. Discussion 
The presented approach uses experimental data to determine reasonable linear fric-

tion models. Both approaches, the ANOVA method and stepwise regression, show good 
compatibility and can be used to derive easy-to-use models. The derived models make it 
possible to analyze the analyzation of main influencing factors and consider their effects 
on CoF. 

Here, a designed test plan helps to reduce the effort for experimental tests dramati-
cally. Using ANOVA for the identification of suitable friction models also helps to deter-
mine the main effects on the friction behavior of the clutch system. To compare different 
clutch systems, the models can be derived for each clutch system individually. The for-
mulation of the model itself supports the understanding of important effects but also the 
used coefficients. Further optimization could be possible by using physically motivated 
factors such as friction work and friction power instead of factors that can be directly con-
trolled at the test rig such as differential speed and clutch pressure. 

In addition, the presented modelling is suitable for operating modes with high en-
ergy input that show approximate linear friction behavior over sliding velocity. Strong 
non-linearities at very low sliding speeds or for curves of CoF over sliding velocity with 
significant maxima, for example, cannot be considered with the presented approach. 
Therefore, sophisticated, non-linear approaches should be considered. The linearity can 
also be checked in advance by performing tests at the center points of the tested load 
stages. Nevertheless, these nonlinearities are not relevant for thermal simulations of many 
clutches with paper or carbon-based friction lining. The energy input through friction 
work is very low at low sliding speeds and most clutch systems with the mentioned fric-
tion lining do not show significant maxima in their friction characteristic. Even for small 
non-linearities, the proposed methodology supports the identification of easy-to-use fric-
tion models with sufficient accuracy for thermal simulations, for example, with a signifi-
cant reduction in experimental effort. A reasonable choice of the factor levels is crucial in 
finding the adequate model. Therefore, preliminary tests should be performed with the 
consideration of operational prerequisites. 

The models respond properly to all changes in the factor levels in question. In addi-
tion, the resulting models show good correspondence to the measurements—even for 
more than one friction system. Therefore, the models are suitable as input models for ther-
mal simulations with little effort for experimental investigations at the same time. 
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The procedure can easily be adapted, depending on the investigated conditions, and 
can also be used for other applications where experimental data are used for determining 
easy-to-use input models. 

6. Conclusions 
Since determining the friction behavior of wet disk clutches requires experimental 

investigation, a reasonable modeling approach for determining friction models is neces-
sary. This paper presents an approach for identifying and validating linear friction models 
using ANOVA and stepwise regression. Three models are derived and discussed using 
three relevant clutch systems with paper- and carbon-based friction lining. Good compat-
ibility of the ANOVA and stepwise regression approach is identified.  

The proposed modeling allows for the derivation of easy-to-use linear friction mod-
els as inputs for thermal calculations, for example, with little experimental effort. Thus, 
linear models are found suitable for the investigated clutch systems in relevant opera-
tional modes. Experiments are characterized by the characteristic friction value µtop. Rea-
sonable factors and corresponding factor levels are used for the experimental investiga-
tions. 

By using DOE, the experimental effort could be reduced. ANOVA and stepwise re-
gression both lead to the same linear friction models. Both approaches can support the 
interpretation of influencing factors. Due to the evaluation of reasonable performance cri-
teria of the models, unnecessary factors for the modelling friction behavior can be identi-
fied and not considered in the model. When applying the presented modeling approach, 
the linearity of the underlying model should be checked in preliminary tests and in the 
model validation.  
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