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Abstract: Multi-leaf journal foil bearing (MLJFB) is well known for its applications in the air cycle
machines (ACMs) of airplanes. However, its frictional energy dissipation mechanism of overlapped
foils has not been theoretically studied and is still not clear to researchers. This paper models the
frictional sliding/sticking behaviors between adjacent foil leaves based on the tangent gap, applying
the penalty method of contact mechanics. Large foil deformations are calculated to simulate the
processes of foil assembly and rotor insertion using nonlinear curve beam elements. Predictions of
the frictional hysteresis characteristics of MLJFB are obtained, influenced by foil boundary conditions,
leaf number, bearing radial clearance and other foil structural parameters, which correlate well with
the test results. This study lays solid theoretical foundations for the static and dynamic research
of MLJFB.
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1. Introduction

Gas foil bearing is the aerodynamic bearing characterized by elastic supports, which
possesses superior advantages in the applications of medium- and small-sized high-speed
turbomachinery [1]. It has one smooth or multiple top foils to generate lubrication gas film
and usually has corresponding underlying foil structures to provide additional stiffness
and damping [2].

Multi-leaf journal foil bearing (MLJFB), which is also known as the “leaf-type bearing”,
has a number of curve foil leaves with one end installed to the bearing sleeve and the
other end overlapped on the next foil leaf, as shown in Figure 1. This type of foil bearing
is characterized by the foil structural preload effect and the natural converged gas film
clearances. Although MLJFB is famous for applications in the air cycle machines (ACMs) of
air planes due to its superior adaption of inertia forces in different directions [1], its static
and dynamic performance—especially the Coulomb friction effect—is still not very clear
to researchers. Further applications of MLJFB are thus hindered to some extent in other
high-speed turbomachinery such as air compressors in blowers and hydrogen fuel cells.

Early researchers have completed valuable work towards the MLJFB, whose potential
was first proved in the tests of small gas turbine engines [3–6]. Analytical models were
developed to calculate the foil deformation, and the aeroelastic results demonstrated the
inconstant contact states between bearing components. Arakere and Nelson [7] avoided
the penetrations between foils and added the constraint of bearing sleeves in their model.
Du and Zhu studied the load capacity of MLJFB by including the area contact effect
between foil leaves [8]. Li and Du further applied contact mechanics to introduce the
inside comprehensive and complex contact constraints [9]. The foil boundary conditions
are not the same in the above studies, in which [3–7] deem the fully hinged boundary of
the foil end and [8,9] deem the fixed boundaries. Iordanoff et al. [10] developed a model
of MLJFB in which the unilateral pivot link of the foil leaf was presented. The authors
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studied foil contact conditions through the gaps between bearing components. In the above
studies, simulations of assembling foil leaves were conducted only under pure geometrical
constraints and neglected the effects of foil deformations. Meanwhile, the nonlinear effect
of large foil deformation is not considered in the simulation process of rotor insertion. Most
of all, the effect of Coulomb friction is not included.
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Oh and Rohde [11] applied the tangent friction force to foil elemental nodes of MLJFB
and obtained a larger bearing load capacity affected by frictions. However, the bearing
sleeve constraint and the hysteresis effect of loading–unloading simulations, as well as the
stick/slide contact behaviors, are not included. In addition, bearing load capacities and
stiffness coefficients were calculated only at smaller rotor eccentricities, thus not presenting
the nonlinear foil structural characteristics.

The MLJFB with back springs was also studied by researchers through theoretical
modeling and experiments. Heshmat studied the effects of a step-like back spring on the
load capacity and stiffness coefficients of an eight-pad MLJFB [12]. Arakere concluded
that the appropriate design of the back spring can increase the bearing load capacity [13].
Geng et al. [14] simulated the assembly process of MLJFB using the bump structure as a
back spring. Duan et al. [15] further concluded that the MLJFB with a bump-type back
spring exhibits twice the load capacity and stiffness of the bump foil bearing. Du and Zhu
et al. conducted comprehensive parametric studies towards the MLJFB with a bump-type
back spring [16]. However, the effects of friction and large foil deformation were also not
included in these studies [12–16]. Xu et al. studied the influence of friction on the nonlinear
foil structural stiffness of a multi-leaf bump foil bearing [17], but the detailed foil structural
model and the frictional hysteresis effect were not included.

The dynamic studies of MLJFB are not sufficient compared with the static charac-
teristics. Reddy et al. [18] first studied the dynamic characteristics of MLJFB using the
perturbation method. However, the Coulomb damping was not considered. Guo et al.
conducted static loading–unloading tests and measurements of rotor dynamic responses
towards MLJFB [19]. Obvious hysteresis curves under different foil leaf thicknesses were
obtained, and the results indicate a larger enclosed area with a thinner foil leaf. A thicker
foil leaf leads to larger rotor displacement under the same static load. However, the influ-
ence of rotor–foil frictional contact is not excluded in this study, leading to an evidently
larger hysteresis loop area. Schmiedeke et al. conducted experiments of dynamic excitation
on the multi-leaf foil bearing with a back spring [20]. Dynamic hysteresis loops were
obtained under different frequencies and amplitudes of dynamic loads, which especially
show a strong dependence on the load frequency. This indicates the difference in foil
structural Coulomb damping between quasi-static and transient results. In addition, the
results obtain a four-times-larger foil structural loss factor before rotor liftoff than that at
the rotor speed of 60,000 r/min, indicating that the frictions between the rotor and foil
leaves under preload conditions have large effects.
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Until now, there has been no theoretical study on the frictional hysteresis effect of
MLJFB, and most of the studies are conducted towards the bump type foil bearing. Heshmat
first simulated the static loading–unloading process through establishing a mechanical
model of a bump foil strip based on the beam theory and considering the stick-slide effects
under friction [21]. The following studies developed frictional contact models and the
corresponding Newton–Raphson iteration algorithms of bump foil bearing to calculate the
frictional hysteresis loops under quasi-static conditions [22–26]. The frictional hysteresis
loops under dynamic excitations were simulated based on self-developed foil structural
models in the studies [27,28] and on Abaqus CAE software in [29]. The dynamic damping
of the bump foil structure is calculated, which shows large dependences on excitation
frequency, load amplitude and radial clearance.

The frictional hysteresis effect is essential not only in the load carrying performance
but also in the vibration and stability analyses of rotor-MLJFB systems. The theoretical
research blank of this effect in MLJFB hinders the calculations and predictions of dynamic
rotor responses supported by MLJFBs, bearing dynamic coefficients and the foil structural
loss factor. In addition, the foil deformation is actually large enough compared with the foil
leaf dimensions during the processes of foil assembly and rotor insertion. It is necessary to
consider the problem of geometrical nonlinearity during large foil deformations, which is
always neglected by previous studies.

