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Abstract: Active Galactic Nuclei (AGN) are relevant sources of radiation that might have helped
reionising the Universe during its early epochs. The super-massive black holes (SMBHs) they host
helped accreting material and emitting large amounts of energy into the medium. Recent studies
have shown that, for epochs earlier than z ∼ 5, the number density of SMBHs is on the order of
few hundreds per square degree. Latest observations place this value below 300 SMBHs at z & 6
for the full sky. To overcome this gap, it is necessary to detect large numbers of sources at the
earliest epochs. Given the large areas needed to detect such quantities, using traditional redshift
determination techniques—spectroscopic and photometric redshift—is no longer an efficient task.
Machine Learning (ML) might help obtaining precise redshift for large samples in a fraction of
the time used by other methods. We have developed and implemented an ML model which can
predict redshift values for WISE-detected AGN in the HETDEX Spring Field. We obtained a median
prediction error of σN

z = 1.48× (zPredicted − zTrue)/(1 + zTrue) = 0.1162 and an outlier fraction of
η = 11.58% at (zPredicted − zTrue)/(1 + zTrue) > 0.15, in line with previous applications of ML to
AGN. We also applied the model to data from the Stripe 82 area obtaining a prediction error of
σN

z = 0.2501.

Keywords: Active Galactic Nuclei; radio galaxies; redshift determination; multiwavelength cata-
logues; Machine Learning

PACS: 98.54.Cm; 98.54.Gr; 98.62.Py; 95.75.Pq; 95.80.+p

1. Introduction

Super-Massive Black Holes (SMBHs) might be ubiquitous to all galaxies above a
certain mass. Understanding their true role in the shaping of galaxies will require a more
precise census of the nature, growth, and evolution of SMBHs—in the so-called Active
Galactic Nuclei (AGN) phases—, as well as a more detailed characterisation of the internal
(secular) and external (environment) processes at work within the host [1].

Radio selection has been traditionally a prime wavelength for the detection of AGN
activity. Between 10–20% of AGN have strong radio emission, in many cases in the form of
jets, that can overshadow the radio emission associated to star-forming regions, mostly due
to super-novae [2]. Radio selection efficiency though seems to decrease towards the Epoch
of Reionisation (EoR. z > 6, e.g., Refs. [3–6]). Simulations (e.g., Refs. [7–9]) predict that the
distribution of AGN and Radio Galaxies (RG) along redshift can lead to the detection of a
few hundreds of objects per square degree at the EoR as the with deep observations planned
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for future observatories, e.g., SKA, µJy sensitivity levels [10]. These expectations collide
with the most recent compilations (see, for instance, Refs. [11,12]), which show that only
∼300 sources have been confirmed to exist at z > 6 over most of the sky. Environmental
(CMB) and intrinsic (QSO versus radio mode accretion) conditions might be responsible
for the lower rate of radio powerful sources at z > 5 but, selection criteria, might also
be playing a role [13]. Nevertheless, current radio instruments and recently completed
surveys [14–17] have allowed detection of larger numbers of RG (e.g., Refs. [18–20]) that
could be used to better understand the origin and evolution of radio emission in AGN.

To place radio AGN in the proper cosmological context and derive their intrinsic
properties, and given the time constrains imposed for the compilation of significant spec-
troscopic samples, alternative estimates for redshift need to be used. Template-based
photometric redshifts have proven to be an efficient alternative by trading precision for
sky coverage. The sizes of the new catalogues though, with tens to hundred of millions
of sources, imply a significant—and ever increasing—investment in computational time.
These issues raise the need for additional approaches which might be able to obtain the
redshift information for a large number of astrophysical sources with enough precision
and within a reasonable amount of time.

