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Abstract: Hertzian formulas are commonly used for the evaluation of deformation and pressure dis-
tribution of non-conformal and slightly conformal mechanical pairs to estimate component stiffness
and durability. For the sake of simplicity, their use is extended even to those cases in which Hertz’s
hypotheses do not hold. This paper summarizes Hertz’s theory and compares the results obtained
with theoretical and finite element analysis of the point contact of non-conformal and conformal pairs
made of spheres, caps, and spherical seats. This study was motivated by the non-Hertzian behavior
of a tilting pad bearing ball-and-socket pivot conforming contact observed by the authors in previous
experiments. In particular, the displacement and force relation were investigated by varying the geo-
metrical parameters, the materials, the boundary conditions, and the friction coefficient. In the case
of non-conformal contact, the parameter variations had negligible effect in agreement with Hertz’s
theory while for conformal contact, the cap and seat height and width and the relative clearance were
the most influential parameters on the non-Hertzian behavior. These novel results indicate that in
conformal pairs, such as for tilting pad bearing ball-and-socket pivots, whenever Hertz’s hypotheses
are not satisfied and the assessment of contact stiffness is crucial, Hertzian formulas should not be
applied as done in common practice, instead more accurate numerical or experimental evaluation
should be made.

Keywords: contact mechanics; Hertzian contacts; point contacts; rigid body approach; finite element
method; tilting pad journal bearings

1. Introduction

Hertzian formulas are universally used for the evaluation of deformation and stress
of non-conforming mechanical pairs, including the counterformal and the slightly confor-
mal ones, to estimate component stiffness and durability. Appealing for their simplicity,
Hertzian formulas, however, present some limitations in their applications to real contacts,
related to the hypotheses on which they are based [1], such as absence of friction, small
contact area, and bodies equivalent to half-spaces, as will be better explained in the fol-
lowing section. As Mostofi and Gohar observed in [2], pressure distribution, contact arc
extent, and deflection for the elastic contact of a long roller and a cylindrical hole depend
on the degree of conformity of the two bodies and Hertz’s theory should not be used when
the arc dimensions are of the same order as the radii of curvature, as its assumptions are
violated. Actually, there are cases of applications to quite conformal contacts, though not
satisfying the hypothesis that the deformed zone is much smaller than the dimension of
the contacting bodies. Significant examples of the application of these formulas for the
evaluation of the stiffness of the pivots of tilting pad journal bearings (TPJB) are reported
by Kirk and Reedy in [3].

Typically, Hertzian formulas are used also for elastohydrodynamic (EHD) contacts, for
instance rolling bearings and gears [4,5], because pressure distribution has been shown to
be quite similar to the Hertzian pressure profile, particularly for the heavily loaded contacts
with the exception of the inlet hydrodynamic trail and the secondary pressure peak at the
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exit constriction [6,7]. Therefore, the equivalent radius and elastic modulus are used for the
evaluation of the minimum film thickness and the Hertzian formulas are used to calculate
the deformations of rolling bodies and teeth; Hertz’s contact ellipse and maximum pressure
are commonly taken as reference for EHD solutions and experimental observations.

Quite a few researchers observed and tried to overcome the limitations of Hertz’s the-
ory with analytical and numerical approaches. Sun and Hao [8] dealt with non-conformal
and almost conformal contact of ball and ball–socket and compared the results of finite
element (FE) analyses and Hertz’s contact theory. Fang et al. [9] proposed a new universal
approximate model for frictionless conformal and non-conformal spherical contacts, based
on the combination of analytical and numerical methods. Such a method was adopted
in [10] to investigate the free-edge effect in spherical plain bearings, and by He et al. [11] to
analyze the effects of external load, radius clearance, and material parameters on the contact
mechanics of roller cone drill bits journal bearings. Yuan et al. [12] studied the effects of
normal loads and friction coefficients on the distribution of contact stress in spherical plain
bearings using theoretical methods and FE simulation. In [13], Rahnejat et al. proposed
a generic contact mechanics analytical approach, applicable to both conformal and non-
conformal contacts, for the determination of sub-surface stresses. Askari, in [14], proposed
mathematically closed-form contact models for non-Hertzian soft and conformal contacts,
using a set of independent Kelvin–Voigt elements spread all over the contact surfaces,
validating them through FE analysis. Blanco-Lorenzo et al. [15] investigated the effects of
conformity on local contact related quantities for the wheel–rail pair with FE simulations
and by adapting Kalker’s rolling contact theory. Tian et al. [16] reviewed analytical and
numerical contact models applied to dry and lubricated clearance joints. Significant under-
and overestimations of the contact radius and maximum contact pressure according to
Hertz’s theory, in spherical indentation of soft elastic solids undergoing large deformations,
are shown in [17], using nanoindentation tests and FE analysis.

