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Abstract: In this paper, we present a newly modified machine learning model that employs a
long short-term memory (LSTM) neural network model with the golden jackal optimization (GJO)
algorithm to predict the tribological performance of Cu–Al2O3 nanocomposites. The modified model
was applied to predict the wear rates and coefficient of friction of Cu–Al2O3 nanocomposites that
were developed in this study. Electroless coating of Al2O3 nanoparticles with Ag was performed to
improve the wettability followed by ball milling and compaction to consolidate the composites. The
microstructural, mechanical, and wear properties of the produced composites with different Al2O3

content were characterized. The wear rates and coefficient of friction were evaluated using sliding
wear tests at different loads and speeds. From a materials point of view, the manufactured composites
with 10% Al2O3 content showed huge enhancement in hardness and wear rates compared to pure
copper, reaching 170% and 65%, respectively. The improvement of the properties was due to the
excellent mechanical properties of Al2O3, grain refinement, and dislocation movement impedance.
The developed model using the LSTM-GJO algorithm showed excellent predictability of the wear
rate and coefficient of friction for all the considered composites.

Keywords: long short-term model; golden jackal optimization; Cu–Al2O3 nanocomposites;
tribological properties

1. Introduction

Properties that reduce friction are some of the most significant things to consider when
constructing electronic circuits because they affect the quality of electronic components.
The friction between two parts should be as low as feasible to reduce maintenance costs
and extend the lifetime of the touched parts. In addition, the wear loss of the touched
component surfaces should be kept to a bare minimum [1]. To that end, there has been
a lot of focus on producing Cu-based nanocomposites with better frictional and wear
resistances [2].

Copper and its alloys have been widely used in aviation, aerospace, and smart grid
fields because of their excellent electrical and thermal conductivity as electrical connec-
tors [3–7], which are mainly responsible for the power transfer and signals transmission of
the system. However, the application of Cu is limited due to its low tribological properties
such as poor wear resistance and inferior strength. Although copper matrix composites rein-
forced with ceramic fibers and/or particles exhibit a greater specific strength and elasticity
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modulus, the electrical and thermal properties of the composites are usually reduced [8]. In
this context, it is possible to manufacture mechanically strengthened Cu matrix composites
by adding ceramic-based Al2O3 [9–15], graphene [16–21], SiC [22,23], ZrO2 [24–28], and
CNT [29,30] into the Cu matrix. Although the distribution of hard ceramic particles into the
Cu matrix provides high hardness and durability to the composites, it causes a decrease in
the electrical conductivity of the composites due to the presence of the ceramic particles to
be distributed homogeneously in the metal matrix [31–33]. Moreover, the low conductivity
of the ceramics plays a role in the conductivity reduction of the whole composite. Due to
these disadvantages, it is stated that Cu should use second-phase elements (Al, Ni, Cr, Zn,
Sn, etc.) or coatings in order to maintain good electrical properties while improving its
physical and mechanical properties [34–38].

Because of their excellent hardness, wear, and corrosion resistance, ceramic materials
reinforced by Cu-based nanocomposite coatings are currently being studied intensively. Cu-
based nanocomposite coatings are deposited via high-velocity oxygen fuel spraying [39],
plasma spraying [40], detonation thermal spraying [41], pulsed-gas dynamic spray [42], and
cold spraying [43]. To produce Cu-based composite coatings, the precursor feedstock is re-
inforced with SiC, B4C, and Al2O3 [44]. An alumina nanoparticle is preferred because of its
more stable structure and improved resistance to corrosion [45]. The amount, distribution,
and size of reinforcing particles all have a significant effect on the composite’s characteris-
tics. Fathy et al. [46] found an increase in Cu–Al2O3 nanocomposites’ compressive strength,
wear resistance, and microhardness.