The tremendous increase of computing power over the last decades has allowed the
application of evolved statistical methods in the analysis of large and complex datasets.
Using previously-fed data, it is possible to predict, with relevant confidence, the behaviour
new data will have. This is what has been called Machine Learning (ML). In Astrophysics,
ML has been used in a wide range of subjects (in AGN and other types of sources), such as
redshift determination (e.g., Refs. [21,22]), morphological classification (e.g., Refs. [23–27]),
source selection and classification (e.g., Refs. [28–31]), image and spectral reconstruction
(e.g., Ref. [32]), and more [33,34]. Despite its range of applications, ML has received some
criticism related to the interpretability of the derived models, e.g., most ML models cannot
provide coefficients that allow to create an analytical expression for example [35]. This
implies that it may not be straightforward to understand the exact role that the measured
properties have into the prediction a model might make.

Recent work has been done to improve interpretability. Feature importance [36] can
be derived, mostly for Tree-Based models, i.e., models that use decision trees to classify or
predict properties. In this scenario, a feature with a high importance will be, in general,
in the higher levels of the decision trees used for the modelling. A different method
for assessing the impact of features is that of Shapley Values [37]. Opposite to feature
importance, Shapley values, which have been defined in the context of Game Theory to
determine the contribution of a player in a cooperative game, can help in understanding
how the features impact each individual prediction. A more thorough description on how
Shapley values work can be seen in Molnar [38].

Astronomical data is very heterogeneous in its current form, with small areas of
the sky covered extensively at all wavelengths and with high sensitivity but also larger
areas with sparser multiwavelength coverage. Therefore, the homogeneous and deep
multiwavelength coverage required for the most accurate models can only be achieved
over a few to tens of degrees. The derived models in these fields could then be applied first
to present surveys with less extensive and deep multiwavelength coverage (e.g., LoTSS,
Stripe82, RACS, MIGHTEE, etc.) and then also to the upcoming all-sky surveys, e.g., SKA,
LSST, eROSITA, etc., delivering observations with comparable depth and multiwavelength
coverage as current small fields.

In this work, we describe an ML model aiming to predict the redshift for AGN based
on the multiwavelength properties of the HETDEX Spring Field with the minimum amount
of data preparation possible. The model will be then tested in data from the SDSS Stripe
82 Field where multiwavelength coverage and depth vary with respect to the HETDEX
Spring Field. This approach would test the validity of the derived ML model based on a
field into other fields with slightly different spectral coverage.
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The structure of this article is as follows. In Section 2, we present the used data, its
preparation for ML training and describe the selection of models and the metrics used for
assess their results. In Section 3, the results of model training and validation are shown, as
well as the predictions over the Stripe 82 field. We present the discussion of our results in
Section 4. Finally, in Section 5, we summarise our work.

2. Materials and Methods
2.1. Data

We have selected all the detections listed on the CatWISE2020 catalogue (CW, [39])
that are located in the HETDEX Spring Field and that have been covered by the LOFAR
DR1 measurements [17] (see Figure 1). The CatWISE2020 catalogue has measurements in
the WISE bands W1 and W2 (at 3.4 µm and 4.6 µm, respectively), with a 90% completeness
depth at W1 = 17.7 mag and W2 = 17.5 mag. LOFAR observations cover an area of 424 deg2,
with a median sensitivity of 71 µJy/beam and a 6′′ resolution. In that way, we have
obtained 6,729,647 detected sources.

Figure 1. Area of the HETDEX Spring Field covered by the LOFAR DR1 measurements. Figure
prepared, in part, using the Python package MOCPy [40].

The sources have been then cross-matched with other catalogues in different wave-
lengths using a search radius of 5′′. We have selected surveys with large sky coverages, such
as: VLASS (3 GHz) [16], LoTSS-DR1 (150 MHz) [17], Pan-STARRS DR1 [41,41], GALEX AIS
GR6+7 [42], GMRT 150 MHz all-sky [43], 4XMM-DR9 [44], 2MASS All-Sky [45,46], and All-
WISE (AW [47]). The 20 selected photometric bands are listed in Table 1. To homogenise
photometric measurements, we converted all fluxes and magnitudes to AB magnitudes.

Table 1. Photometric bands included in the dataset.