In this paper the applicability of the Hertzian formulas to practical cases was inves-
tigated. This study was motivated by the non-Hertzian behavior of a tilting pad journal
bearing ball-and-socket pivot conforming contact observed by the authors in previous
experiments [18] and by the need of an accurate estimation of the pivot stiffness and a
reliable prediction of the bearing dynamic behavior [19–21]. It is intended as the starting
point to overcome the limitations of the formulas used in common industrial practice [3]. To
better understand the reasons for the differences that can arise between theoretical and FE
or experimental results, the hypotheses and the essential steps at the base of the Hertzian
formulas are firstly reported. Then, some FE calculations on non-conformal and conformal
spherical bodies with different geometry, load, materials, and boundaries are conducted
and compared with the results of the formulas focusing on deformations. Finally, some
experimental results on the TPJB ball-and-socket pivot are reported.

2. Hertzian Formulas for Circular Contacts

Contact mechanics is based on the work of Hertz in 1882 [1] whose theory is restricted
to frictionless surfaces and perfectly elastic solid.

For non-conforming elastic bodies in contact over an area whose dimensions are small
compared with the radii of curvature of the undeformed surfaces, the stresses may be
calculated with good approximation by considering each body as a semi-infinite elastic
solid bounded by a plane surface; this is the half-space theory that is commonly used in
elastic contact stress theory [22].

The main assumptions of the Hertzian theory are recalled below:

• the bodies are homogeneous, isotropic, and non-conforming;
• the bodies are elastic and the strains are small so that the theory of elasticity can

be applied;
• the elastic bodies in contact are assumed to be semi-infinite elastic half-spaces; this

means that contact dimensions and extent of deformation are far smaller than the
geometrical dimensions of the contacting bodies;
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• the profiles may be represented by a second order law;
• the surfaces are frictionless;
• adhesive forces are ignored;
• the surfaces have negligible roughness.
• Two additional timely assumptions may be included:
• there are no thin coatings on the surfaces;
• the surfaces are relatively hard.

It’s worth pointing out that theories were successively developed overcoming some of
these assumptions. According to Gohar [5] and Johnson [23], Hertz’s theory is however
accurate for usually finished surfaces and typical friction coefficients. Rough surfaces and
friction may be included by using the Greenwood and Tripp model for the case of assumed
Gaussian surface topography [24]. The Johnson–Kendall–Roberts (JKR) theory included
the adhesion between the bodies [25].

The starting equations are the ones of elasticity, as reported, for example, in [5] and [22].
Usually the displacements and the stresses produced by a load distributed over a part of
the boundary of a semi-infinite solid are calculated by superposition, starting from the case
of a concentrated force. Then, an integration is made considering the shape of the surface
and the distribution of pressure.

In the case of an axisymmetric pressure distribution, as it can be in a sphere-plane
contact, the Hertzian pressure is a semi-ellipsoid acting on a circular area. Such a result,
strictly valid for an infinite solid bounded by a plane surface, is however applicable to a
body neither infinite nor bounded by a plane. This is possible if the deflection at the center
of the circle is small in comparison with the radius of the contact area and if the latter is
small in comparison with the radius of curvature of the bodies in contact. The stresses must
be within the elastic limit. For the sake of simplicity, the case of a sphere with radius R,
Young’s modulus E1, and Poisson’s ratio ν1 pressed with a load F against a plane (E2, ν2),
as reported in [26], will be now considered. In the ideally rigid case (not deformed bodies)
the sphere can be well approximated with a paraboloid in the zone close to the contact
point. Details of the development of the Hertzian formulas for the above case are given in
Appendix A, while only the commonly used resulting ones are reported also in this section.

