
galaxies

Article

Quantum Gravity Phenomenology Induced in the Propagation
of UHECR, a Kinematical Solution in Finsler and Generalized
Finsler Spacetime

Marco Danilo Claudio Torri 1,2

����������
�������

Citation: Torri, M.D.C. Quantum

Gravity Phenomenology Induced in

the Propagation of UHECR, a

Kinematical Solution in Finsler and

Generalized Finsler Spacetime.

Galaxies 2021, 9, 103. https://doi.org/

10.3390/galaxies9040103

Academic Editor: Marco Schreck

Received: 30 September 2021

Accepted: 10 November 2021

Published: 14 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Dipartimento di Fisica, Università degli Studi di Napoli, Complesso Univ. Monte S. Angelo,
80126 Napoli, Italy; marco.torri@mi.infn.it or marco.torri@unimi.it

2 Dipartimento di Fisica, Università degli Studi di Milano and INFN Sezione di Milano, Via Celoria 16,
20133 Milano, Italy

Abstract: It is well-known that the universe is opaque to the propagation of Ultra-High-Energy
Cosmic Rays (UHECRs) since these particles dissipate energy during their propagation interacting
with the background fields present in the universe, mainly with the Cosmic Microwave Background
(CMB) in the so-called GZK cut-off phenomenon. Some experimental evidence seems to hint at the
possibility of a dilation of the GZK predicted opacity sphere. It is well-known that kinematical per-
turbations caused by supposed quantum gravity (QG) effects can modify the foreseen GZK opacity
horizon. The introduction of Lorentz Invariance Violation can indeed reduce, and in some cases mak-
ing negligible, the CMB-UHECRs interaction probability. In this work, we explore the effects induced
by modified kinematics in the UHECR lightest component phenomenology from the QG perspective.
We explore the possibility of a geometrical description of the massive fermions interaction with the
supposed quantum structure of spacetime in order to introduce a Lorentz covariance modification.
The kinematics are amended, modifying the dispersion relations of free particles in the context of
a covariance-preserving framework. This spacetime description requires a more general geometry
than the usual Riemannian one, indicating, for instance, the Finsler construction and the related
generalized Finsler spacetime as ideal candidates. Finally we investigate the correlation between
the magnitude of Lorentz covariance modification and the attenuation length of the photopion
production process related to the GZK cut-off, demonstrating that the predicted opacity horizon can
be dilated even in the context of a theory that does not require any privileged reference frame.

Keywords: quantum gravity; lorentz invariance violation; doubly special relativity; finsler geometry;
astroparticle physics; cosmic rays

1. Introduction

The universe is opaque to the propagation of radiation in particular of its most en-
ergetic component, that is cosmic rays (CRs). This part of the extraterrestrial radiation is
composed of charged particles, protons and heavier (bare) nuclei, most likely of extragalac-
tic origin. Since the universe opacity is more pronounced at the highest energies, in this
work we deal with Ultra High Energy Cosmic Rays (UHECRs) that is the most energetic
fraction of CR with energies larger than ∼1018 eV. CRs during their propagation may
interact with background radiation fields in particular with the Extragalactic Background
Light (EBL) and at sufficiently high energies with the Cosmic Microwave Background
(CMB) being attenuated in a way that depends on their energy and nature. The UHECR’s
lightest component, protons with energies above the photopion threshold ∼5 × 1019 eV,
dissipate energy mainly via pair production or photopion creation, instead the heavier
component composed of bare nuclei can also undergo photodissociation processes. A
CR can be generated with a limited energy proportional to the product of the magnetic
field and the dimension of any candidate source: E ∼ B× d, following the so-called Hillas
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criterion [1]. Since UHECRs’ free propagation path is finite and their energy is limited, they
can be detected on Earth only under a determined energy threshold if they propagate for
long enough distances. This phenomenon poses an upper limit on the detectable UHECRs
energy and in the case of the lightest component is named GZK cut-off from the name of
the physicists Greisen, Zatsepin and Kuzmin [2,3].

The physics correlated with the UHECR propagation can be exploited to investigate
new phenomena, such as the supposed quantum structure of the spacetime [4–9]. Astropar-
ticle physics can be a useful framework to conduct searches for possible departures from
the Lorentz covariance since in some theoretical models the quantum gravity (QG) effects
are supposed to be more visible in the high-energy limit as Lorentz Invariance Violation
(LIV) effects. UHECRs propagate for cosmic distances and reach extremely high energies,
therefore they can open a window on the Planck scale physics.

Currently, there is no definitive theory that unifies quantum physics with gravity.
The greatest challenge in formulating such a unified theory is the actual impossibility of
obtaining the energies needed to probe the Planck scale realm. It is commonly believed
that the Planck energy EP =

√
}c5G−1 ' 1.22× 1019 GeV represents the threshold that

separates the classical formulation of physics, which is General Relativity (GR), from the
quantum realm, represented by Quantum Field Theory (QFT). Nevertheless some QG
signatures may become manifest in a low-energy regime as residual effects and these
perturbations of standard physics may give access to the possible phenomenology induced
by QG.