Survey/Instrument Bands Survey/Instrument Bands

CatWISE2020 W1, W2 VLASS 3.0 GHz
AllWISE W1, W2, W3, W4 GALEX FUV, NUV

Pan-STARRS g, r, i, z, y 2MASS J, H, K
LOFAR 150 MHz XMM-NEWTON 0.2–12 keV
GMRT 150 MHz

We then selected the sources that could be linked to the emission of an AGN. Thus,
we cross-matched our catalogue with the Million Quasar Catalog1 (MQC, v7.2, [48]). It lists
published type-I QSOs/AGN, quasar candidates, type-II object and blazars along with the
best available redshift values for each of them, i.e., spectroscopic or photometric redshifts.
For the HETDEX Spring Field, 32,365 objects have been identified, in different surveys,
as AGN. That means that 0.48% of the detected CatWISE2020 sources have been identified
as AGN, and close to 8% (2674) of them are considered as QSO candidates. From the
identified AGN in our sample, 26,520 sources are listed in the Sloan Sky Digital Survey
Quasar Catalogue DR16 (SDSS-Q DR16 [49]), implying that the mean properties of the
objects studied in this work are driven by the behaviour of SDSS QSOs. In Figure 2, we
show the distribution of the sources in the WISE colour-colour diagram and the histogram
of available redshifts.
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(a) WISE colour-colour diagram. (b) Histograms for z values.

Figure 2. Characterisation plots for the Active Galactic Nuclei (AGN) sources in the HETDEX Spring Field. (a) W1 - W2,
W2 - W3 colour-colour diagram. Grey background represents the full CatWISE2020 sample, with darker areas showing
higher number of sources following the colour bar. Red, solid contours show density levels for radio-detected AGN.
Blue, dashed contours indicate density levels for AGN without a counterpart on the radio surveys used in this work (i.e.,
without radio detection). For both contour plots, the lines show the levels with 1, 10, 100, and 1000 sources in each pixel.
(b) Histograms for the redshift values of sources labelled as AGN. Grey, hatched histogram shows the distribution of
redshifts for AGN without radio detections. Redshifts for all radio-detected AGN are presented by the blue, vertically-
hatched histogram. Confirmed AGN without high host influence (see main text) that show a measurement on the surveys
used in this work, are presented in purple, clean histogram.

One important feature to note in Figure 2b is the distribution of radio-detected sources
(i.e., sources which show a counterpart on either LOFAR, GMRT, or VLASS). It does not
follow the same trends as non-radio AGN, i.e., there is not a peak around z = 2 and the
number of sources increases towards z = 0. This behaviour appears from the inclusion
of all AGN listed in the MQC. Its documentation2 states that some sources with a strong
influence from their host galaxies and QSO candidates are included along with confirmed
core-dominated AGN. These objects exhibit, mostly, galaxy-like properties (with low radio
emission levels, which might only be detected at redshift values close to z = 0), shifting
their distributions to unusual shapes for AGN. In addition to that, and given that only
around a 3% of the SDSS sources in our sample were detected in the radio bands when
catalogued [49], and SDSS do not show this misshapen distribution, the distortion affects
mostly radio-detected sources.

Even though this deviation from the expected distribution might affect, in some
way, part of our results, we will keep the sources that produce it in our calculations.
As mentioned in Section 1, part of the aims of this work is test whether an ML model
can deliver reasonable results without discarding, or modifying, a large fraction of the
intital dataset.

We also calculated colours for some of the bands. We computed g - r, r - i, i - z, z - y,
g - i, W1 - W2, W2 - W3, W3 - W4, J - H, H - K, and FUV - NUV. In addition, following the
results from Nakoneczny et al. [21], D’Isanto et al. [50], who studied different combinations
of features and their positive impact on the prediction of redshifts, we have constructed
ratios of magnitudes. The created quantities are r/z, i/y, W1/W3, W1/W4, W2/W4, J/K,
and FUV/K. Finally, we included two indicators, in the form of a boolean flag, showing
whether a source has a measurement on any radio band (LOFAR or TGSS) or on X-ray (Full
band in XMM-Newton).
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2.2. Methods
2.2.1. Data Preparation