In order to handle these problems, this paper established a frictional contact model of a
rotor-MLJFB system based on numerical contact mechanics and the nonlinear finite element
method in Section 2 [30–32]. The behaviors of the tangent stick/slide and normal con-
tact/separation between adjacent foil leaves are modeled, applying the penalty approach
and the Lagrange multiplier method, respectively. The nonlinear large deformations of foil
leaves are calculated by considering the nonlinear geometrical strains. Thus, the complete
analytical model of MLJFB is developed, which includes the calculation algorithms of
foil leaves assembly, rotor insertion and the static rotor loading–unloading process. In
Section 3, the frictional hysteresis effect influenced by the foil boundary condition, foil
leaf number, radial clearance and foil structural parameters is predicted and analyzed.
Finally, in Section 4, this effect is experimentally obtained to validate the reasonability of
the present model.

The novelty of this study is that the problem of the frictional hysteresis effect in MLJFB
is solved for the first time from theoretical perspectives, including calculations of accurate
nonlinear large foil deformations. The simulation program is developed without using
commercial software due to the fact that the present contact model will be integrated
into aero-elastic and rotor dynamic calculations in the future. This study will lay a solid
foundation for the dynamic analyses of rotor-MLJFB systems with and without back springs,
which can be realized by changing the present quasi-static model to the transient one with
foil and rotor masses.

2. Modeling of MLJFB with Coulomb Frictions

The MLJFB is mainly composed of a number of foil leaves and a sleeve that is used
to contain and install the foil leaves, as shown in Figure 1. The foil leaf is assembled as
one overlapped on another in turn along the circumferential direction, and the foil leaf
number is not fixed and is usually 5, 8, 12, etc. The overlapping between foil leaves not only
produces elasticity but also leads to the converged gas film clearances. The arrangement
of this chapter is: Section 2.1 derives the nonlinear stiffness matrices of the curve beam
element, which is applied to model the curve foil leaf. Section 2.2 models the complex
contact constraints inside MLJFB. Section 2.3 presents the boundary conditions of foil leaves.
Section 2.4 presents the calculation algorithms.

2.1. Nonlinear Curve Beam Element of the Foil Leaf

The finite element method is applied to calculate foil deformations. In the previous
study [9], the linear curve beam element is adopted to model the curve foil leaf under
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fixed boundary conditions. In this paper, hinged boundaries of foil leaves are considered,
resulting in large foil deformations compared with the foil leaf dimensions. The nonlinear
curve beam model is developed in this study, aiming at handling the problem of geometrical
nonlinear large deformations [33,34].

The initial position or configuration of each foil leaf is not fixed. The foil leaf may
be tangent with a bearing sleeve inner surface or possess a certain angle θi, as shown in
Figure 2a. The radius of the foil leaf is usually larger than that of the rotor in order to obtain
the preload effect, and the centers of each foil leaf will locate on the same circle. Each foil
leaf is discretized into a number of nonlinear curve beam elements. The arc length of the
curve beam element is 0.5 mm in this paper in order to guarantee the calculating accuracy.
The cylindrical coordinate and nodal displacements of one nonlinear curve beam element
are shown in Figure 2b.
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Figure 2. Mesh generation of MLJFB with (a) different initial foil leaf positions and (b) a nonlinear
curve beam element.

Based on the above definitions, the axial strain Ea in the curve beam element consisting
of bending and stretching strains and the geometrical nonlinear strain is formulated as:

Ea = Et + Eb + En (1)

Et =

(
∂v
∂s

+
w
Rf

)
; Eb = −z

(
∂2w
∂s2 −

∂v
Rf · ∂s

)
; En =

1
2

∂w
∂s
· ∂w

∂s
(2)

where Et is the stretching strain; Eb is the bending strain; En is the geometrical nonlinear
strain; v and w denote the tangent and radial displacements, respectively; s denotes the
circular coordinate; Rf denotes the radius of each foil leaf.{

w = A1 + A2 · s + A3 · s2 + A4 · s3

v = B1 + B2 · s + B3 · s2 + B4 · s3 (3)

The vi, wi, Eti and θyi (i = 1, 2) of two elemental nodes are selected as the nodal
displacements, and the eight coefficients (A1 ~A4, B1 ~ B4) in Equation (3) can be calculated.
Therefore, the shape functions Nv and Nw of v and w can be obtained with these coefficients:
v = Nv·ue, w = Nw·ue, where ue is the displacement vector of the curve beam element. The
axial strain in Equation (1) can be formulated in the matrix form as:

Ea = (BL + BN) · ue = Ba · ue (4)
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where Ba is the total strain matrix; BL and BN are the linear and nonlinear strain matrices:{
BL = ∂Nv/∂s + Nw/Rf − z

(
∂2Nw/∂s2 − ∂Nv/∂s/Rf

)
BN = 1

2 (∂Nw/∂s) · ue · ∂Nw/∂s = 1
2 An ·G

(5)

where An = (∂Nw/∂s) · ue and G = ∂Nw/∂s. The derivations of the nonlinear stiffness
matrices of the curve beam elements Kn

e and Kt
e are presented in Equations (A1) and (A2)

in the Appendix A.

2.2. Contact Constraints Inside MLJFB including Frictions

There are various types of contact constraints inside the MLJFB, such as the frictional
area contact between adjacent foil leaves, the contact between the foil sleeve and rigid
bearing sleeve and the rotor–foil contact during the processes of rotor insertion and static
loading–unloading.

2.2.1. Frictional Foil–Foil Contact

Contact constraints between adjacent foil leaves are described by node–element contact
nodes pairs such as A − BC, which is shown in Figure 3. Point A is the slave node of
the beam element on the present foil leaf, and BC is a master curve element on the next
foil. Point F is the interpolating node on element BC. Because of the possibility of point A
sliding on BC, the position of F is not constant and is represented by “s”, which is also a
variable besides the nodal displacements.
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The normal gap of the contact pair A − BC is formulated as:

gf
n =

→
FA

T
· nm − tf (6)

where
→
FA is the gap vector; g, F and A are the new positions after foil deformation; tf is the

foil thickness; nm is the unit normal vector at node F on the deformed surface of BC and is
calculated as:

nm =

− cos
(

s
Rf

+ θF
y

)
− sin

(
s

Rf
+ θF

y

)
sin
(

s
Rf

+ θF
y

)
− cos

(
s

Rf
+ θF

y

)nB (7)

where nB is the unit normal vector at node B0 before foil deformation; s indicates the
position of interpolating point F on curve beam element BC; θF

y is the angular displacement
of node F.

In the previous study [9], the friction effect between overlapped foil layers was not
considered, only presenting the normal contact gap and deeming that the present foil
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leaf slides freely on the next foil leaf without friction. In this study, the friction effect is
considered through formulating the tangent gap gf

t of the contact nodes pair B − CD as:

gf
t =

→
Fre f A

T
· tm (8)

where Fref denotes the reference contact node F in this loading step and has the same
interpolating coordinate “s” with last loading step, s = s1; tm is the unit tangent vector at
node F and is obtained through rotating nm by 90 degrees counterclockwise.