The maximum of the Hertzian pressure is given by

pHz =
3
2

F
πa2 (1)

where a, the radius of the circular contact area, is given by

a =
3

√
3
2

FR
E′

(2)

and the equivalent elastic modulus E’ is defined as

E′ = 2

(
1− ν2

1
E1

+
1− ν2

2
E2

)−1

(3)

As far as deformation is concerned, the rigid body approach δ of the two bodies can
be evaluated by the formula:

δ =
a2

R
=

(
3
2

)2/3( F2

E′2R

)1/3

(4)

As shown in Figure 1, the contact between the two deformable bodies can be seen as
an equivalent contact between a rigid plane and a deformable body to which the equivalent
radius and elastic modulus are associated. The rigid body approach δ corresponds to the
distance of the green and black lines at the axis of symmetry.
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Figure 1. Deformed elastic sphere and elastic plane (colored figures), undeformed sphere (green
line), and distance between the two deformed surfaces or equivalent deformed elastic sphere on rigid
plane (black line). δ is the rigid body approach, a the radius of the circular contact area.

Equations (2) and (4) can also be used if both contacting bodies have a curvature by
substituting R with an equivalent radius R’ defined as

1
R′

=
1

R2
± 1

R1
(5)

The positive sign has to be chosen in Equation (5) if the centers of curvature of the
two spheres are in opposite half-spaces with respect to the plane tangent to the spheres at
their theoretical contact point (counter-conformal contact), while the negative sign has to
be used for the other case, corresponding to a sphere in a spherical seat (conformal contact).
In the latter case, R’ can be also expressed as a function of the radial clearance c between
the two bodies:

R′ =
R(R + c)

c
(6)

with R1 = R and R2 = R + c.
Equations (2) and (4) can be written in dimensionless form:

a
R′

=

(
3
2

F
E′R′2

)1/3
(7)

δ

R′
=

(
3
2

F
E′R′2

)2/3
(8)

where the ratio
L =

3
2

F
E′R′2

(9)

is the dimensionless load for point contacts.
Note that, as remarked above, Hertz’s theory is usually considered accurate if also

δ << a in addition to a << R.
In the above cases, the load is applied far enough from the contact zone so that the

applied load distribution and local deformation do not interfere with the body contact zone
deformation. In addition, it is not apparent which points can be considered as reference
points for the evaluation of the approach of the two touching bodies. This aspect was
analyzed in the FE simulations whose results are reported in Sections 4 and 5. First, the sim-
ulations were validated by comparison with Hertz’s formulas for non-conformal Hertzian
contacts; then, some hypotheses were dropped to check the extent of the applicability of
Hertz’s theory to such contacts.

3. Experimental Results for a Conformal Real Spherical Pair

A significant example of the application of Hertzian formulas to a real conformal
spherical pair is the ball-and-socket pivot of TPJBs made of a spherical cap and a spherical
seat as shown in Figure 2.
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Figure 2. Tilting pad journal bearing with ball-and-socket pivots. From [18].

The bearing dynamic behavior is greatly influenced by the pivot stiffness whenever
it is of the same order of magnitude as the oil film stiffness [19–21]. The pivot stiffness is
commonly evaluated using Hertzian formulas as reported in [3], and in particular, from
the Hertzian relation between load and displacement.

TPJB pivot stiffness was determined experimentally in [27,28] by loading a single pad
of the bearing assembly, pressing together the bearing and the shaft in dry conditions, and
measuring the relative displacement. The thusly estimated stiffness was then used in TPJB
numerical codes to simulate the system rotordynamic behavior, improving the predictions
compared with the ones based on Hertzian formulas.

Novel experimental equipment was set up and a procedure devised for determining
the stiffness of a single TPJB ball-and-socket pivot by Ciulli et al. [18]. The test rig was
tuned by means of a series of tests and the experimental results were compared with the
theoretical ones obtained with Hertzian formulas. The test articles were the components of
a 280 mm diameter TPJB pad pivot. The spherical cap and the spherical seat were made of
steel with nominal sphere diameter of 127 mm with micrometric tolerance on sphericity and
a smooth surface (Ra < 1 µm). The cap was 20.3 mm high. The seat was 88.8 mm wide and
23.5 mm high, with a spherical 10.28 mm deep cup on top. The diametral clearance range
between cap and seat was from 0.046 to 0.104 mm corresponding to relative clearances of
0.036% and 0.082%, respectively.

An example of the obtained results is shown in Figure 3. The displacement is plotted
as a function of load. The results obtained with the Hertzian formulas are reported for the
minimum and maximum values of the radial clearance c. It is noteworthy that clearance
is very influential, thus the manufacturing process should guarantee tight tolerances
and accurate checks. The same results of Figure 3 are plotted in dimensionless form in
Figure 4. While dimensionless Hertzian results merge in a single curve, the dimensionless
experimental curves are different depending on the clearance used. Note that the Hertzian
pressures at the maximum tested load of 150 kN are only 22.4 and 38.6 MPa for the
minimum and maximum clearance, respectively.