In this work, we investigate the possibility to detect QG signatures as departures from
the Lorentz covariance in the UHECR sector. Indeed, the introduction of QG motivated
modifications could modify the threshold of physical processes in UHECR physics, influ-
encing the generation of hadronic showers in the atmosphere at the detection. Moreover,
QG can perturb at sufficiently high energies the free particle kinematics reducing the
interaction with the background fields, mainly the CMB, and the related energy dissipation
caused by the GZK effect and photodissociation process, resulting in an enlargement of the
volume of the universe accessible at UHECRs. A natural way of looking for QG signals
involves the determination of UHECR propagation length. This result can be obtained
by finding out the source of these particles, for instance, detecting anisotropies in their
flux. Indeed, anisotropy searches will require a better knowledge of the supposed UHECR
sources distribution.

The comprehension of UHECR physics must be improved in order to conduct the
anisotropy analysis that underlies all the potential QG studies in the CR propagation sector.
Indeed, this analysis can be spoiled by the presence of Galactic (GMF) and Extragalactic
Magnetic Fields (EGMF). Since CR are charged particles, their trajectories are affected by
magnetic fields and the measure of the deflection can be obtained evaluating the particle
rigidity, that is the ratio of CR energy and charge: R = E/Z, for higher rigidity values the
resulting deflections are smaller: 〈θ〉 ∼ 1/R, where 〈θ〉 is the average deflection angle. The
theoretical and experimental uncertainties about EBL, GMF [10,11] and particularly EGMF
can spoil this analysis. Posing constraints on the magnitude of EGMF, for instance, is
extremely complicated since the universe is mostly composed of cosmic void, therefore the
EGMF magnitude evaluation ranges from ∼×10−19 G [12] to ∼×10−19 G [13]. Most of the
studies about EGMF effects on UHECR propagation are conducted by simulating the cos-
mological structure formation, but with conflicting and inconclusive results [14,15]. A last
remark about the necessity of better understanding the nature of the primary CR in order to
discriminate the lighter UHECR component from the heavier one on a particle-by-particle
basis. Recent studies of the Pierre Auger collaboration indicate that above the energy
threshold of ∼×1018 eV the CR flux is dominated by the light primaries, nevertheless as
the energy increases the lightest fraction (protons) seems to be partially replaced by an
intermediate mass component (He-N) with a Fe contribution above ∼×1019.4 eV [16,17].

The phenomenological analysis conducted to detect the presumed QG effects in the
present study is limited to the lightest component of the UHECRs, that is protons. This
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component is interesting since it is the least deflected one by magnetic fields during
propagation. In fact, UHE protons can reach rigidities beyond ∼20 × 1018 eV presenting
ballistic trajectories, which can allow for small-scale anisotropies searches.

For a more exhaustive and complete introduction on the CR physics and the related
issues, we suggest the lecture of the review [18].

There are many theoretical models that investigate the possibility of modifications as
QG-induced perturbations [4,19–25], but we conduct our investigation in the context of
Homogeneously Modified Special Relativity (HMSR) [26]. In this theoretical framework
the covariance is modified and not broken as in Doubly Special Relativity (DSR) [22–25].
Hence, the kinematical symmetry is again valid in an amended formulation and the intro-
duction of a privileged reference frame is not required. In this context a minimal extension
of the Standard Model (SM) of particle physics can be formulated preserving the modified
covariance. The QG perturbations are introduced in the free particle kinematics modifying
the dispersion relations (DRs). This idea is motivated by the hypothesis that the effects
induced by the quantum structure of the background can be geometrized requiring a more
general structure to set the theory than the usual Riemann geometry, that is the Finsler one.
The introduction of QG kinematical perturbations can modify the allowed phase space for
the interaction with the CMB and the pion creation process. The phenomenological effects
are evaluated via numerical simulations conducted using an ad hoc version of the software
SimProp [27], modified in order to include the QG kinematical perturbations [8]. The intro-
duction of Lorentz covariance modifications induce an opacity horizon enlargement [7,8],
as foreseen even in the case of pure LIV [4–6].

This work is structured as follows: first we introduce the theoretical framework
motivated by the QG perspective, geometrizing the interaction of a free particle with
the background. Then, we introduce a minimal extension of the Standard Model of
particle physics in an amended covariant formulation. In the following we introduce
the physics related with the UHECRs propagation explaining where the QG effects can
manifest themselves. Afterwards, we present the numerical results obtained via the
modified SimProp software. Finally, we analyze the results with particular emphasis on the
possibility of obtaining detectable phenomenological effects in this sector in the context of
a covariant framework, that retains a modified version of the kinematical symmetry group
(the Lorentz/Poincaré one).