In Equations (1) and (2),
→
FA is calculated based on the initial positions of F0 and A0

and the corresponding displacements:

gT =
→
FA

T
=
→

OA
T
−
→

OF
T
=

 →
OA0

T
+ wA · nA

T + vA · tA
T−

→
OF0

T
−Nw · um

e · nF
T −Nv · um

e · tF
T

 (9)

where wA and vA are the radial and tangential displacements of point A; nA, tA, nF and tF
are the unit normal vectors in the corresponding directions; Nw and Nv are the interpolating
functions at position “s” on the curve element BC; um

e is the displacement vector of element
BC with a size of 8 × 1.

Based on the normal and tangent contact gaps, the contact energies of a certain
contact nodes pair can be derived for the sticking and sliding states. Herein, the Lagrange
multiplier and penalty factor are applied to form the contact energies in the normal and
tangent directions, respectively, and they have a physical meaning of contact force and
tangent contact stiffness [35].

(1) Contact energy formulations for sticking contact nodes pair

The sticking or sliding state of the contact nodes pair A − BC in this loading step is
determined based on the last loading step. For instance, if the interpolating position of
point F on element BC is “s1” in the last loading step, as shown in Figure 4, the tangent gap
in this loading step is calculated based on the reference value “s1” to determine the sticking
or sliding state of this contact nodes pair in each iteration.
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Figure 4. Schematic of the tangent contact constraints in MLJFB with frictions.

If the contact nodes pair is in a sticking state, the corresponding formulation of the
contact energy is given as:

∏f
c

∣∣∣
stick

= λn · gf
n

∣∣∣
stick

+
1
2

εt · gf
t

∣∣∣
stick
· gf

t

∣∣∣
stick

(10)

where gf
n
∣∣
stick and gf

t
∣∣
stick denote the normal and tangent gaps, respectively, which are

calculated based on the interpolating point F with position “s1” in this loading step; λn
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denotes the Lagrange multiplier, indicating the contact force; εt denotes the penalty factor,
indicating the tangent contact stiffness, and is set as 107 in this study. In order to derive the
Newton–Raphson iteration formula for the nonlinear deformation problem, the variation
form of ∏f

c

∣∣∣
stick

is derived as:

δ∏f
c

∣∣∣
stick

= δλn · gf
n

∣∣∣
stick

+ λn · δ gf
n

∣∣∣
stick

+ εt · gf
t · δgf

t

∣∣∣
stick

= Gf
u

∣∣∣
stick
· δqe (11)

where qe is the general displacement vector of this contact nodes pair, including the nodal

displacements of nodes A, B, C and λn; Gf
u

∣∣∣
stick

is the general contact force vector in the
sticking state.

Considering the unchanged position of F or “s1” in the sticking state, the δ gf
n
∣∣
stick and

δ gf
t
∣∣
stick in Equation (11) are derived as:

δ gf
n

∣∣∣
stick

= gT · δnm|stick +
[
nA

T tA
T −

(
Ns1

w · nF
T + Ns1

v · tF
T)] · nm · δUe = Gd

n

∣∣∣
stick
· δUe (12)

δgf
t

∣∣∣
stick

= gT · δtm|stick +
[
nA

T tA
T −

(
Ns1

w · nF
T + Ns1

v · tF
T)] · tm · δUe = Gd

t

∣∣∣
stick
· δUe (13)

where Ue is the displacement vector of the contact nodes pair without λn. The further
differential calculation of δ ∏f

c

∣∣∣
stick

is:

∆
(

δ ∏f
c

∣∣∣
stick

)
= δλn · ∆gf

n + ∆λn · δ gf
n
∣∣
stick + εt ·

(
∆gf

t · δgf
t
∣∣
stick + gf

t · ∆ δgf
t
∣∣
stick

)
+ λn · ∆

(
δ gf

n
∣∣
stick

)
= δqe

T ·Kf
u

∣∣∣
stick
· ∆qe

(14)

where Kf
u

∣∣∣
stick

is the tangent matrix of the foil–foil frictional contact nodes pair in the
sticking state.

(2) Contact energy formulations for the sliding contact nodes pair

When the contact nodes pair A− BC is the sliding state in this loading step, the contact
energy is formulated as:

∏f
c

∣∣∣
slide

= λn · gf
n + µ · α · λn · gf

t

∣∣∣
s=s2

(15)

where µ denotes the friction coefficient; α denotes the sliding direction, which has a value
of 1 or −1; gf

t
∣∣
s=s2

is the tangent gap in this loading step considering the position change of
the interpolating point F from s1 to s2.

The variation form of the contact energy is derived as:

δ∏f
c

∣∣∣
slide

= δλn · gf
n

∣∣∣
slide

+ λn · δ gf
n

∣∣∣
slide

+ µ · α · λn · δs= Gf
u

∣∣∣
slide
· δqe (16)

where δs is the variation form of gf
t
∣∣
s=s2

, indicating the variation in the sliding distance;

Gf
u

∣∣∣
slide

is the general contact force vector in the sliding state.
When node A slides on curve beam element BC, the position of interpolating node F

satisfies the following equation due to the facts that the normal gap is minimum and the
gap vector g is perpendicular with the unit tangent vector tm:

tm
T · g = 0 (17)

After the differential calculation of Equation (17), the relationship between ds and dUe
can be obtained:

∂tm
T

∂s
ds · g + ∂tm

T

∂Ue
dUe · g + tm

T · ∂g
∂s

ds + tm
T · ∂g

∂Ue
dUe = 0 (18)
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ds = Ds
u|s=s2

· dUe (19)

where Ds
u|s=s2

is the calculated matrix relating dUe with ds; the “s” is calculated with s2,
which denotes the position of F in this loading step. Therefore, the δs in Equation (16) is
obtained.

The variation of the normal gap under the sliding state δ gf
n
∣∣
slide has different formula-

tions from those under the stick state because the position of F or “s” is also a variable in
this condition. It is worth noting that the “s” is calculated with s2 for the sliding condition.