Redshift values have a logarithmic behaviour when compared to the time passed—and
distance travelled—between two values. A unit difference at low redshift has not the same
significance as a unit difference at high redshift (i.e., early epochs). Given that, ultimately,
redshifts can be used to determine distances, and times, from the observer to a given source,
it is useful to make this quantity comparable to linear measurements. Thus, to overcome
this non-linearity and, at the same time, establish a procedure to contrast predictions and
real values, all comparisons will be normalised by the real redshift as follows:

∆zN =
zPredicted − zTrue

1 + zTrue
=

∆z
1 + zTrue

. (1)

Using these two quantities, ∆z and ∆zN , it is possible to define a set of metrics to
assess the quality of the prediction the developed models can achieve. First, we can define
the standard deviation between the true, original redshift and the predicted value.

σ∆z =

√√√√ 1
N

N

∑
i

∆z2. (2)

In the same way, the value ∆zN can be used instead of ∆z, giving rise to the normalised
standard deviation, σN

∆z.
Alternatively, the redshift deviations can be used directly to create the median absolute

deviation (MAD),
σMAD = 1.48×median|∆z|, (3)

or the normalised MAD (NMAD) with the weighted redshift deviations, ∆zN .
Another quantity used to evaluate the predictions is the fraction of outliers, η. It

represents the number of predictions that are too far away from the true value over the
total number of prediction. There are several ways to define this value [51–54]. We will
make use of the interpretation by Hildebrandt et al. [51], which considers all predictions
that fulfil the following condition to be outliers:∣∣∣∆zN

∣∣∣ > 0.15. (4)

Using both the standard and normalised differences between redshift values can allow
us to analyse the results of our predictions from two points of view: from a purely statis-
tical standpoint (using the standard difference), and a physically-motivated perspective,
with the use of the normalised redshift difference. Both approaches can be useful to reach a
better understanding of the behaviour of the used models.

For this work, we have analysed our data using the Regression module of the Python
package PyCaret3 [55]. It can create a full pipeline for the use of our dataset and has
enough options to change its parameters as needed.

The first step of data preparation is imputation. A large fraction of ML models cannot
be used with missing data. For this reason, several methods have been devised to impute
missing values (for a review on data imputation, see, for instance, Ref. [56]). In our dataset,
several features have a large fraction of empty spaces. A distribution of empty entries,
prepared with the software missingno [57], can be seen in Figure 3. It is possible to see that
radio and X-ray features have the largest number of empty values.

We imputed each magnitude with its detection limit and propagated those values for
colours and ratios, assuming that empty entries are faint enough to be detected by each
instrument. Thereafter, and within the PyCaret frame, we further removed features based
on their influence over the prediction. We applied the Boruta method [58], discarding a
feature if it behaves better than an aleatory version of itself. The final list of used features
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is seen in Table 5. The remaining features are re-scaled to have a mean value of µ = 0
and a standard deviation of σ = 1 and, afterwards, power-transformed to resemble a
Gaussian distribution using the Yeo-Johnson method [59]. The use of re-scaling steps
helped our models to improve their results over training with the original features. No
further modifications were applied to the data. Thus, no corrections are applied for
obscuration, AGN variability, host galaxy morphology, or other properties.

For the validation of our ML model, we have set aside a 10% of the full dataset.
From the remaining 90%, 70% was used for training, and 30% for model testing. The same
distribution of sources, which was created randomly, was used throughout the full study.
Following the conventions used by PyCaret, the validation sub-set is the only fraction of
the data which is not used for the training stage.

Figure 3. Distribution of empty values in HETDEX dataset. Each column shows the data from one feature and dark spaces
indicate rows with a valid entry. The number of valid entries per feature is seen on top of each column. The dark line in the
right side of the plot shows how many measurements each source in the dataset has. For clarity, sources have been sorted
by number of entries, not affecting further results.

