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Abstract: In order to improve the accuracy and batch consistency of cylindrical roller machining, in
this paper, a both-sides cylindrical roller machining method based on hard ceramic plate is proposed.
Traditional cast iron and stainless-steel polishing plate were replaced by ceramic materials with high
hardness and good wear resistance. After processing by centerless grinding, the cylindrical roller is
processed by both-sides lapping and polishing using Al2O3 ceramic plates. The roundness, diameter
and surface quality of the roller and the wear of the ceramic plate before and after machining were
compared and analyzed in order to evaluate the feasibility and effectiveness of this method. After
grinding for 1 h and polishing for 8 h, the average roundness of the cylindrical rollers decreased from
the initial 2.3 µm to 0.32 µm, while the roundness of each roller tended to be the same. At the same
time, the batch diameter deviation of cylindrical rollers was reduced from 3 µm to 1 µm, and the
batch consistency was satisfactory. The machining marks produced by centerless grinding on the
roller surface were completely removed, and the surface quality was significantly improved. The
surface roughness after polishing reached Ra 16 nm. The upper and lower ceramic plate had certain
wear, but the amount was small, having little impact on the machining results. The shape accuracy
and batch consistency of the rollers after machining were satisfactory. The ceramic plate had high
hardness, good wear resistance and small wear in the machining process. Additionally, it could
maintain extremely high flatness for a long time. Using hard ceramic plates to process cylindrical
rollers, high precision and high consistency cylindrical rollers can be obtained after machining.

Keywords: cylindrical roller; both-sides; ceramic plate; roundness; wear; consistency

1. Introduction

Bearings are important precision components in the high-end equipment manufactur-
ing industry, and are known as the “heart” of equipment manufacturing. The performance
of bearings plays a vital role in the performance, life and reliability of equipment and related
products [1–4]. As a key part of precision bearing, the machining accuracy and consistency
of the rolling body will directly affect the performance and service life of bearings [5].
Cylindrical roller bearings are suitable for high speed and heavy load equipment—e.g.,
high-speed trains, wind turbines, machine tool spindles, etc.—because the rolling body
and raceway are in contact with each other [6–8].

At present, centerless grinding and centerless superfinishing are the most important
finishing methods for the mass production of cylindrical rollers [9]. Centerless grinding has
the advantages of high production efficiency and easy automation. However, machining
accuracy depends heavily on the relative position and speed error of the grinding wheel,
guide wheel and workpiece. When the grinding wheel and other parts undergo wear, it is
difficult to ensure the machining quality and accuracy, and batch consistency is poor [10,11].
Centerless superfinishing is sometimes performed after centerless grinding; it also has
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high production efficiency. Under the action of oilstone, cylindrical rollers can obtain
better surface quality and shape accuracy. However, the oilstone is consumed quickly,
the selection is cumbersome in machining and the front and rear guide rollers need to be
trimmed to maintain high accuracy requirements. In summary, parts that wear easily affect
machining accuracy and consistency [12,13].

Flat/both-sides polishing technology has been widely used in the ultra-precision
machining of various materials. After machining, excellent shape accuracy and surface
quality of a workpiece can be achieved [14–19]. For example, with silicon wafer, sapphire,
quartz glass and other flat substrates, the machined flatness can be less than 0.2 µm and
the surface roughness less than 1 nm [20,21]. In view of the aforementioned problems,
combined with the characteristics of flat machining, some scholars have applied both-sides
lapping and polishing technology to the precision machining of cylindrical rollers. By
establishing a cylindrical surface machining system and analyzing the geometric kinematic
model of the workpiece, it was found that the wear track of the polishing plate uniformly
envelopes the cylindrical surface. Additionally, nano level removal of the material was
realized in the form of multi-edge and multi-directional cutting with ultra-fine abrasive
particles, thereby ensuring high shape accuracy, high surface quality and high batch
consistency. After machining, the average roundness of a batch of cylindrical rollers
reached 0.36 µm, the deviation reached 0.13 µm and the minimum roundness of a single
workpiece was 0.295 µm [22–26].

2. Machining Principle
2.1. Characteristics of Ceramic Plate

In this study, the polishing plates for both-sides cylindrical roller machining based
on a hard ceramic plate, traditionally made of cast iron, stainless steel or bearing steel,
were replaced by various ceramic materials (alumina, zirconia, silicon carbide and other
materials). Ceramic materials have the characteristics of high hardness and good wear
resistance [27,28]. Alumina (Al2O3), for example, has a Rockwell hardness of HRA80-90,
which is second only to diamond and 10 times that of ball-milled cast iron [29]. The
polishing plate has high hardness, which can ensure that the plate surface will not be
deformed during machining. The cylindrical roller contour after machining reproduces
the surface shape of the polishing plate, ensuring excellent roundness. The wear resistance
of Al2O3 is 266 times that of manganese steel and 171 times that of high chromium cast
iron [30]. With good wear resistance, the plate surface can maintain excellent flatness for a
long time, thus ensuring that the cylindrical roller has high accuracy and consistency.