δ gf
n
∣∣
slide = gT δnm|slide +

[
nA

T tA
T −

(
Ns2

w · nF
T + Ns2

v · tF
T) ] ·nm|slide · δUe

−
(

dNs2
w

ds ue
m · nF

T + dNs2
v

ds ue
m · tF

T
)
· δs−Ns2

w · ue
m · δnF

T −Ns2
v · ue

m · δtF
T − δ

→
OF

T

= Gd
n

∣∣∣
slide

δUe

(20)

The further differential calculation of δ ∏f
c

∣∣∣
slide

is derived as:

∆
(

δ ∏f
c

∣∣∣
slide

)
= δλn · Gd

n

∣∣∣
slide
· ∆Ue + δ(Ue)

T ·
(

Gd
n

∣∣∣
slide

)T
· ∆λn + λn · δ(Ue)

T · ∆
(

Gd
n

∣∣∣
slide

)T
+

µα · δ(Ue)
T ·
(

Ds
u|s=s2

)T
· ∆λn + µα · λn · δ(Ue)

T · ∆
(

Ds
u|s=s2

)T

= δqe
T ·Kf

u

∣∣∣
slide
· ∆qe

(21)

where Kf
u

∣∣∣
slide

is the tangent matrix of the frictional contact nodes pair in the sliding state.

2.2.2. Foil-Bearing Sleeve Contact

The contact between the foil leaf and bearing sleeve is studied through a random
nodal D on the foil, as shown in Figure 3a. Assuming D1 is the point on the inner surface
of the bearing sleeve that is to come into contact with D, which is the position of D0 after
foil deformation, the gap of the foil-bearing sleeve contact pair is formulated as:

gs
n = ‖

→
D1D‖ − tf

2
= Rs − ‖

→
OD0 + wD · nD + vD · tD‖ −

tf
2

(22)

where Rs is the radius of the bearing sleeve inner surface; wD and vD are the radial and
tangential displacements of node D; nD and tD are the unit normal radial and tangential
vectors on node D0.

2.2.3. Rotor–Foil Contact

When studying the contact type between the rigid rotor and each foil leaf in Figure 3a,
E is a random nodal point on the foil, and E1 is the point on the rotor surface that will
contact with E. The gap of the rotor–foil contact pair is:

gr
n = ‖

→
OrE‖ − Rr −

tf
2
= ‖

→
OE0 −

→
OOr + wE · nE + vE · tE‖ − Rr −

tf
2

(23)

where wE and vE are radial and tangential displacements of node E; nE and tE are the unit
normal radial and tangential vectors; Rr is the radius of the rotor surface.

The derivations of contact energies, as well as the contact force vectors and tangent
matrices of the foil–sleeve and rotor–foil contact constraints, can be found in the previous
study [9].

2.3. Boundary Conditions of the Elastic Foil Leaves

The boundary conditions of each foil leaf have always been ignored by researchers
when investigating the MLJFB. Figure 5 describes three different types of boundary condi-
tions that can cover almost all the application circumstances.
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ci∏  are the frictional contact energy 
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rbθ

Totally pinned

Pinned-fixed

Figure 5. Schematic of the boundary conditions of the foil leaf.

The first is the fixed boundary condition under which the translational and rotational
displacements of each foil end are all constrained. The second is the hinged-fixed boundary
condition. The foil leaf can freely rotate within a certain range, which is described as
stage one. If the foil leaf is rotating away from the bearing sleeve, there exists a threshold
when two corner nodes of the foil end come into contact with the bearing sleeve, and the
boundary conditions will transfer from the hinged boundary to the fixed boundary. The
threshold of the rotating angle θrb can be calculated by solving the following equations:{

wf2 · cos θrb + lf1 · sin θrb = ws

(cos θrb)
2 + (sin θrb)

2 = 1
(24)

where ws is the groove width on the bearing sleeve; lf1 and wf2 are the length and width of
the bending corner. If the threshold is reached, the constraint of rotating away from the
bearing sleeve is activated by adding the rotation contact energy:

∏rb
cθ = λθ · grb

θ = λθ · (θG − θrb) (25)

The third is the totally hinged boundary. Each foil leaf can rotate freely in both
directions during the processes of foil assembly and rotor insertion.

2.4. Iteration Formula and Calculation Algorithms
2.4.1. Iteration Formula

Through the modeling processes, it is shown that the deformation of the overlapped
foil leaves of the MLJFB is significantly nonlinear, not only due to the geometrical nonlinear
deformation but also because of the nonlinear contact constraints including the frictions.
Therefore, the Newton–Raphson iteration method is applied to solve this nonlinear defor-
mation problem. The variation form of the total potential energy δ ∏ can be formulated
as:

δ ∏ = δ
Na

e

∑
i=1

∏ei
f + δ

Ncf

∑
i=1

∏f
ci + δ

Ncs

∑
i=1

∏s
ci + δ

Ncr

∑
i=1

∏r
ci + δ

Ncrb

∑
i=1

∏rb
cθi = δQT ·GU (26)

∆
(
δ ∏

)
= δQT ·KU · ∆Q (27)
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in which ∏ei
f is the strain energy of the ith curve beam element and Na

e is the total number
of curve beam elements; ∏f

ci, ∏s
ci and ∏r

ci are the frictional contact energy between adjacent
foil leaves, the contact energy between the foil leaves and bearing sleeve and the contact
energy between the rotor and foil leaves of the ith contact nodes pairs, respectively; Ncf,
Ncs and Ncr are the total contact pair numbers of the corresponding contact types; ∏rb

cθi is
the contact energy that is active when the foil leaf has a relatively large rotation away from
the bearing sleeve; Q, GU and KU are the general displacement vector, contact force vector
and tangent matrix, respectively, which can be obtained by assembling the corresponding
vectors and matrices of each contact nodes pair.

2.4.2. Calculation Algorithms

The schematics of foil leaf assembly, rotor insertion and static rotor loading–unloading
are shown in Figure 6, and the corresponding calculation algorithms are given in Figure 7a,b,
respectively. During the foil assembly simulation, the rotor–foil contact constraint is not
activated. Based on the initial positions of the foil leaves, an overlapped new configuration
is obtained after the foil assembly process. Due to the obviously smaller inscribed circle
diameter of the foil structures compared with the rotor, the rotor insertion simulation is
conducted by gradually increasing the rotor diameter. The static rotor loading–unloading
process is conducted after rotor insertion by increasing or decreasing the rotor eccentricities
ey in the y direction. The bearing reaction force Fy in the y direction is calculated based on
Equation (28).

Fy =
Ncr

∑
i=1

∣∣∣λi
n

∣∣∣ · yT ·
→

OrEi

‖
→

OrEi‖
(28)

where λi
n is the contact force of the ith contact node; Ncr is the number of contact nodes;

→
OrEi is the position vector of the contact node on a certain foil leaf.
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Figure 7. Calculation algorithms of (a) foil assembly and (b) rotor insertion and static loading of
MLJFB.

3. Results and Discussions

This section presents the calculation results and detailed discussions based on the
model developed in Section 2. Section 3.1 studies the influences of the nonlinearity of large
foil deformations. Section 3.2 includes the frictions and studies the hysteresis characteristics
of overlapped foil structures. The calculation parameters applied in this chapter are given
in Table 1, in which the values in bold are selected as the baseline parameters.

Table 1. Calculation parameters.