The observed differences with the Hertzian behavior of the ball-and-socket pivot
indicated the need to investigate further the displacement and force relation for conforming
pairs by varying the geometrical parameters, the materials, the boundary conditions, and
the friction coefficient. That was accomplished with a FE approach as reported in the
following sections.
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4. Numerical Simulation of Non-Conformal Contacts

Some FE calculations of various contact pairs were performed with the commercial
structural mechanics software ANSYS Workbench 2021 R2. As a starting point, in order to
verify the soundness of the models used and the possible effect of different parameters, such
as dimensions and materials, some simulations were made for classical non-conformal contacts.

Due to axisymmetry, only a single plane had to be simulated, reducing the compu-
tational cost. Moreover, in the case of a complete sphere pressed by two rigid planes, the
symmetry about the central horizontal plane and its constraints were considered, and the
axisymmetric model was reduced to half. This reduction was also extended to the case
of two elastic spheres in contact even if there was no symmetry about a plane. That was
possible due to the negligible deformation of the non-conformal bodies compared with
that of the small volume around the point contact, as assumed by Hertz and as will also be
shown in the displacement map obtained by FE analysis.
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The mesh for non-conformal contacts was generated refining it in the proximity of the
contact (Figure 5). In particular, the maximum element size was 1/5 of the sphere radius.
Near the contact, the element size was 3 × 10−4 of the sphere radius. The total number of
elements employed varied between simulations and was approximately 11,000 (3000 for
conformal contacts). The plane was modelled by a fixed rigid cylinder, represented by a
rectangle in the axisymmetric model. The spheres were linear elastic and the plane was
infinitely stiff. All contacts were frictionless unless otherwise specified. Moreover, the
contact penetration tolerance was set to 0.1 nm.
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A uniform, downward displacement was incrementally applied to the horizontal
plane of the half-sphere in the sphere-on-plane case and to that of the upper half-sphere in
the sphere-on-sphere case (Figure 6). The reaction force of the rigid plane or of the lower
half-sphere as well as the displacement of the sphere center were provided by the software.
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Table 1 reports the data used in the simulations performed for comparison with
Hertz’s theory, and Table 2 reports the adopted material properties values. Simulations
were performed imposing a uniform vertical downward displacement to the upper surface,
while the horizontal displacement was left free. The displacement range and steps were
tuned for each simulation so that the maximum value of displacement corresponded to a
non-dimensional pressure (pHz/E’) of 2.5× 10−3, calculated theoretically using Equation (1)
and Equation (4). This pressure corresponded to 1.1 GPa in steel, 0.6 GPa in titanium, and
0.4 GPa in aluminium. The displacement steps were 100, equally spaced.
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Table 1. Data of simulated non-conformal contacts and simulation errors.

R1 [mm] R2 [mm] Material 1 Material 2 Mean Error % on F

5 ∞ Steel Rigid 0.22
25 ∞ Steel Rigid 0.48
25 ∞ Titanium Rigid 0.40
25 ∞ Aluminium Rigid 0.46
125 ∞ Steel Rigid 0.37
5 125 Steel Steel 0.24

25 125 Steel Steel 0.24
25 125 Titanium Steel 0.29
25 125 Aluminium Steel 0.26
125 125 Steel Steel 0.25

Table 2. Material properties.

Material E [GPa] ν

Steel 200 0.3
Titanium 96 0.36

Aluminium 71 0.33

Table 1 also reports the mean percentage error of the simulation reaction force, calcu-
lated by taking the absolute difference between the simulation result and the theoretical
value from the Hertzian formula, for the same imposed displacements in the investi-
gated range.

Figure 7 shows an example of the map of deformation in the load direction for a
non-conformal case. Zero displacement corresponds to the lower fixed boundary of the
seat. The uniform colors over a large zone indicate rigid displacement. It is noteworthy
that the non-conformal case localizes non-negligible values of strain in quite a small region
around the contact, satisfying the hypothesis of Hertz’s theory.
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In all the above cases, the results of the simulations were in good agreement with the
theoretical ones since Hertz’ assumptions were complied with. As an example, results from
the second simulation of the list, in terms of radius of the contact area, maximum contact
pressure, and applied force, as functions of displacement, are given in Figure 8.
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Alternatively, to the uniform displacement, a uniform vertical force was applied on
top of the hemisphere and the displacement of the sphere center calculated. As expected,
due to the negligibility of the overall body deformations with respect to the local contact
ones, the results were similar to the previous ones. Additionally in these cases, the mean
error of the simulation results from Hertz’s theory did not exceed 0.5%. Therefore, the
following simulations were made imposing displacement.