Wettability concerns make it difficult to form an interfacial bonding between metals
and ceramics. Ceramics covered with metal powders are nanocomposite powders with
a metallic shell and a ceramic core that convert non-metallic ceramic particles to metallic
particles, adding specific magnetic, electrical, and chemical properties to the ceramic
powders while also enhancing wettability between the metal and the ceramics [47,48].
To prevent Cu from oxidizing and improve Cu matrix mechanical properties, Cu matrix
nanocomposites reinforced with Al2O3-coated Ag can be used [49,50].

Considering the applicability of Cu-based composites is related to many contact prob-
lems, such as those in brushes for wind turbine blades and electrodes, it is constructive to
study their wear response under different conditions. The wear test is relatively expensive
and time consuming because it runs several experiments at different loads and sliding
speeds and distances. Thus, a rapid prediction tool based on experimental observations is
valuable for industry. Because artificial intelligence has the advantage of providing solu-
tions to very complex problems, regardless of lab availability or cost, it has been used to
predict the wear rates of Cu–Al2O3 nanocomposites under abrasive wear conditions [51–54].
A recent work utilized an enhanced dendritic neural algorithm to predict the wear behavior
of Cu–Al2O3 nanocomposites [55]. Furthermore, machine learning finds applications in
engineering, chemistry, and other fields [56–59]. The newly developed random vector
functional link (RVFL) algorithm was trained using experimental data from wear tests to
accurately predict the response of this composite with different Al2O3 content.

Moreover, the performance of long short-term memory (LSTM) has been established
as a ML technique and applied to different applications, for example, viral reverse engineer-
ing [60], wind power [61], and others [62,63]. However, the main limitation of LSTM is the
difficulty in determining the parameters that have the largest influence on its performance.
So, this motivated us to propose an alternative method to handle this limitation by using
a metaheuristic technique named golden jackal optimization (GJO) [64]. The main aim
of using GJO was to find the optimal value for the parameters of the LSTM to enhance
its performance.

The main objective of the paper was to predict the wear behavior of Cu–Al2O3
nanocomposites using a newly adapted machine learning model named long short-term
memory (LSTM) based on GJO. Based on the foregoing analysis, Cu–Al2O3-covered Ag
with varying Al2O3 contents was fabricated in the current study using silver nanoparticles
electrolessly deposited on alumina. The nanocomposite coatings’ microstructural and mi-
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crohardness were investigated. After that, the effects of adding Al2O3-coated nanoparticles
to the nanocomposite coatings on tribological behavior were examined. Finally, the LSTM
algorithm was trained to predict the wear and frictional properties of various composites
with a wider range of reinforcement content. The application of this technique will aid in
the development of these composites for military and medical applications [65,66].

2. Experimental Procedure

The nanocomposite was created using copper powder (particle size of ~50 nm and
99.99% purity) as a metal matrix and Al2O3 (γ-Al2O3, 99.99%, 50 nm) as a ceramic rein-
forcing ingredient. To verify the interface qualities, Al2O3 was coated onto Ag using an
electroless plating technique. Sensitization of alumina was performed by drowning it in
a 5 percent sodium hydroxide solution and moving it for 1.5 h, then immersing it into
acetone for 1.5 h using an ultrasonic cleaner. This gel was then dried for 1 h at 125 ◦C in an
oven. Then, electroless deposition of Ag on alumina was performed using a chemical bath
containing a 3 g/L silver nitrate solution and 300 mL/L formaldehyde with a pH of 12. For
15 min, a magnetic stirrer was used to mix the solution continuously at 25 degrees Celsius.
This gel was rinsed and dried for 1.5 h at 125 ◦C. The gel was then solidified. Nanoparticles
were reinforced with copper powder of various weights (0, 2.5, 5, 7.5, and 10) to create
nanocomposites via the powder metallurgy route (ball milling and consolidation). Under
700 MPa, the mixture was cold compacted with the use of a hydraulic press and punch and
die. To reduce die-to-punch friction, the punch and die were carefully cleaned with acetone
and lubricated with zinc stearate before compacting each sample. After that, the samples
were sintered in hydrogen for 90 min at 950 degrees Celsius.