2.2.2. Model Selection and Stacking

With the help of PyCaret, we run simple realisations of a list of known ML model and
selected, as meta-learner, the model with the best score (σN

z , see Section 2.2.1). After these
tests, we stacked the four models with the following best metrics. Model stacking takes
the results (predictions) from several models and adds them as new features for the
meta-learner. In this way, the meta-learner can use the properties and advantages of the
remaining models as a guidance for its own training and improve the prediction results.
Furthermore, stacking can help improving the overall scores of the predictions. The stacked
model was trained using 10-fold Cross Validation. The metrics of the training of the base
and meta learners, along with those from the stacked model are presented in Table 2.
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Table 2. Model Stacking results. Only σNMAD was used to rank the models and select base and meta
learners (see Section 2.2.2). Stacked Train refers to the use of the stacked model in the training set and
Stacked Train+Test to the same model in the union of training and test sets.

Random Extra CatBoost LightGBM XGBoost Stacked Stacked
Forest Trees Train Train + Test

σNMAD 0.1040 0.1079 0.1225 0.1251 0.1295 0.0971 0.1000
σN

z 0.4639 0.4608 0.4587 0.4656 0.4771 0.4495 0.4445

3. Results
3.1. Redshift Prediction

For the model stacking, we have chosen, as base models, Extra Trees (Extremely Ran-
domised Trees, [60]), CatBoost [61,62], LightGBM [63], and XGBoost [64]. A Random Forest
regression model [65] was used as meta-learner. From the 10-fold Cross Validation training,
we have obtained a value of σNMAD = 0.0971± 0.0027 (see Table 2, where the uncertainty
value corresponds to the standard deviation of the Cross Validation instances). This is in
the order of a one hundredth of a scaled redshift unit, improving upon the results from the
individual models. In addition, when including the test set in the training of the model,
the normalised standard deviation is σNMAD = 0.1000.

Figure 4a shows the prediction values for the validation set. The density of the plotted
points, with higher values shown as a darker colours, shows that a large fraction of the
predictions are close to the y = x line. Additionally, the outlier fraction (Equation (4)) for
the HETDEX Spring Field validation sample is η = 21.87%. The results of the prediction
over the test and validation sets are summarised in Table 3.

(a) (b)

Figure 4. Distribution of predicted redshifts as a function of the original redshift values from the validation sample and
Stripe 82 Field. Each square represents the number of sources as colour-coded in the colour bar. Diagonal, dashed line
represents the x = y relation and the dotted dashed lines show the zone of outliers. The panel in the upper-left side of
each figure shows the distribution of ∆zN values from the prediction. (a) HETDEX Spring Field validation set; (b) Stripe 82
Field sample.
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Table 3. Results from the application of the model to the Test and Validation sets, to the full Stripe 82
sample, and to the cross-match between our sample and the X-ray sources from Ananna et al. [66]
(see Section 4.1).

HETDEX HETDEX Stripe 82 Stripe 82
Test Set Validation Set Test Set Ananna+17

σMAD 0.1392 0.2118 0.2854 0.2287
σNMAD 0.0594 0.0906 0.1197 0.1122

σz 0.2756 0.4287 0.5528 0.3630
σN

z 0.1162 0.1986 0.2501 0.1834
η 0.1158 0.2187 0.2972 0.2429

3.2. Prediction in Stripe 82 Field

To avoid possible biases derived from predicting on the same type of data as that used
in training, and to test the prediction capabilities of our model, we applied it in data from a
different area of the sky. In this case, we selected the SDSS Stripe 82 Field. We gathered the
same data as described in Section 2.1. The main difference is that this field is not covered by
the LoTSS-DR1 Survey. Thus, the selected area is defined by the coverage of the VLA SDSS
Stripe 82 Survey [67]. This is to mimic the use, as with the HETDEX Spring Field, of an
area covered by a radio survey. The VLA-Stripe 82 Survey covers an area over 92 deg2 with
a median rms noise of 52 µJ/beam and an angular resolution of 1.8′′. We have selected this
field because of the high-quality measurements it hosts, and thorough studies on AGN
over its area. The sample we have produced has 369,093 detected sources and 2941 of them
have been labelled as AGN by the MQC. Additionally, 111 sources have been defined as
QSO candidates.