In addition, other simulations were carried on spherical caps in contact with a rigid
plane, with a height h lower than the sphere radius R (Figure 9). The ratio h/R took
the values 0.5, 0.25, and 0.125, and the results seemed to show a negligible influence of
this parameter. Again, this can be explained with the negligibility of the overall body
deformations with respect to the local contact ones.
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Figure 9. Schematic of cap and plane non-conformal contact. δ is the rigid body approach, h the
height of the cap.

In another set of simulations, friction was added to the contact. Usually for lubricated
steel on steel, a friction coefficient f = 0.15 can be assumed while for dry steel on steel,
a friction coefficient f of approximately 0.5 is reasonable. In the simulations, the friction
coefficient was increased up to 0.8. However, substantial differences from the frictionless
case were not found even at this high value.

5. Extension to Conformal Contacts

While Hertz’s theory is strictly valid for non-conformal contacts, often in engineering
practice [3], it is used also for conformal contacts (Figure 10).

The next set of FE simulations in Table 3 aims to see to which extent this approximation
is valid, in particular to see the effects of clearance, seat dimensions, boundary conditions,
and friction. C is the relative radial clearance (c/R) between the components of the conformal
pair. The equivalent radius R’ ranges from 2 to 50 m, that is, from a slight to a high
conformity. The seat has vertical displacement constraints on the lower surface, the cap
has imposed vertical displacement or load on its top surface. Both are free in the radial
direction unless otherwise specified for the seat (fixed support). The contacts are frictionless
unless otherwise specified with the value of the friction coefficient.
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conformal case, the contact pressure has a much larger zone of influence. This means that 
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Figure 10. Schematic of conformal contact with imposed displacement or load. δ is the rigid body
approach, F the applied load, h the height of the cap, R1 the radius of the cap, b the minimum
thickness of the seat.

Table 3. Data for simulations of conformal contacts, with R = 25 mm, Material 1 and 2 steel.

C [%] R’ [mm] h/R b/R Notes

0.05 50,025 1 1
0.25 10,025 1 1
1.25 2025 1 1
0.25 10,025 0.5 1
0.25 10,025 0.25 1
0.25 10,025 0.125 1
0.25 10,025 1 0.5
0.25 10,025 1 0.25
0.25 10,025 1 0.125
0.25 10,025 0.125 1 Fixed support
0.05 50,025 1 1 Friction = 0.8

Figure 11 reports an example of the maps of deformation for a conformal case. The
force reaction is 195 N. This map can be compared with that of Figure 7, obtained with the
same force. Note that the color scales are different for the two images. Qualitatively, in the
conformal case, the contact pressure has a much larger zone of influence. This means that
conformal contacts are less likely to satisfy the hypotheses of Hertz’s theory.
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Figure 11. Deformation maps in the vertical direction for a conformal case (steel sphere and cavity;
R = 25 mm, C = 0.25%, F = 195 N).

To compare results for different clearances, non-dimensional quantities were employed.
Two different boundary conditions were investigated, as shown in Figure 10. In the image
on the left, a uniform displacement is imposed, and the reaction force is calculated. In
the image on the right, a uniform force is imposed, and the displacement of the center of
the sphere is calculated. Figure 12 shows the calculated force and displacement for the
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two boundary conditions. As clearance decreases, the depicted function behavior diverges
increasingly from Hertz’s theory. That was to be expected because the smaller the clearance,
the more conformal the contact, and the radius of the contact area cannot be considered
much smaller than curvature radius. Note that the rigid body approach decreases by
decreasing the clearance and that Hertz’s theory provides the highest value.
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Figure 12. Displacement vs. force for a spherical cap–seat contact for different relative clearances.
Continuous lines are obtained by imposing a uniform downward displacement to the upper surface.
Dashed lines are obtained by imposing a uniform compressing force to the upper surface.