Parameters Values

Rotor diameter Dr/mm 35

Rotor radius Rr/mm 17.5

Bearing width L/mm 35

Foil leaf number 5, 8, 12

Foil leaf radius Rb/mm 1.2 × Rr, 1.5 × Rr, 1.8 × Rr, 2.1 × Rr

Foil leaf thickness tf/mm 0.1, 0.15, 0.2

Overlapping ratio λ 0.35, 0.4, 0.45

Initial radial clearance Cini/µm 50, 100, 150, 200

Friction coefficient between foil leaves µ 0, 0.1, 0.2, 0.3

3.1. Influences of Nonlinear Large Foil Deformation in MLJFB

In Section 2.1, the nonlinear geometrical strain is included in Equation (1) to solve the
problem of large foil deformations. Figure 8a,b show the assembly results of the overlapped
foil leaves modeled by linear and nonlinear curve beam elements, respectively. Each
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subfigure also presents the results under different installation angles θi of each foil leaf,
which are defined in Figure 2a. In this section, the parameters of the studied MLJFB are
selected as the bold values in Table 1, except the foil leaf radius Rf equals 1.5 × Rr and µ is 0.
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Figure 8. Calculation results under linear and nonlinear curve beam elements: (a) foil assembly
results under linear element, (b) foil assembly results under nonlinear element, (c) rotor insertion
results and (d) static loading results.

When the linear element is applied, it first shows that the configurations of overlapped
foil leaves after foil assembly are obviously different under different values of θi (different
initial configurations of foil leaves). When θi is 0◦, the inscribed circle radius Rfa is 16.2 mm,
which is much larger than the result when θi is 15◦. The results of the foil arc length L1 after
foil assembly also exhibit a difference; they are both larger than the initial foil length of
23.4 mm before foil assembly. Secondly, the contact forces between adjacent foil leaves are
also not consistent under different θi, values, showing the larger force value when θi is 0◦.

In comparison, when the effect of nonlinear large foil deformation is considered, the
configurations of overlapped foil leaves, the foil length and the contact force between the
foil leaves all show great consistency after foil assembly.

Figure 8c,d show that the gap distributions between the rotor and foil leaf as well as
the static loading curves are very close under different values of θi with nonlinear curve
beam elements, but the results exhibit obvious difference when calculated with linear
elements.

The results in this section indicate that the linear curve beam element can lead to
prediction errors of MLJFB, and the consideration of the geometrical nonlinearity of large
foil deformation is very necessary.
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3.2. Frictional Hysteresis Characteristics of MLJFB

This section investigates the frictional hysteresis characteristics of MLJFB, influenced
by the friction coefficient, foil boundary condition, leaf number, bearing radial clearance and
foil structural parameters through static loading–unloading simulations. This hysteresis
effect results from the frictions between adjacent foil leaves, which is very important,
as it influences both the bearing stiffness and Coulomb damping. The baseline bearing
parameters are selected as the bold values in Table 1.

3.2.1. Influence of the Friction Coefficient

Firstly, in order to obtain a better understanding of the analysis in the following
sections, Figure 9a illustrates the numbering of foil leaves (eight-leaf bearing as an example)
and elemental nodes. Figure 9b shows the contact states of the sliding directions between
adjacent foil leaves: “sliding apart” and “sliding close”.
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Figure 9. (a) Nodes series of the foil leaf and (b) the schematic of the sliding direction between
adjacent foil leaves.

Figure 10a presents the results of static loading–unloading curves under different
friction coefficients µ between adjacent foil leaves. For different cases, the static load is
imposed and increased gradually until the same value of 45 N is reached, and then the
unloading process starts. It shows that the larger µ leads to the larger loop area enclosed by
the loading–unloading curve, indicating a better Coulomb damping performance, and the
foil structural stiffness, i.e., the slope of the loading curve, is also higher.

Figure 10b–d show the contact states between foil leaves during loading and unloading
processes. The nodes on the foil leaves 3, 4, 5 and 6 tend to possess the contact states of
“sliding apart” during the loading process, and the nodes on the foil leaves 1, 2, 7 and 8 tend
to possess the contact states of “sliding close”. During the unloading process, the above
sliding directions tend to change oppositely. These sliding directions are determined by
nodal tangent displacements, which also correlate closely with radial foil deflections due to
the coupling effect between the nodal displacements of the curve beam element. Therefore,
the friction forces imposed on each foil leaf tend to hinder the radial foil deflections, which
is the cause of the frictional damping effect.

Also worth noting is the influence of the friction coefficient µ on the stick states. Firstly,
the larger friction coefficient leads to more sticking contact nodes during both the loading
and unloading processes. Secondly, the sticking state tends to happen at the beginning
of the unloading process, and an increased µ tends to stick the contact nodes at more
unloading steps. The above effects are responsible for the larger area enclosed by the
loading–unloading curves.
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Figure 10. Calculation results influenced by friction coefficient µ: (a) static loading–unloading results,
(b) contact states under µ = 0.1, (c) contact states under µ = 0.2 and (d) contact states under µ = 0.3.

3.2.2. Influence of Foil Leaf Boundary Conditions

Figure 11a shows the influence of the groove width on the bearing sleeve ws on the
foil boundary condition. If ws equals the width value of the foil end wf2, each foil leaf has
a fixed boundary condition. Otherwise, the foil leaf possesses a hinged–fixed boundary
condition.
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Figure 11b presents the results of static loading–unloading simulations under different
values of ws. It shows that the fixed boundary of foil leaves results in the smallest area
enclosed by the loading–unloading curve. When the ws is increased to 3.05 mm to allow for
a slightly wider free rotation range of each foil leaf, the hysteresis area obviously increases.
It continues to increase if ws is further increased to 3.1 mm, but it has little change when ws
is further enlarged to 3.2 mm.

The reason for above results can be analyzed by Figure 12, which illustrates the contact
forces and contact states between foil leaves and also the contact forces between the rotor
and foil leaves. For the fixed boundary condition, the foil leaves have no elemental nodes
contact with the rotor at the beginning of the loading process, and the contact force is zero.
The stick states at the small rotor eccentricities in Figure 12c also prove this point, which
also indicates the larger radius of the inscribed circle of the assembled foil leaves and that
there is no rotor preload effect. The foil structural stiffness, i.e., the slope of the loading
curve, is thus lower at the beginning of the loading process. The contact forces between foil
leaves are also smaller in this period because of the fact that the fixed constraint of the foil
end results in insufficient interactions between adjacent foil leaves. The fixed boundary
leads to a less elastic foil structure, and each foil leaf cannot slide or deflect sufficiently,
resulting in more sticking nodes during the loading–unloading process. The size of the
hysteresis area is thus limited.
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When ws gradually increases, the foil structure becomes less compact, and the radius
of the inscribed circle before the rotor insertion becomes smaller. The rotor tends to come
into contact with the foil leaves, and its preload effect is excited, thus resulting in a larger
foil structural stiffness at the beginning of the load process. The contact forces between the
foil leaves are also increased. The contact nodes between the foil leaves tend to slide more
freely, and the hysteresis area becomes larger.