The morphological and microstructural properties of compact samples were examined
using a Zeiss Evo LS10-type scanning electron microscope (SEM). Aztec One system EDS
System was used for elemental mapping tests. All sintered nanocomposite contacts were
hardness tested using the Shimadzu digital Vickers microhardness method at a 5 N load
for 10 s. To ensure the repeatability of the test results, four measurements were taken for
each sample.

Pin-on-disk wear equipment was used to evaluate the specimens’ wear resistance.
The samples were cleaned with ethanol before testing to remove any impurities. The pin
and disk were made of AISI 52,100 steel (with a hardness of 63 HRC) and the sample,
respectively. The tests of wear were conducted at various speeds (0.4, 0.8, and 1.2 m/s) and
under various standard loads of 10, 20, 30, and 40 N. The loss of weight was measured every
2 min using an analytical balance with a 0.1 mg precision. Before and after each interval
of the wear testing, the pins were cleaned with alcohol. The micro-computer-controlled
vertical universal friction and wear tester was used to test the wear coefficient of Cu–Al2O3
nanocomposite coatings. The friction coefficient was calculated using the friction torque
measured while sliding.

3. Machine Learning Model
3.1. Long Short-Term Memory Neural Network Model

A description of long short-term memory (LSTM) is given in this section. The LSTM is
viewed as an enhanced version of the current neural network (RNN) that goes beyond the
drawbacks of the conventional RNN [67]. LSTM excels in remembering vast volumes of
information over extended periods and learning dependencies. A typical LSTM model has
a large number of modules in its chain structure. These modules differ from conventional
RNNs in that they include four distinct interaction levels that are all uniquely coupled.
Figure 1 shows the LSTM’s configuration and includes a cell that represents the memory
modules. The condition of the cell determines how data flow forward. It is possible to
apply some linear transformations to the data. The activation gates can also be used to add
or remove information from the cell state. These activation gates are used to apply sigmoid
activation functions to the data. Each gate uses a unique set of weights and a variety of
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matrices operations. These gates are additionally utilized to control the memory process,
enhancing the LSTM’s capabilities and preventing dependence problems.
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The input from the current state and the hidden state of the previous cell is first passed
to the forget gate to decide whether to store the information by outputting one or discard it
by outputting zero, as illustrated in Figure 1. X is the input vector at time t, and N is the
number of LSTM cells in the forward pass in Equation (1). Choosing whether or not to
forget the knowledge is the primary goal of forget gates. The sum of the bias (b f ) and the
product between the weights (W f ) and the inputs (ht−1, Xt), which includes the input from
the previous state (ht−1) and then the forget value ( ft), is defined as:

ft=σ(W f · [ht−1Xt] + b f ) (1)

The following step involves utilizing the following equation to update the cell state (Ct):

Ct=Ct−1 · ft + Nt · it (2)

where Nt denotes the output of the tanh function that depends on Wn, ht−1, Xt, and bn, and
it is computed as:

Nt= tan h(Wn · [ht−1, Xt] + bn) (3)

where it is the output of sigmoid layer, which is calculated using the following formula:

it=σ(Wi · [ht−1, Xt] + bn) (4)

After that, the sigmoid activation output (Ot) is calculated based on the value of Xt ,
ht−1, Wo, and bo, as formulated in Equation (5):

Ot = σ(Wo · [ht−1, Xt] + bo) (5)

The next step is to enhance the value of ht, as defined in Equation (6):

ht = Ot · tan h(Ct) (6)

3.2. Golden Jackal Optimization (GJO)

In this part, the steps of the golden jackal optimization (GJO) algorithm [64] are
presented. Similar to other metaheuristic (MH) techniques, the first process in GJO is to
construct the population of N solutions using the following formula:

Xi = LB + r× (UB− LB), i = 1, 2, . . . , N (7)

where LB and UB are the limits of parameters within the search space. r ∈ [0, 1] denotes
the random value. After that, for each Xi, i = 1, 2, . . . , N, the fitness value, and determines
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the best of them (i.e., male solution Xb) and second best (i.e., female jackal). The next step
is to build the matrix of prey using Equation (8):

Prey =


X11 X12 . . . X1d

X21 X22 . . . X2d

...
...