With respect to the displacement boundary conditions, the values obtained by impos-
ing a uniform force diverge more from Hertz’s theory. An imposed uniform displacement
to the upper surface of the elastic body corresponds to what happens to approaching rigid
bodies (as assumed by Hertz). On the contrary, a uniform force produces a non-uniform
displacement of the upper surface of the elastic body, not consistent with the rigid body
approach assumption.

Afterwards, the geometry of the cavity was investigated. In a set of simulations,
b (Figure 10) was progressively reduced. The results for a relative clearance of 0.25% are
reported in Figure 13. When the seat shrinks, the results differ more from Hertz’s theory.
This is related to the reduced compressed material that can be deformed, the base being
fixed. In other words, the stiffness of the whole system increases, as confirmed by the rigid
body approach that decreases by decreasing b.

A similar effect is produced by reducing h. The effect of changing the height of the
spherical cap is considerable compared to non-conformal contacts, as shown in Figure 14
for a relative clearance of 0.25%. Again, the rigid body approach decreases by decreasing h.

The significant effect of body dimensions in conformal contacts is due to the fact that
the contact area is no longer negligible and the contact pressure influence zone is no longer
confined in a small volume as shown in the displacement map of Figure 11. The displace-
ment maps of two different cases of cap and seat heights for the same imposed displacement
at the cap upper surface are presented in Figure 15. The differences are remarkable.

Further simulations investigated the effect of friction on the lowest clearance example
(C = 0.05%), and the seat boundary conditions. Two different boundary conditions were
tested on the seat, namely frictionless support and fixed. The smaller the seat, the larger
the effect of the boundary conditions on its mechanical behavior. Thus, only the case with
the smallest investigated seat (b/R = 0.125) is reported here (Figure 16). However, even in
this case, the difference is minor.
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Figure 16. Force vs. imposed displacement for different seat boundary conditions, C = 0.25% and
b/R = 0.125.

Usually for lubricated steel on steel, a friction coefficient f = 0.15 can be assumed; for
dry steel on steel, a friction coefficient f of about 0.5 can be assumed. Figure 17 shows the
results for relatively high friction coefficient f = 0.8 in the conformal contact pair for the
lowest clearance (C = 0.05%)
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Figure 17. Force vs. imposed displacement, C = 0.05% and friction coefficient = 0.8.

Figure 17 shows that the simulation with friction diverges more from the theoretical
curve. However, in practical applications, the contact pair is usually lubricated, thus
reducing this effect considerably.

6. Conclusions

In this paper the applicability of the Hertzian formulas to the point contact of spheres
and caps was investigated. Firstly, the basic assumptions and formulas were recalled as
well as previous experimental results that motivated the study.

Then FE calculations, carried out on non-conformal and conformal spherical bodies
in contact, allowed for the investigation on different parameters: different geometry, load,
materials, and boundaries. The FE results were compared with the results of the formulas
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showing more or less marked differences in deformations, depending on the considered
case. The main conclusions can be summarized as follows:

• The results regarding the relative displacement of non-conformal spherical bodies
were in good agreement with the theoretical ones.

• Regarding the conformal spherical bodies, the radial clearance and the dimensions of
both the cap and the seat showed a great influence on their non-Hertzian behavior. The
differences in relative displacement increased with decreasing geometrical quantities.
Moreover, friction, in this case, showed a non-negligible effect.

• For all the considered cases, Hertz’s formula always provided the greatest rigid body
approach which means the lowest contact stiffness.

The reported investigation is intended as the first step of a research activity aimed
at the development of analytical formulas to be tuned by FE simulation or experimental
testing to better replicate the behavior of conformal contacts. Experimental testing, limited
up to now to few samples, will be extended to a larger and more-varied population, and
the effects of other important (but little-explored) characteristics, such as roughness, will
be investigated.

Author Contributions: Conceptualization, E.C.; methodology, A.B., E.C., and P.F.; software, A.B.;
formal analysis, E.C.; investigation, A.B., E.C., and P.F.; data curation, A.B.; writing—original draft
preparation, A.B., E.C., and P.F.; writing—review and editing, E.C. and P.F.; visualization, A.B. and
E.C.; supervision, E.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no specific external funding.

Data Availability Statement: Not applicable.

Acknowledgments: The authors acknowledge the joint financial support of Alberto Betti’s PON
Research and Innovation 2014–2020 PhD scholarship on green topics by the Italian Ministry of
University and Research and Nuovo Pignone Tecnologie S.R.L of the Baker Hughes Company Group.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In the case of an axisymmetric pressure distribution, as it can be in a sphere-plane
contact, the Hertzian pressure is a semi-ellipsoid acting on a circular area.