Even though a much larger slot width ws results in a smaller inscribed circle after foil
assembly, the MLJFB will have the same configurations after the rotor insertion, as well as
the assembly preload between the foil leaves and between the rotor and foils. Therefore,
the frictional hysteresis curves almost remain unchanged.

3.2.3. Influence of the Foil Leaf Number

This part studies the influence of the foil leaf number on the static loading–unloading
results of MLJFB. The other parameters are selected as the bold values in Table 1. Figure 13a
illustrates the configurations of foil leaves before the overlapping assembly. Figure 13b
shows that the MLJFB with more foil leaves possesses a larger foil structural stiffness,
especially at small rotor eccentricities. The bearing (D × L = 35 × 35 mm2) with five
foil leaves shows obvious nonlinear stiffness values during the loading process. The
foil structural stiffness is lower at small rotor eccentricities due to the larger supporting
span, but the main supporting foil leaf comes into contact with the bearing sleeve under a
relatively large static load, thus having a rigid support. This evident nonlinear effect hinders
the increment of the frictional hysteresis area Sh, which is the smallest for the five-leaf
bearing. On the other hand, the Sh of the 12-leaf foil structure is also not the largest because
the maximum rotor displacement and foil deformation are limited. In comparison, the
eight-leaf foil structure dissipates the most energy during the loading–unloading process.
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The frictional hysteresis area Sh not only depends on the general foil structural stiffness,
i.e., the rotor displacement, but it is also affected by the normal contact forces and contact
states shown in Figure 14, which can further explain above static loading–unloading results.
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It shows that the contact forces are generally small when Nf is 5, but there is an abrupt
increment of the contact force at the end of loading process, indicating the contact of foil
leaf 2 with the rigid bearing sleeve. In comparison, the contact forces are generally larger
throughout the loading–unloading process when Nf is 12, especially between foil leaves.
Even though foil leaves 4, 5, 6 and 7 play the main supporting roles, the contact forces on
other foils also cannot be ignored. These results indicate the pronounced preload effects of
assembled foil leaves and rotor insertion with more foil leaves, which benefit the frictional
hysteresis effect.

For the five-leaf MLJFB, the node on the free end of foil leaf 2, which has the largest
contact forces, experiences the transition of contact states from sliding to sticking and back
to sliding again in the opposite direction. For the 12-leaf MLJFB, the unloading steps of
the sticking state are fewer in number. This is because the contact node is easier to slide
between overlapped foil leaves with a larger leaf number. The turn corner of the unloading
curve from the larger slope section to the smaller slope section appears relatively earlier in
this condition and hinders the increment of the frictional hysteresis area.

3.2.4. Influence of Bearing Radial Clearance

The radial clearance is significant for gas bearings, which, for MLJFB, is defined as
the value Cini deducting double foil thicknesses from the clearance between the bearing
sleeve and rotor, as shown in Figure 15a. Its influences on static loading–unloading
results are shown in Figure 15b. For a small clearance value of 50 µm, the foil structural
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stiffness is the largest in the beginning of the loading process, leading to the smallest rotor
eccentricity at the same static load of 45 N. In this condition, the calculated hysteresis
area Sh is the minimum among the three cases. With the increase in Cini, the maximum
rotor eccentricity increases, and so does the value of Sh. However, the frictional energy
dissipation ability is hindered at relatively large static bearing loads, e.g., 100 N under a
large radial clearance, because the increment ∆Sh is the smallest due to the displacement
limitation of the bearing sleeve.
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Figure 15. Influence of the (a) radial clearance on the (b) static loading–unloading results.

Figure 16a shows that the small radial clearance 50 µm increases both the contact
forces between the foil leaf and the rotor and those between the adjacent foils, resulting in
a more compact foil structure. The nodes on the second and sixth foil leaves tend to stick
rather than slide, as depicted in Figure 16c. The nodes on the third foil leaf start to slide
only at larger static loads, and those on the fourth and fifth foil leaves tend the maintain
the sticking state for more steps after transiting to the unloading processes. For the larger
radial clearance condition, Figure 16b shows that the assembly contact forces at zero rotor
eccentricity are evidently lower. The foil structure is generally more elastic. The third and
fourth foil leaves obviously play the main role of supporting, which is different from the
small clearance condition. The nodes of different foil leaves tend to slide more easily, but
the sticking effect at the beginning of the unloading process is not outstanding.
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3.2.5. Influence of Foil Leaf Structural Parameters

This subsection mainly investigates the influence of foil leaf structural parameters,
including the initial foil leaf radius Rf, the foil leaf thickness tf and the foil overlapping
ratio λ, on the frictional hysteresis characteristics of MLJFB.

(1) Initial foil leaf radius

The initial foil leaf radius Rf refers to the radius of the curve foil before its overlapping
assembly, as shown in Figure 17a. Different values of Rf result in different foil structural
characteristics. In Figure 17b, a higher foil structural stiffness is calculated under larger
values of Rf, especially at the beginning of the loading process. However, the variation in
the hysteresis area is not monotonous with the increase in Rf. The Sh increases from 0.67 to
0.97 mJ when Rf increases from 1.2 to 1.8 times of Rr but decreases to 0.73 mJ if Rf is further
enlarged to 2.1 times of Rr, thus indicating that the too-large Rf is not beneficial for the
Coulomb damping performance of MLJFB.

Lubricants 2022, 10, 261 21 of 30 
 

 

just due to the large foil stiffness and small rotor eccentricity, which are not evidently 
changed compared with the 1.8 times of Rr. Additionally, the contact nodes between foil 
leaves tend to maintain the sticking state in loading and unloading processes under sig-
nificant larger contact forces, thus demonstrating insufficient sliding motions in a com-
plete cycle. 

  
(a) (b) 

Figure 17. Influence of the (a) initial foil leaf radius on the (b) static loading–unloading results. 

  
(a) (b) 

  
(c) (d) 

Figure 18. Calculation results influenced by the initial foil leaf radius: (a) contact forces under Rf = 
1.2 × Rr, (b) contact forces under Rf = 2.1 × Rr, (c) contact states under Rf =1.8 × Rr and (d) contact 
states under Rf = 2.1 × Rr. 

Figure 17. Influence of the (a) initial foil leaf radius on the (b) static loading–unloading results.