...
...

XN1 XN2 . . . XNd

 (8)

3.2.1. Exploration Stage

The hunting process is the simulation of exploration, and this depends on the male
jackal (XM) and female jackal (XFM) updating their position according to XM . This process
can be formulated using Equations (9) and (10):

X1(t) = XM(t)− E× |XM(t)− rl × Prey(t)| (9)

X2(t) = XFM(t)− E×|XFM(t)− rl × Prey(t)| (10)

where XM and XFM are updated to X1 and X2, respectively, at the t-th iteration. E is the
energy of prey which is updated as:

E = E0 × E1 (11)

In Equation (11), E1 and E0 are the decreasing and initial value of energy, respectively.
The values of E0 and E1 are updated using Equations (12) and (13), respectively:

E0 = 2× r− 1 (12)

E1 = c1 × (1− (t/T)) (13)

In Equation (13), T refers to the maximum number of generations. Meanwhile, rl
refers to random value produced according to the Levy distribution using Equation (14):

rl = 0.05× Levy (14)

After that, the positions of the jackal are updated according to Equation (15):

X(t + 1) =
X1(t) + X2(t)

2
× Levy, Levy =

s|u× σ|

|v|
1
β

, σ =

 Γ(1 + β)× sin
(

πβ
2

)
Γ
(

1+β
2

)
× β× 2(

β−1
2 )

 (15)

where u and v refer to random numbers; in addition, β = 1.5 and s = 0.01 a re constants.

3.2.2. Exploitation Stage

Within the exploitation phase, GJO aims to discover feasible solutions within the
explored areas. This process in GJO represents the hunting of male and female jackals in
nature, and the mathematical definition is given as:

X1(t) = XM(t)− E× |rl × XM(t)− Prey(t)| (16)

X2(t) = XFM(t)− E× |rl × XFM(t)− Prey(t)| (17)

3.2.3. Switching from Exploration to Exploitation

In GJO, the transition between the exploration and exploitation phases is accomplished
by utilizing the prey’s escaping energy. If the value of |E| > 1, the solutions commence
their exploration phase; if not, they move on to the exploitation phase. The GJO steps are
shown in Figure 2.
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3.3. Proposed Model

Figure 3 shows the steps of the tribological properties prediction model. In summary,
the provided model, known as LSTM-GJO, relies on exploiting the GJO algorithm’s behavior
to establish the LSTM network’s parameters.

The first step in LSTM-GJO is to use the following equation to produce the initial
solutions, which represent the value of each LSTM parameter:

Xij = lj + r×
(
uj − lj

)
, i = 1, . . . , N, j = 1, . . . , D, r ∈ [0, 1] (18)

where uj and lj are limits of the parameter of the LSTM. In this study, D = 5 is the
number of parameters in Xi, which refers to minimum batch size (BS), number of hidden
units (Nh), learn rate drop factor (LRDF), max epochs (MaxE), and optimization approach
(OpM). In this study, we set OpM ∈ {1, 2, 3}, which refers to Adam, the stochastic gradient
descent with momentum (SGDM), and the RMSProp optimizer, respectively, as well as
LRDF ∈ [0.1, 0.9], Nh ∈ [20,200], BS ∈ [64, 265], and MaxE ∈ [20, 300]. For clarity, suppose
Xi = [BS, Nh, LRDF, MaxE, OpM] = [64, 25, 0.5, 200, 1], which refers to Adam optimizers,
is used with Nh = 200, BS = 64, LRDF = 0.5, and MaxE = 200 as the structure of the LSTM.
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Thereafter, the fitness value of Xi is computed according to the training set that
represents 70% of the samples of input data.