In Figure 4b, the results of the redshift predictions, along with the original values,
for Stripe 82 are presented. Results from Stripe 82, shown in Table 3, resemble those of
the HETDEX Spring Field, hinting the possibility of, as long as the needed wavebands
are available, using the trained models in areas of the sky which are not related to the
training sample.

In addition, and even though all metric results are better in the initial HETDEX Spring
sample, differences with Stripe 82 are on the range of 7–8%. These deviations are small
enough to be caused by statistical variations among both fields. In the case of the outlier
fraction, it is around 30%, and 8 percentage points higher than with the primary sample.

4. Discussion
4.1. Previous Results

As a way to assess our results, it is possible to compare them to previous redshift
determinations. This is the case of Ananna et al. [66]. They used multiwavelength data from
5961 X-ray-detected AGN in the Stripe 82 Field with z ≤ 3.0 and, from fitting SED models,
they computed photometric redshifts. From their Table 7, a value of σNMAD = 0.0602 is
quoted for their full sample, which is in line with our prediction in the Stripe 82 Field
(σNMAD = 0.1197). In addition, an outlier fraction of 13.69% is achieved, less than half of
what is obtained using our stacked model in the same area. It is possible to select, from our
sample, the sources with a counterpart in the Ananna et al. [66] sample and apply our
model to them. Using a matching radius of 2′′, 221 sources are selected, reaching values of
σNMAD = 0.1122 and η = 0.2429. If we do the same exercise, selecting the results from the
SED-fitting redshift determination, their values are σNMAD = 0.0648 and η = 0.2048. Full
results for this sub-sample are shown in Table 4.

To contrast our results with previous ML implementations, we can take the work
from Curran et al. [68], who compared the results of applying deep learning, decision trees,
and k-nearest neighbours regression to predict redshift values for 100, 000 SDSS DR12 QSO
with accurate spectroscopic redshifts. Results are presented in Table 4.
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Table 4. Results from previous works. First column: full X-ray selected sample quoted from
Ananna et al. [66]. Second column: selection of sources from Ananna et al. [66] that have a match in
our sample. Following columns: result of application of k-Nearest Neigbours (KN), Decision Tree
Regression (DT), and Deep Learning (DL) models as quoted from Curran et al. [68].

Stripe 82 Full Stripe 82 Match SDSS KN SDSS DT SDSS DL
Ananna+17 Ananna+17 Curran+2021 Curran+2021 Curran+2021

σMAD · · · 0.1336 0.2360 0.1290 0.0920
σNMAD 0.0602 0.0648 0.0500 0.0580 0.0420

σz · · · 0.5435 0.2360 0.3330 0.2350
σN

z · · · 0.2766 0.1210 0.1600 0.1100
η 0.1369 0.2048 · · · · · · · · ·

When comparing our results (Table 3) with the outputs from Curran et al. [68], we note
that the metrics for our Validation set are 20–40% higher and those from the Stripe 82 Field,
40–60% higher than theirs. This is a consequence of our decision of not cleaning our training
set, mimicking the conditions a large dataset might present. They, in contrast, have trained
their models with sources that have full coverage on the bands they selected, avoiding
the use of imputation. Moreover, since they have used large SDSS sample, the properties
of QSO among them are more homogeneous than that of the present work, leading to
improved prediction results.

Comparison with previous works, using traditional template-based and ML photo-
metric redshift determination methods, highlights the prospective scenarios to apply our
model. Rather than selecting a very small area with the right conditions, we can use the
model here presented on large regions with incomplete coverage, rising the likelihood of
obtaining objects with specific resdhift values.

4.2. Feature Importances

Feature importances from our model are listed in Table 5. The values are provided
by the model itself, and they have been calculated as the mean decrease on impurity for
the ensemble of trees. We can see that the features with the highest importances are those
coming from the CatWISE catalogue. After them, quantities are derived from Pan-STARRS.
In addition, finally, those obtained from AllWISE, and GALEX observations suggest a very
low impact in the model training and the predictions derived from it.