The reason for the above results can be analyzed with the help of the contact forces and
states in Figure 18. Firstly, the obviously larger contact forces on each foil leaf in Figure 18b
indicate that the large value of Rf increases the preload effects of the rotor insertion and foil
assembly. This compact foil structure increases the bearing stiffness and the effect of friction
force. However, the decrease in Sh when Rf is 2.1 times of Rr is not just due to the large foil
stiffness and small rotor eccentricity, which are not evidently changed compared with the
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1.8 times of Rr. Additionally, the contact nodes between foil leaves tend to maintain the
sticking state in loading and unloading processes under significant larger contact forces,
thus demonstrating insufficient sliding motions in a complete cycle.
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(2) Foil leaf thickness

The influence of foil thickness tf is investigated in this subsection with maintained
bearing radial clearance, as shown in Figure 19a. The loading–unloading simulation results
show that the medium value of tf equaling 150 µm calculates the largest value of Sh. The
foil leaf with a 0.1 mm thickness results in the lowest frictional dissipated energy. For the
studied eight-leaf MLJFB with a size of 35 × 35 mm2, a tf as thin as 0.1 mm leads to the low
foil structural stiffness in most ranges of smaller rotor eccentricities, and the hysteresis area
is very small. The bearing stiffness is greatly improved by the thick foil leaf that is 0.2 mm
in thickness, and the maximum rotor eccentricity is significantly reduced to 20 µm at the
same static load of 45 N. The value of Sh is very limited.
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Figure 19. Influence of (a) foil leaf thickness on the (b) static loading–unloading results.

When tf is 0.1 mm, the foil structural stiffness increases significantly at a large rotor
eccentricity because the foil leaves in the loading direction have come into contact with
the bearing sleeve, which provides rigid supports. The abrupt contact force between the
rotor and the fourth foil leaf at the end of the loading process can explain this effect further,
as shown in Figure 20a. Due to the soft foil structure under thin foil leaves, the preload
effect of foil assembly and rotor insertion is weak. The foil nodes tend to slide at most
simulation steps, as shown in Figure 20c. A tf as thick as 0.2 mm evidently increases the
foil structural stiffness as well as the preload effects of rotor insertion and foil assembly, as
illustrated by the large contact forces on each foil leaf throughout the loading–unloading
process in Figure 20b. The overlapped foil structure is very stiff in this condition, and the
foil nodes tend to stick. The rotor eccentricity, i.e., the foil sliding distance, is extremely
limited. Therefore, the hysteresis area is not large.
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Figure 20. Calculation results influenced by foil leaf thickness: (a) contact forces under tf = 0.1 mm,
(b) contact forces under tf = 0.2 mm, (c) contact states under tf = 0.1 mm and (d) contact states under
tf = 0.2 mm.

(3) Foil overlapping ratio

The foil overlapping ratio λ represents the arc length of each foil leaf, which is il-
lustrated in Figure 21a, and its calculation formula is also given. λ equaling 0.5 means
that the foil length is twice the arch length between the adjacent installation grooves on
the bearing sleeve inner surface. Figure 21b shows the calculation results of the static
loading–unloading process under three values of λ. Firstly, the frictional hysteresis area
Sh is almost the same when λ is 0.35 and 0.4, which is obviously larger than the result of
“λ = 0.45”. This indicates that a too-long foil leaf is not beneficial for increasing the Coulomb
damping. Secondly, the foil structural stiffness or curve slope is lower under the smaller
value of λ, especially at the beginning of the loading process, i.e., small and medium rotor
eccentricities. For instance, when λ is 0.35, the stiffness first maintains lower values and
then experiences an evident enhancement at larger rotor eccentricities and shows nonlinear
characteristics. The maximum rotor eccentricity is also larger.
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The reasons for above results can be analyzed with the results of contact forces and
contact states in Figure 22 under different values of λ. Similar to the effect of a larger foil
radius Rf, a longer foil leaf, i.e., a large value of λ, tends to make the foil structure more
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compact and stiff after rotor insertion, as the contact forces are obviously larger over the
loading–unloading process, as shown in Figure 22b. When λ is 0.45, the node in the middle
of each foil leaf is observed in the contact state after the rotor insertion besides the node
on the foil-free end. This effect reduces the supporting span of each foil and increases the
foil stiffness. Meanwhile, the larger value of λ also tends to hinder the sliding motion
between foil leaves and stick the nodes on different foil leaves during both the loading and
unloading processes, as shown Figure 22d.
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Only the foil free end is in the contact state at the beginning of the loading process
with a short foil leaf (λ is 0.35), and the foil stiffness is lower. The other foil nodes come
into contact at larger static loads, and the foil stiffness is gradually increased. More nodes
are in the sliding state. In this condition, the preload effect of the foil assembly and rotor
insertion is weak, and so is the frictional damping ability.

4. Experiments

This section conducts experimental studies of MLJFB to validate the developed foil
structural model considering frictions and nonlinear large foil deformations.
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The simulated configurations of overlapped foil leaves (foil assembly) before rotor
insertion are compared with different MLJFB test pieces, as shown in Figure 23. The foil
leaf is manufactured by cold rolling. The baseline parameters are also selected as the values
in bold in Table 1, except the radius of the bearing sleeve inner surface is 18.05 mm, and the
friction coefficient is 0.1.
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The comparison results demonstrate that the simulated foil structural configurations
after foil assembly are in good agreement with the corresponding MLJFB test pieces under
different conditions. Firstly, the simulations and the practical foil assembly results both
indicate a smaller radius of the inscribed circle Rfa of the 8-leaf MLJFB compared with the
5-leaf and 12-leaf bearings, as shown in Figure 23a. Secondly, the Rfa is smaller with longer
foil leaves, i.e., a larger value of λ, for both the simulations and test pieces, as shown in
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Figure 23b. Thirdly, it shows that the influence of the initial foil leaf radius Rf on Rfa seems
to not be evident when comparing the bearing configuration under an Rf of 1.2 × Rr with
the results under an Rf of 1.8 × Rr.

The test rig for the static loading–unloading tests is set up in this study, as shown in
Figure 24. The test bearing is assembled to the non-rotating journal and is loaded by a
cylinder through the force transducer. Two vertically distributed eddy current displacement
sensors are applied to measure the relative rotor displacements with respect to the bearing
sleeve. Firstly, the displacement values are read as d0

1 and d0
2 without foil leaves and rotor

contact with the bearing sleeve. Then, the displacement values dr
1 and dr

2 can be calculated
with the concentric rotor using Equation (29) [31]. Therefore, the displacement variations
are calculated as ∆d1 and ∆d2, given that the absolute values read by the sensors are dt

1 and
dt

2. At last, the rotor displacements in the y directions can be calculated as dy.{
dr

1 = d0
1 − (Rs − Rr)/

√
2

dr
2 = d0

2 − (Rs − Rr)/
√

2
;
{

∆d1 = dt
1 − dr

1
∆d2 = dt

2 − dr
2

; dy = (∆d1 + ∆d2)/
√

2 (29)

This is different from the simulation results in Section 3. It is necessary to consider the
friction force between rotor and foil leaves in order to compare it with the test results when
calculating the bearing reaction force Fy in Equation (30):

Fy =
Ncr

∑
i=1

∣∣∣λi
n

∣∣∣ · yT ·
→

EiOr

‖
→

EiOr‖
+ µ ·

∣∣∣λi
n

∣∣∣ · yT · tf

 (30)

where tf is the unit vector of the friction force between the rotor and foil leaf depending on
the loading directions, as shown in Figure 24. The friction coefficients between the rotor
and foil leaf and between the adjacent foil leaves are assumed to be the same.
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Figure 24. Test rig and schematic of the static loading–unloading measurements.