Fiti =

√
∑Ns

i=1(YP −YT)
2

Ns
(19)

where Ns is the number of instances in the training set with the output YT , whereas YP is
the predicted output. After choosing the best solution, we update the other solutions using
the operators of the GJO. This update stage is continued until we reach the stop conditions
and returns the best solution. Employing performance metrics to assess the best solution is
performing using the testing set, which represents 30% of the input data.

4. Results and Discussion
4.1. Microstructural Observations

Figure 4 shows the morphology and the composition of Cu–Al2O3 nanocomposite
powders with different Al2O3 content after ball milling. The Cu particles became smaller
with increasing Al2O3 content. Moreover, the particle shape became rounded and uniformly
distributed with increasing Al2O3 content, as shown in Figure 4c. The presence of Al2O3
nanoparticles in the mixture during milling accelerates the fracture process of the Cu
particles due to the reduction of plasticity of the material caused by severe impacts and the
penetration of Al2O3 nanoparticles to the lattice structure of Cu particles [68,69]. During the
milling process, Al2O3 nanoparticles stick to Cu particles, which reduces their plasticity and
facilitates their fracture [68]. The reduction of Cu particle size and the uniform distribution
of the Al2O3 nanoparticles at the particle scale play a great role in the production of
homogenous composites with good dispersion of Al2O3 nanoparticles. The XRD analysis
of all Cu–Al2O3-nanocomposites-coated Ag showed the presence of Cu, Al2O3, and Ag,



Lubricants 2022, 10, 277 8 of 18

which were the main components of the produced composite, without any observable
contaminants, Figure 4d.

Lubricants 2022, 10, 277 8 of 17 
 

 

4. Results and Discussion 

4.1. Microstructural Observations 

Figure 4 shows the morphology and the composition of Cu–Al2O3 nanocomposite 

powders with different Al2O3 content after ball milling. The Cu particles became smaller 

with increasing Al2O3 content. Moreover, the particle shape became rounded and uni-

formly distributed with increasing Al2O3 content, as shown in Figure 4c. The presence of 

Al2O3 nanoparticles in the mixture during milling accelerates the fracture process of the 

Cu particles due to the reduction of plasticity of the material caused by severe impacts 

and the penetration of Al2O3 nanoparticles to the lattice structure of Cu particles [68,69]. 

During the milling process, Al2O3 nanoparticles stick to Cu particles, which reduces their 

plasticity and facilitates their fracture [68]. The reduction of Cu particle size and the uni-

form distribution of the Al2O3 nanoparticles at the particle scale play a great role in the 

production of homogenous composites with good dispersion of Al2O3 nanoparticles. The 

XRD analysis of all Cu–Al2O3-nanocomposites-coated Ag showed the presence of Cu, 

Al2O3, and Ag, which were the main components of the produced composite, without any 

observable contaminants, Figure 4d. 

 

Figure 4. SEM micrograph of the nanocomposite powders; (a) Cu–2.5%Al2O3-coated Ag, (b) Cu–

5%Al2O3-coated Ag, (c) Cu–10%Al2O3-coated Ag, (d) XRD of all Cu–10%Al2O3-coated Ag. 

Figure 5 shows the microstructure of the produced bulk Cu–Al2O3 nanocomposites 

after consolidation. The microstructure of the consolidated samples revealed a dense com-

posite with low void content due to the homogeneity of the microstructure. Moreover, 

there was no agglomeration of Al2O3 nanoparticles observed. The absence of micro-sized 

agglomeration was due to the coating of the Al2O3 nanoparticles with Ag, which improved 

Figure 4. SEM micrograph of the nanocomposite powders; (a) Cu–2.5%Al2O3-coated Ag, (b) Cu–
5%Al2O3-coated Ag, (c) Cu–10%Al2O3-coated Ag, (d) XRD of all Cu–10%Al2O3-coated Ag.