Table 5. Features used by our redshift prediction model and their importances.

Feature Importance Feature Importance Feature Importance

W1 - W2 (CW) 87.381 z - y 37.084 FUV - NUV 11.338
W1 (CW) 82.759 W1/W3 (AW) 33.207 FUV/K 8.886
g - i 70.617 i/y 33.081 FUV 7.202
g 55.787 W2/W4 (AW) 29.196 K 5.484
W2 - W3 (AW) 53.919 i - z 28.647 J - H 2.817
r/z 52.251 W4 (AW) 26.392 J/K 2.803
y 49.234 W3 - W4 (AW) 24.898 H - K 2.771
r - i 46.451 NUV 23.296

Entries from CatWISE have the largest amount of relevant, non-repetitive information
from all features. Despite the different nature of the used features, i.e., magnitudes, colours,
ratios, there is no clear preference of one kind over the others. The main factor to have
high importance is the fraction of sources with a measurement in the studied feature. This
distribution also reinforces the results from Ref. [50], who established that is possible to
use combinations of magnitudes other than colours and train, successfully, ML models.

Table 5 also gives information on the features that can be discarded from the model
training without having a high influence on the predicted values (features with data from
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2MASS and GALEX). Finally, it is important to stress that, in this work, we have not
discarded data based upon the feature importances.

4.3. Shapley Explanations

Shapley values were obtained using the Tree-based module of the Python package
SHAP4 [69,70]. In Figure 5, features are sorted by decreasing median Shapley values.

The quantity with the highest Shapley value is related to the base observations. How-
ever, from the distribution of values in the horizontal axis for the W1 magnitude, it is
possible to see that its large dispersion implies that its influence on predictions can drive
the final redshift either to low or high values. This is in contrast with, for instance, the g - i
colour. Its Shapley values might be close to zero, indicating that it does not have impact on
the redshfit prediction. The values can be higher than zero, as well, driving the predictions
to high redshift values.

1.0 0.5 0.0 0.5 1.0 1.5
SHAP value (impact on model output)

Sum of 13 other features

r-i

r/z

z-y

W1-W2 (CW)

g-i

W2-W3 (AW)

g

y

NUV

W1 (CW)

Low

High

Fe
at

ur
e 

va
lu

e

Figure 5. Shapley values for the ten features with the highest median Shapley numbers in our
redshift prediction model. Each row corresponds to one feature. Colour map indicates the value of
the feature for each source. Features are sorted by median Shapley value. Last row shows the sum of
the 13 remaining features used for the prediction. Feature values of points to the left of vertical, grey
line have a positive impact on the model output, i.e., redshift will tend to be higher. Points close to
the vertical line show a limited impact on the redshift prediction.

Most of the remaining features show Shapley values clustered around 0.0, and a small
sub-sample deviates from this and has a noteworthy influence on predictions.

The feature with the second highest median Shapley values is the NUV magnitude
from GALEX. From Figure 3, it is possible to see that this feature exhibits a very high fraction
of empty entries. That implies that most of sources have an imputed NUV magnitude. This
distribution is present in Figure 5. Therefore, all imputed magnitudes make the redshift
prediction go up, and all measured magnitudes make it go down. Although this behaviour
might seem anomalous, it has its roots on the fact that very few high-redshift sources are
detectable by GALEX.

Being able to retrieve these interpretations is one of the advantages of using Shapley
values from a prediction model. It is possible to understand whether certain range of values
of a feature can make a prediction go up or down. This differs from feature importances,
which allow an average view of the impact of a feature over the complete trained model.

Despite their differences, feature importances and Shapley values can help understand
the impact that measurements in different wavelengths can have over the understand-
ing and prediction of redshift values of AGN. In particular, and given the relevance and
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high-quality observations that future radio surveys and observatories will deliver, adding
direct measurements (e.g., Ref. [71]) or features derived from them might be highly ben-
eficial when focusing the search on high-redshift objects. The latter might be the case
with already-known quantities, such as radio loudness or radio spectral indices. These
properties can provide indications on the radio emission [72] and its relation with other
wavelengths [73,74].