The loading process is continued until the static load reaches about 55 N, and then
the unloading process follows. In the tests, the real static load imposed on the bearing
is less than the value read by the load cell, considering a bearing mass of about 0.4 kg.
Figure 25 shows the comparisons between the simulations and the test results of the
loading–unloading curves, which demonstrate good agreement. Firstly, the simulations
and test results both show an overall higher foil structural stiffness, i.e., a smaller maximum
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rotor displacement under larger values of the leaf number Nf, initial foil radius Rf, foil
overlapping ratio λ and foil thickness tf. Secondly, the shapes of the predicted hysteresis
loops caused by frictions validate the test results well under different influential factors,
especially at larger static loads. Thirdly, the discrepancies in the comparisons always exist
for different conditions, and predicted hysteresis loops cannot coincide with measurements
completely. In the opinion of the authors, these discrepancies mainly come from two
aspects. On one hand, as it is difficult to maintain the concentricity between the rotor and
bearing in the beginnings of different loading processes, the loading curves at the small
rotor eccentricity tend to differ from the test results. On the other hand, the initial foil radius
and the real curve shapes of the manufactured foil leaves may have some differences with
the designed parameters and the designed shapes, and this effect can have an influence on
the mechanical characteristics and contact states of the foil structures.
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5. Conclusions

This paper, for the first time, theoretically investigates the effect of Coulomb frictional
hysteresis in MLJFB. The nonlinear large foil deformations during simulations of foil
assembly and rotor insertion are calculated with nonlinear curve beam elements. Frictional
hysteresis characteristics are studied under different influential factors via static loading–
unloading simulations. The accuracy and reasonability of the developed model of MLJFB
are validated through comparisons of the hysteresis curves and foil assembly results
between the simulations and test results.
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Several key conclusions can be drawn based on the results of the simulations and tests.

(1) The consideration of the geometrical nonlinearity of the larger foil deformation leads
to the consistent results of foil assembly, rotor insertion and static loading under
different initial foil configurations.

(2) A fixed boundary of foil leaves can cause insufficient sliding motions between foil leaves
and results in less dissipated energy by friction compared with hinged boundaries.

(3) Under the same radial clearance, a larger foil leaf number, foil leaf thickness, initial
foil leaf radius and foil overlapping ratio tend to increase the preload effect after rotor
insertional assembly and result in a more compact and stiff foil structure. With a bear-
ing size of 35 × 35 mm2, large values of the above parameters (Nf = 12, tf = 0.2 mm,
Rf = 2.1 × Rr, λ = 0.45) can lead to the performance degeneration of the Coulomb
friction energy dissipation. There are optimized values of these parameters, enabling
the MLJFB to possess a larger area of frictional hysteresis loops.

(4) A decreased radial clearance leads to insufficient foil deformations, thus reducing the
frictional energy dissipation. A larger radial clearance can also result in less dissipated
energy due to the limited rotor displacement by the rigid bearing sleeve under a larger
static load.
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Nomenclature

Ba, BL, BN total, linear and nonlinear strain matrix of the curve beam element
Cini bearing radial clearance (m)
Dr rotor diameter (m)
Ds

u result vector after the variation calculation with respect to s
ey rotor displacement in the y direction (µm)
Ea total axial strain of the curve beam
En geometrical nonlinear strain of the curve beam
Fy bearing reaction force in the y direction or static bearing load (N)
gf

n normal contact gap between adjacent foils
gf

t tangent contact gap between adjacent foils
gs

n contact gap between the foil leaf and bearing sleeve
gr

n contact gap between the rotor and foil leaf
g gap vector between adjacent foil leaves
GU general contact force vector
KU general tangent matrix
L bearing width (m)
Lf foil leaf length (m)
nm, tm unit normal and tangent vectors on the deformed contact surface
nA, tA unit normal and tangent vectors of node A
qe general displacement vector per contact nodes pair
Q general displacement vector of all contact nodes pairs
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nF, tF unit normal and tangent vectors of interpolating node F
Nw, Nu interpolating functions of the curve beam element at position s
Nf number of foil leaves
Rfa inscribed circle radius after foil assembly (m)
Rs inner radius of the bearing sleeve (m)
Rr rotor radius (m)
Rf free-foil radius (m)
s position of the interpolating contact node on the master curve element
Sh frictional hysteresis loop area (N·m)
tf foil thickness (m)
ue displacement vector of the curve beam element
w, v radial and tangential displacements of the curve beam element (m)
ws width of the foil installation groove (m)
α flag of the sliding direction
µ friction coefficient between foil leaves
εs elastic strain of the curve beam element
εt penalty factor in the tangent direction
θi foil installation angle (◦)
θrb threshold of the foil leaf rotating angle (rad)
θy nodal rotational angle of the curve beam element (rad)
λ foil overlapping ratio, λ = 1− 2 · π · Rs/(8 · Lf)
λn Lagrange multiplier or contact force in the normal direction
∏ci contact energy per contact nodes pair

Appendix A

Derivations of normal and tangent stiffness matrices of the nonlinear curve beam:

δ ∏ =
∫
e0

δEa
TSdV = δue

T
∫
e0

Ba
TSdV +

∫
e0

ue
T(δBN

T)SdV

= δue
T
∫
e0

Ba
TSdV +

∫
e0

δAn
T · ue

T · 1
2 GT · SdV

= δue
T
∫
e0

Ba
TSdV + δue

T
∫
e0

((
∂Nw

∂s

)T
· 1

2 (G · ue)

)
· SdV = δue

T ·Kn
e · ue

(A1)

where S is the axial stress; S = Da · Ea, Da is the elastic matrix; Kn
e is the normal stiffness

matrix of the nonlinear curve beam element. The further differential calculation of δ ∏ is
derived as:

∆
(
δ ∏

)
= δue

T


∫
e0

∆Ba
T · SdV +

∫
e0

Ba
T · ∆SdV+∫

e0

(
∂Nw

∂s

)T
· 1

2 (G · ∆ue) · SdV +
∫
e0

1
2 Ad

TGTue · ∆SdV

 = δue
T ·Kt

e · ∆ue (A2)

where Kt
e is the tangent stiffness matrix of the nonlinear curve beam element; Ad is obtained

by calculating the variation of An.
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