Figure 5 shows the microstructure of the produced bulk Cu–Al2O3 nanocomposites
after consolidation. The microstructure of the consolidated samples revealed a dense
composite with low void content due to the homogeneity of the microstructure. Moreover,
there was no agglomeration of Al2O3 nanoparticles observed. The absence of micro-sized
agglomeration was due to the coating of the Al2O3 nanoparticles with Ag, which improved
their wettability with Cu, as previously reported in [29,30,70]. The good dispersion of
Al2O3 nanoparticles in the consolidated samples was a subsequent result of the good
dispersion and the absence of agglomeration in the powder form of the composite (see
Figure 4). Coating Al2O3 nanoparticles with Ag particles reduced the mismatch of the
surface characteristics between Cu and Al2O3, which enhanced the adhesion between Cu
grains and Al2O3 nanoparticles, as shown in Figure 5d. Thus, a void-free microstructure
was produced. The grain size was observed to be reduced with increasing Al2O3 content.
The reduction of grain size was attributed to the increase of Al2O3 content that precipi-
tated at the Cu grain boundaries, which reduced the relative movement and relaxation
of grains during solidification. Previous studies explained the mechanism of consolida-
tion of Cu-based composite reinforced with Al2O3 coated by Ag and Ni nanoparticles,
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and they demonstrated the efficiency of this process to improve the wettability of these
composites [70,71].
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In order to ensure homogenous distribution at the element level, EDS and mapping
analysis were conducted, and the results are reported in Figure 6. After consolidation,
the mapping analysis showed the homogenous distribution of the reinforcement in the
matrix at the element level, where no agglomeration of any of the composite elements
was observed. Moreover, it demonstrated that the produced composite was free from any
contaminants that might have occurred during consolidation and sintering.
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4.2. Microhardness

As illustrated in Figure 7, the relative density decreased with increasing Al2O3 mass
fraction, decreasing from 97.5 to 93.8 for the Cu matrix and the specimen with 10% Al2O3.
The microhardness of Cu–Al2O3 nanocomposites with different Al2O3 nanoparticles con-
tent was evaluated, as shown in Figure 7. The microhardness of the pure Cu samples
was 63.9 HV. The addition of 2.5% Al2O3 nanoparticles led to an increase in the hard-
ness to 72.4 HV. This hardness increase was attributed to the addition of Ag-coated Al2O3
nanoparticles, which impeded the dislocation movement during indentation. Moreover, the
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existence of Al2O3 nanoparticles in the composite microstructure reduced the plastic defor-
mation ability of the material during indentation, which reduced the indentation depth and,
hence, increased the material hardness. The microhardness increased with increasing Al2O3
nanoparticles content, reaching 165 HV for the composite with 10% Al2O3 content. The
good dispersion of Al2O3 nanoparticles with extremely high hardness inside the Cu matrix
(see Figure 5) was the main reason for the hardness improvement. Moreover, the reduction
of the grain size contributed to the reduction in the material plasticity, which enhanced the
hardness as well [72]. Additionally, increasing the Al2O3 content increased the impedance
of dislocation movement, which contributed to the hardness improvement [72]. Compared
to other available composites in the literature, where Cu–Al2O3 was reinforced with 2%
GNPs particles, the improvement rate for Cu–Al2O3 coated with silver particles showed a
1.5 times larger improvement rate compared to Cu–Al2O3 [20].
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Figure 7. Variation of microhardness and relative density of nanocomposites versus alumina content.

4.3. Tribological Properties

Table 1 shows the wear rates of the Cu–Al2O3 nanocomposites with different Al2O3
content tested at different loads and sliding speeds. The addition of Al2O3 nanoparticles
to the Cu matrix reduced the wear rates for all the considered loads and speeds. For
instance, the wear rate of the composite with 3% Al2O3 content tested under 20 N load and
0.3 m/s sliding speed was 3.4 × 10–5 g/m compared to 4.2 × 10–5 g/m for pure Cu, which
achieved 24% wear rate reduction. The existence of Al2O3 nanoparticles in the composite
microstructure enhanced the hardness of the material (see Figure 7), which increased the
ability of the material to resist sliding pins. Moreover, the reduction of the material plasticity
caused by the addition of Al2O3 and grain refinement reduced the material removal rate
during sliding, which enhanced the wear rates. Increasing the Al2O3 content reduced the
wear rate of the composite, reaching around 70% improvement for the composite with 12%
Al2O3 content. This response was predicted because of the improvement of the hardness
and the homogenous microstructure of this composite.
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Table 1. Tribological properties of Cu–Al2O3 nanocomposites. The data in parenthesis represent the standard deviation of the results.