In any cross-section, this axisymmetric pressure distribution has a semi-elliptic shape
that can be expressed as

p(x) = pHz

√
1− x2

a2 (A1)

where a is the radius of the circular contact area over which the pressure acts, pHz is the
maximum Hertzian pressure, and x is the distance from the center of the contact.

The integral of the pressure on the contact zone is equal to the load F. Considering
Equation (A1) it is easy to find pHz as

pHz =
3
2

F
πa2 (A2)

The deflection w of the elastic plane with Young’s modulus E and Poisson’s ratio ν can
be evaluated inside the contact area (0 < x < a) as

w(x) = apHz

(
1− ν2)

2E
π

2

(
2− x2

a2

)
(A3)

and outside the contact area (x > a) as

w(x) = apHz

(
1− ν2)

2E

[(
2− x2

a2

)
arcsin

( a
x

)
+

√
x2

a2 − 1

]
(A4)
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For x = a both expressions clearly give the same result:

w(x) = apHz

(
1− ν2)

2E
π

2
(A5)

The parabolic shape on any plane containing the z axis orthogonal to the plane and
passing through the contact point can be described by the equation

zs(x) = R

(
1−

√
1− x2

R2

)
≈ x2

2R
(A6)

By considering the elastic deformation of both bodies, they will be in contact in the
zone with 0 < x < a, with a << R, Figure A1.
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Referring to Figure A1, inside the contact zone

δ1 + δ2 =
x2

2R
+ w1(x) + w2(x) (A7)

where w1(x) and w2(x) are the displacements of the surface of each body in the direction
normal to the plane tangent to the spheres at their theoretical contact point (considered
positive in the direction of the inward-surface normal) and δ1 e δ2 are the macroscopic
displacements of the bodies corresponding to w1(0) and w2(0), respectively. Using relation
(A3) one obtains:

δ1 = w1(0) = apHz

(
1− ν2

1
)

2E1
π, . . . δ2 = w2(0) = apHz

(
1− ν2

2
)

2E2
π (A8)

The rigid body approach of the two bodies is therefore

δ = δ1 + δ2 = apHz
1
2

[(
1− ν2

1
)

E1
+

(
1− ν2

2
)

E2

]
π =

a · pHzπ

E′
(A9)

with E’ the equivalent elastic modulus.
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Note that it is possible to express the half-width of the Hertzian contact zone a as a
function of the load F by combining Equations (A5), (A7), and (A9) at the border of the
contact zone. For x = a in fact

δ1 + δ2 =
a · pHzπ

E′
=

a2

2R
+ w1(a) + w2(a) =

a2

2R
+

a · pHzπ

2E′
(A10)

from which one easily obtains

a =
πRpHz

E′
(A11)

and using Equation (A2):

a =
3

√
3
2

FR
E′

(A12)

The rigid body approach δ can be then evaluated by the formula:

δ =
a2

R
=

(
3
2

)2/3( F2

E′2R

)1/3

(A13)

It could be also noted that referring to the surface of the undeformed plane, the coordi-
nates of the sphere (zs) and the plane (zp) inside and outside the contact area are, respectively:

zs(x) = zp(x) = w2(x) = apHz

(
1− ν2

2
)

2E2

π

2

(
2− x2

a2

)
. . . . . . for 0 < x < a (A14)

zs(x) = δ1 + δ2 − x2

2R − w1(x) =

= apHzπ
E′ −

x2

2R − apHz
(1−ν2

1)
2E1

[(
2− x2

a2

)
arcsin

( a
x
)
+
√

x2

a2 − 1
]

forx > a

zp = w2(x) = apHz
(1−ν2

2)
2E2

[(
2− x2

a2

)
arcsin

( a
x
)
+
√

x2

a2 − 1
] (A15)

The difference between the two quantities of Equation (A15), corresponding to the
distance between the sphere and the plane, can be expressed as

d(x) = zp(x)− zs(x) =
apHz

E′

[(
x2

a2 − 2
)

arccos
( a

x

)
+

√
x2

a2 − 1

]
(A16)

given
[
arcsin

( a
x
)
− π

2 = −arccos
( a

x
)]

and
[

x2

2R = aa
2R

x2

a2 = a πpHz
2E′

x2

a2

]
.
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