5. Conclusions

In this work, we trained several Machine Learning models to predict, from a sample
of infrared-detected AGN—and their multiwavelength counterparts—their redshift value.

Sources were obtained from CatWISE2020 catalogue and counterpart measurements
were obtained from AllWISE, Pan-STARRS, LOFAR, GMRT, VLASS, GALEX, 2MASS,
and XMM-NEWTON observations and surveys. All of the sources are located at the
HETDEX Spring Field.

Using of the PyCaret Python package as a framework, we stacked four different
models with a meta-learner. The application of model to the validation set lead a median
redshift error on the prediction of σN

z = 0.1986 and an outlier fraction of η = 21.87%. This
goes in line with previous results, taking into account that no major cleaning procedure
was performed into the dataset.

To further test the power of our model, we applied it to a separate catalogue of AGN
located in the Stripe 82 Field, and the median redshift error was σN

z = 0.2501 and an outlier
fraction of η = 29.72%.

To understand the influence of the different features included in the model, Shapley
values were calculated for the training sub-set. The features from WISE and from Pan-
STARRS show the highest median Shapley values, mirroring the fact that these features
have the lowest number of imputed entries.

The results presented in this work stress the benefits of using ML as an initial approach
to derive redshift predictions for AGN. Using a fraction of the time a template-based
photometric redshift determination tool might take, ML can give redshift predictions
with a high confidence level which can lead to further studies of selected sources. This
advantage might become critical to the use of current and future large-area surveys—with
radio surveys being a major example, which need to extract information from several
millions of sources within an appropriate amount of time.

Even though some of the results obtained in this work do not show a considerable
improvement from previous studies, it is relevant to emphasise that our work was aimed
to extract predictions using datasets without large amounts of preparation, i.e., feature
engineering. This implies that it is possible to use a very heterogeneous group of datasets
(with different sensitivities, resolutions, etc.) and obtain useful predictions from them
without the need of cleaning and reducing the number of used sources in each catalogue.

Our model can be further improved using future surveys which will cover large areas
with very deep observations. One such survey is Data Release 2 of the LoTSS survey,
which will be released in the near future. It will cover 5720 deg2 in the northern sky with
similar sensitivities as DR1 [75]. If assuming the same AGN density as in LoTSS DR1 (see
Section 2.1, with 32,365 AGN in 424 deg2), DR2 is expected to deliver 436,622 AGN from its
area. This will allow us training a redshift prediction model with a number of sources one
order of magnitude larger, improving its accuracy dramatically by capturing the properties
from a larger parameter space. This improvement can be also analysed in terms of cosmic
variance. Following the results by Ref. [76], DR1 from the LoTSS survey will be subject
to a cosmic variance between 10 and 20%. In addition, extrapolating the curve from their
Figure 6, DR2 will make this value go below 10%. Only from this improvement, we might
expect to achieve a better training for a prediction model. AGN might present variability
on their observations with different timescales [77,78], which might impact the observed
properties of the used datasets. These variations can increase the fraction of outliers in
different ranges [79].
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Additional sources of improvement in the results are related to the treatment of the
missing values in our catalogue. Devising more advanced imputation methods, which can
take into account the distribution of measured values in one feature and their relation to the
rest of features, might refine our results. Related to this, some features have a low fraction
of measured values, adding little information to the models. Discarding these features also
might reduce the fraction of outliers. Apart from the data treatment, further improvements
might be achieved if the intrinsic time variability of AGN is taken into account.

The used model might arrive to better results creating several instances of data sub-
sets. Using different combinations of sources for training, test, and validation might have
an impact on how the model arrives to separate predictions.

With all these advantages, the model described in this article can be used as part of a
full pipeline which might be able to predict the presence of AGN in a large-area field. In
addition, for the predicted AGN, we predict their redshift values, among other properties,
e.g., radio detectability. This might allow the creation of catalogues with high-redshift
Radio Galaxies from datasets covering large areas.
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