Wear Rates ×10−5 g/m

Load (N)
Sliding Speed 0.4 m/s 0.8 m/s 1.2 m/s

0% 2.5% 5% 7.5% 10% 0% 2.5% 5% 7.5% 10% 0% 2.5% 5% 7.5% 10%

10 3.7±0.2 3.0±0.1 2.6±0.2 1.7±0.1 1.1±0.2 4.3±0.1 4.1±0.2 3.5±0.1 3.0±0.1 2.7±0.1 4.6±0.2 4.4±0.2 3.8±0.1 3.2±0.2 3.1±0.1

20 4.2±0.1 3.4±0.2 2.8±0.1 1.9±0.2 1.4±0.1 5.8±0.2 4.8±0.1 4.2±0.2 3.6±0.2 3.1±0.1 5.9±0.2 5.0±0.1 4.5±0.2 3.9±0.1 3.3±0.1

30 4.4±0.1 3.8±0.1 3.0±0.2 2.4±0.1 1.6±0.2 6.5±0.1 5.5±0.2 5.0±0.1 4.2±0.2 3.6±0.1 7.2±0.2 5.8±0.2 5.4±0.1 4.6±0.1 3.5±0.1

40 5.1±0.3 4.2±0.2 3.2±0.1 2.2±0.2 1.8±0.1 8.0±0.2 6.9±0.1 6.2±0.2 5.4±0.1 4.1±0.1 8.58±0.3 7.5±0.3 6.3±0.2 5.3±0.1 3.8±0.1

Coefficient of Friction

10 0.81±0.02 0.78±0.01 0.77±0.02 0.74±0.02 0.70±0.01 0.72±0.01 0.70±0.02 0.68±0.02 0.65±0.02 0.63±0.01 0.60±0.01 0.58±0.01 0.56±0.01 0.54±0.02 0.53±0.02

20 0.78±0.02 0.75±0.03 0.73±0.02 0.71±0.03 0.68±0.02 0.71±0.01 0.69±0.02 0.66±0.02 0.62±0.01 0.61±0.01 0.58±0.01 0.56±0.02 0.53±0.01 0.51±0.02 0.50±0.01

30 0.76±0.02 0.73±0.02 0.71±0.02 0.66±0.03 0.65±0.01 0.68±0.02 0.67±0.01 0.64±0.02 0.60±0.01 0.58±0.02 0.57±0.01 0.53±0.02 0.51±0.01 0.48±0.02 0.47±0.01

40 0.74±0.02 0.71±0.03 0.68±0.02 0.63±0.03 0.60±0.01 0.66±0.02 0.64±0.01 0.62±0.02 0.58±0.01 0.56±0.02 0.55±0.01 0.51±0.01 0.50±0.01 0.47±0.01 0.44±0.01
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The testing conditions affected the wear rates, as shown in Figure 5, and increasing
the testing load led to an increase in the wear rates. This was due to the increase of material
removal during sliding that was caused by the larger pressure applied to the pin, which
allowed larger plastic deformations [73]. The same behavior was observed for the sliding
speed, where increasing the sliding speed led to an increase in the wear rates due to the
larger friction forces generated between the disk and the pin, which allowed larger material
removal rates.