The surface of the ceramic plate that has not been polished into a mirror surface is
covered with micro convex peaks. These hard peaks can be regarded as tiny blades which
can replace abrasive particles to remove material from the cylindrical roller.

2.2. Both-Sides Machining Method

The proposed both-sides machining device is shown in Figure 1. Figure 1a is structure
diagram of machining device, which is mainly composed of upper and lower ceramic plates,
a retainer and a squeeze head. The cylindrical rollers are placed in the retainer between
the upper and lower ceramic plates. The lower ceramic plate is rotated by the motor, and
the retainer is coaxial with the upper ceramic plate. The upper ceramic plate rotates with
the friction force of the cylindrical roller, and the cylindrical roller performs a sliding and
rolling motion during machining. The load is transmitted to the whole machining system
by the squeeze head; the eccentric distance between the upper and lower plates can be
changed by adjusting the position of the squeeze head. During machining, the ceramic
plates must have an excellent flatness (i.e., less than 0.3 µm) to ensure that the machined
cylindrical rollers have satisfactory roundness and consistency.

Figure 1b shows a schematic diagram of the both-sides machining principle, which
can be divided into three stages. In the initial stage, the batch consistency is poor, with
only cylindrical rollers with large diameter or high points coming into contact with the
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upper and lower plates, resulting in material removal. In the second stage, the cylindrical
rollers with larger diameters or high points are gradually removed, the diameters of the
rollers between the upper and lower ceramic plates tend to be the same, and all cylindrical
rollers are in contact with the upper and lower ceramic plates. In the third stage, when
the diameters of all cylindrical rollers are the same, the ceramic plates remove a small
amount of material from the surface of the rollers, yielding a product with high precision
and high consistency.
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Figure 1. Both-sides cylindrical roller machining method based on hard ceramic plate: (a) Structure
diagram of machining device; (b) Schematic diagram of machining principle.

3. Experiment
3.1. Experimental Device

The machining equipment used in the experiment was a self-developed both-sides
lapping and polishing machine, as shown in Figure 2. Al2O3 ceramics were used as the
upper and lower polishing plates, and cylindrical rollers were placed between the upper
and lower ceramic plates. Figure 3a,b show the initial surface shape of the upper and lower
ceramic plates, respectively. The diameter of the upper ceramic plate was 180 mm and
the flatness PV was 0.235 µm, while the diameter of the lower ceramic plate was 240 mm
and the flatness PV was 0.261 µm. The surface roughness of the ceramic plate should
not be too large or too small; if it is too large, the flatness of the plate does not meet the
requirements, and if it is too small, the surface of the plate is too smooth, reducing the
friction and exerting a cutting effect on the roller and reducing the material removal rate.
When the surface roughness was between Ra 20–50 nm, the surface of the ceramic plate
was relatively smooth but was nonetheless covered with micro convex peaks. When the
cylindrical rollers roll and slide on the surface of these micro convex peaks, the micro
convex peaks can be regarded as hard, micro blades which remove the material from the
roller surface.
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Figure 3. Initial shape of ceramic plates: (a) Initial shape of upper ceramic plate; (b) Initial shape of
lower ceramic plate.

3.2. Experimental Scheme

To verify the feasibility and effectiveness of the proposed machining method, a bearing
steel cylindrical roller (ф6.5 × 10 mm), finished by centerless grinding, was taken as the
experimental machining object. The roundness was measured using a Taylor Hopson 565
roundness meter, the surface roughness was measured with a Mitutoyo SJ410 roughness
meter and the diameter was measured with a micrometer. Twenty-seven cylindrical
rollers from the same batch were randomly selected for measurement. Three different
roller surfaces were measured and the average value was taken as the surface roughness.
The roundness and diameter were measured at both ends and the middle of each roller,
and the average value were taken as the roundness and diameter. The initial average
surface roughness was about Ra 50 nm and the initial average roundness was 2.3 µm. The
roundness of the 27 cylindrical rollers varied greatly; values of 4–5 µm were considered
poor, while 0.3 µm indicated good roundness. Combinations of these values indicated that
the roundness consistency of the same batch machining by centerless grinding was poor;
the data are shown in Figure 4. Figure 5 shows the diameter measurements of 27 cylindrical
rollers; the measured diameter range was 6.497–6.5 mm, and the deviation of diameter
reached 3 µm. The consistency was also poor.
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In the machining process, the eccentricity of the axis of the upper and lower ceramic
plates was set to 3 cm, the rotation speed of the lower ceramic plate was set to 60 rpm and
the machining load was the weight of the upper ceramic plate. Since the initial roundness
and diameter of the cylindrical roller varied greatly, in order to make the roundness and
diameter of the cylindrical roller converge quickly, diamond was first used as an abrasive
for 1 h. Then, the ceramic plates were cleaned and polished. The purpose of lapping
was to quickly trim the shape and dimensional accuracy of the cylindrical rollers, while
the purpose of polishing was to improve the shape accuracy and surface quality. The
cylindrical rollers were reversed every 30 min. The experimental conditions are shown in
Table 1.

Table 1. Experimental condition.

Parameter Parameter Data

Workpiece material GCr15 Bearing Steel
Workpiece size Φ6.5 mm × 10 mm

Lapping abrasive W2.5 diamond (wt.10%)
Polishing slurry Pure water

Eccentricity 3 cm
Polishing plate speed 60 rpm

Machining load Weight of ceramic plate
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4. Results and Discussion
4.1. Shape and Dimensional Accuracy

Figure 6 shows the variation of the average roundness of the cylindrical roller with
machining time, while Figure 7 shows the variation of the roundness of each cylindrical
roller. After lapping for 1 h, the high points on the cylindrical roller surface were gradually
removed, and the average roundness was reduced to 1.45 µm. After polishing with pure
water for 0.5 h and 4 h, the average roundness was reduced to 1.05 µm and 0.39 µm,
respectively. In the latter case, the roundness of the cylindrical rollers tended to be almost
the same. Therefore, the material removal rate of polishing became small and the conver-
gence speed of roundness was reduced. After polishing for 8 h, the average roundness
only decreased to 0.32 µm. It can be seen from the figure that after machining, the initial
irregularities in terms of the roundness of the cylindrical roller gradually diminished in
scale. The machining accuracy was greatly improved and the consistency was excellent.
The diameter of the machined cylindrical roller was found to be 6.486–6.487 mm, and
the diameter deviation was reduced to 1 µm. The consistency was also greatly improved.
Roundness measurements are shown in Figure 8.
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Figure 8. Cylindrical roller roundness measurements (0.18 µm).

4.2. Surface Quality

Figure 9 comprises micrographs of a cylindrical roller surface before and after ma-
chining. The comparison shows that the surface quality before machining was poor, e.g.,
longitudinal machining marks generated by centerless grinding are very obvious. In the
polishing process, the material on the roller surface was removed by the multi-directional
micro blades on the surface of the ceramic plate. As a result, the machining marks were
completely removed, and only some pits generated by the materials forming of the roller
were left on the surface. As such, the surface quality was significantly improved, with the
surface roughness after polishing reaching Ra 16 nm; see Figure 10.
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4.3. Wear of Ceramic Plate

Figure 11 shows the surface morphology and flatness of the upper ceramic plate. After
machining for 9 h, a ring band groove was ground, changing the flatness PV from 0.235 µm
to 0.257 µm. According to our measurement of the annular groove, as shown in Figure 11b,
the wear depth was about 0.086 µm and the width was about 12 mm. The wear width was
slightly larger than the length of the roller. This was attributed to the gap between the
retainer and the rollers. The two ends of the roller had small arc chamfers. It was found
that the morphology of the grooves produced by wear on the ceramic plate was deep in the
middle and shallow at both ends, coinciding with the generatrix of the roller. Figure 12
shows the surface morphology and flatness of the lower ceramic plate. A ring band pit
was formed, and the flatness PV ranged from 0.261 µm to 0.804 µm. By measuring the
pits, it was found that, as shown in Figure 12b, the pit (wear) depth was about 0.434 µm,
which was significantly larger than that of the upper ceramic plate. This was because the
cylindrical roller experienced both rolling and sliding friction with the lower ceramic plate,
but only rolling friction with the upper plate. The pit width was about 45 mm, due to
the 30-mm eccentricity between the upper and lower ceramic plates. The amount of wear
on the upper and lower plates was largely negligible. By analyzing the morphology of
the wear area, it could be seen that the wear surface was very smooth, i.e., flatness was
maintained. The height difference between the highest and lowest points of the wear area
on the lower ceramic plate was only about 0.1 µm, and as such, this had little impact on
the machining results. It was therefore concluded that excellent shape accuracy and batch
consistency could be obtained, even when the cylindrical roller came into contact with
wear areas.
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Figure 11. Surface morphology and flatness of upper ceramic plate: (a) Morphology and flatness of
the whole plate (wear condition); (b) Morphology and flatness of annular groove (wear condition).
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5. Conclusions

A both-sides cylindrical roller machining method using a hard ceramic plate was
developed and experiments were carried out. The experimental results showed that the
batch average roundness and diameter of cylindrical rollers reached 0.32 um and 1 µm,
respectively. As such, the machining accuracy and consistency were greatly improved.
Meanwhile, the machining marks generated by centerless grinding were removed, the
surface quality of the cylindrical roller was improved, and the surface roughness after
polishing reached Ra 16 nm. On the other hand, the ceramic plate showed good wear
resistance, and it is expected that it would maintain excellent flatness for a long time.
Therefore, consistently high quality cylindrical rollers could be obtained by the proposed
both-sides machining technique.
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