The effect of Al2O3 content, testing load, and sliding speed on the coefficient of friction
of Cu–Al2O3 nanocomposites is shown in Table 1 . The additions of Al2O3 nanoparticles
highly influenced the coefficient of friction of the produced composite, and a clear reduction
of the friction coefficient was observed with increasing Al2O3 content. This was due to the
lower plastic deformation of the composites compared to the pure Cu caused by the grain
refinement and presence of Al2O3 nanoparticles, which reduced the contact area between
the disk and the pin. The effect of testing load and sliding speed was opposite to their effect
on the wear rates, as shown in the figure. For such cases where many parameters control the
test with a global trend, an analytical model that combines the effect of the reinforcement
weight fraction and the testing condition could help for reducing experimental cost and
time. However, there are no analytical models that consider all these parameters. Therefore,
a machine learning model could be applied to predict the response based on the training
set that we tested.

Table 2 and Figures 8 and 9 show the comparison between the presented LSTM-GJO
and other methods, such as asymptotic organisms search (SOS) [74], the grey wolf algorithm
(GWO) [75], and the salp swarm algorithm (SSA) [76], for wear rates prediction considering
the effect of Al2O3 content and testing conditions. The comparison between the GJO and
other models was computed using three well-known performance measures named the
root-mean-square error (RMSE), the mean absolute error (MAE), and the coefficient of
determination R2. The results showed that the performance of the LSTM-GJO was superior
to the other methods in the two tested outputs, wear rate and coefficient of friction. For
example, in the case of wear rate, the LSTM-GJO provided an R2 higher than SOS, GWO,
and SSA, being 6.88, 3.49, and 3.02, respectively, whereas the R2 of the LSTM-GJO was
nearly 5.25, 3.59, and 3.78 higher than SOS, GWO, and SSA, respectively. In addition, by
comparing the value of RMSE and MAE in the two cases, we noticed that LSTM-GJO had a
smaller value than other methods. This indicates that LSTM-GJO has a greater ability to
predict wear rates and coefficient of friction than other methods. Moreover, this observation
can be seen in Figures 8 and 9, which show the correlation between the predicted wear
rates and coefficient of friction obtained using LSTM-GJO and other methods.

Table 2. Predictability of LSTM-GJO model compared to other models.

Wear Rates Coefficient of Friction

GJO SOS GWO SSA GJO SOS GWO SSA

R2 0.9896 0.9493 0.8827 0.8999 0.9950 0.9915 0.9828 0.9911
RMSE 0.0531 0.1171 0.1782 0.1646 0.3677 0.4814 0.6845 0.4929
MAE 0.0509 0.1110 0.1774 0.1603 0.2604 0.3311 0.5248 0.3904
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5. Conclusions

This paper presented a novel machine learning model (LSTM-GJO) that employs a long
short-term memory (LSTM) neural network model with golden jackal optimization (GJO)
to predict the tribological properties of Cu–Al2O3 nanocomposites with different Al2O3
content and was tested at different wear conditions, applied loads, and sliding speeds. To
this purpose, the Cu-based matrix was reinforced with Ag-coated Al2O3 nanoparticles using
the ball milling technique. The produced powders were consolidated and sintered to form
bulk rounded-shape samples. The produced composite with 10% Al2O3 content showed
enhanced microhardness, reaching 165 HV compared to the 63.9 HV of pure Cu. Despite
this large Al2O3 content, the microstructure of the composite was homogenous, which
contributed to the mechanical properties’ enchantment. Moreover, the grain refinement
caused by the presence of the Al2O3 nanoparticles in the Cu microstructure helped with
hardness improvement. The wear rate was reduced with increasing Al2O3 concentration
due to the lower deformation of the pin during the sliding over the disk caused by the
reduced plasticity of the composites. Moreover, the coefficient friction was decreased
due to the lower contact area between the composites and the disk. Due to the large
number of parameters during the wear test that include the reinforcement content, sliding
speed, and load, the machine learning model was developed and used to predict the wear
rates in a simple and fast process. This developed LSTM-GJO depends on enhancing
the performance of the LSTM neural network model using a GJO optimizer. To validate
the performance of the developed LSTM-GJO model, a set of real-world data collected
from Cu–Al2O3 nanocomposites was used. In addition, the results of the LSTM-GJO were
compared with other models, SCA and GWO and SSA. The experimental results showed
the overall superiority of LSTM-GJO among the compared algorithms.
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