2. Kinematical Modifications in an Isotropy Preserving Scenario

In this work, we explore the possibility of investigating the presumed QG effects
perturbing the free particle kinematics and we obtain a minimal extension of the particle
SM in a framework that preserves an amended covariance formulation [26].

Modified Dispersion Relations

The QG-caused perturbations are introduced only in the free particle kinematics
in order to prevent the introduction of any exotic particle or reaction. As a reasonable
physical hypothesis only the Dispersion Relations (DRs) of massive fermions are modified,
because of the gravitational nature of these supposed effects, as done in the great part of
theories [4,19,21–25,28,29] that tackle the Special Relativity (SR) modifications from a QG
perspective. In this work, every particle species is supposed to have its personal Modified
Dispersion Relation (MDR):

F2(p) = E2
(

1 + h
(
|~p|
E

))
− |~p|2

(
1 + k

(
|~p|
E

))
= m2 , (1)

where besides the particle energy E, momentum ~p and mass m the QG perturbations
are encoded in the peculiar functions h and k depending on the particle species. These
functions have to satisfy the perturbation condition:

|h| � 1 |k| � 1 h, k ' O(1) , (2)
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with at least first and second order derivatives limited with the same perturbative mag-
nitude. One may consider, for instance, the linear function α(|~p|/E) or the translated
exponential exp(α|~p|/E)− 1 with α a strongly limited coefficient that encodes the pertur-
bation character of the selected function. In the following, all the terms with comparable
magnitude will be considered first-order perturbations (See Appendix A) ' O(1).

The perturbation functions h and k are 0-degree homogeneous and depend on the 3-
momentum magnitude |~p| in order to be rotationally invariant, as conjectured in [26]. This
perturbation choice can guarantee the MDR geometrical origin, in this way the function
F2(p) is 2-homogeneous and can be a candidate Finsler pseudo-norm. It is important to
emphasize that we are dealing with a pseudo-Finsler geometry since the metric signature is
not positive definite, in the sense that the underlying structure is the Minkowski geometry.
As it will be clear in the following, if the perturbation functions are chosen as h = k one
can obtain a conformally flat momentum space and if h > k the MDR Equation (1) can be
approximated with the MDR defined in [26]:

F2(p) = E2 − |~p|2
(

1− f
(
|~p|
E

))
= m2 , (3)

with f ' (h− k). Another important feature emerges thanks to the dependence of the
perturbations on the ratio |~p|/E, indeed with the latter MDR choice:

|~p|
E
→ (1 + δ) for E→ ∞ with 0 < δ� 1

f
(
|~p|
E

)
→ ε� 1

(4)

and from this the possibility of obtaining in the high-energy limit the first formulation
of Very Special Relativity (VSR) follows, and if f = h − k 6= 0 Equation (1). Every
particle admits, therefore, its personal Maximum Attainable Velocity (MAV) as supposed
by Coleman and Glashow [4]:

c′ =
(

1− f
(
|~p|
E

))
→ (1− ε) . (5)

This feature is present in VSR and HMSR and as a direct consequence a rich phe-
nomenology can be obtained in different physical sectors, for instance, in neutrino oscilla-
tion physics [30,31].

3. Finsler Geometry

We give now a brief introduction to Finsler geometry that will be useful in the fol-
lowing. A Finsler geometric structure can be defined as a manifold M where in every
tangent space a norm function F is defined not necessarily starting from an inner product.
F is a positively homogeneous norm only if the Hessian of F2 is positive definite. The
norm must be a real and positive definite function of the section of the tangent space Tx M,
which depends on the point x and on a vector v ∈ Tx M. The norm must be 1-degree
homogeneous with respect to the vectors satisfying the relations:

• F : (M, Tx M)→ R+

• F(x, v) > 0 ∀v ∈ Tx M, v 6= 0, ∀x ∈ M
• F(x, λv) = |λ|F(x, v) .

In Finsler geometry the norm can define a local metric via the equation:

gµν =
1
2

∂2F(x, v)2

∂vµ∂vν
, (6)
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which requires that det gµν 6= 0 and gµν ∈ R ∀µ, ν. In this way, it is possible to reobtain a
vector norm:

F(x, v) =
√

g(x, v)µνvµvν . (7)

As in Riemann geometry it is possible to define a duality relation between vectors and
dual forms defining the Legendre transform. Using the metric the resulting bijection is
given by:

l : Tx M→ T∗x M

l(v)µ = ωµ = g(x, v)µνvν .
(8)

The previous definition is valid for a Finsler structure with a definite signature of
the metric, but it must be generalized in order to deal with the physical spacetime, which
exhibits a Minkowski-type underlying metric of indefinite-signature. A systematical intro-
duction to this issue and the so-called pseudo-Finsler geometry can be found in [32–37].
Here, we follow the definition given in [33,35] and pose a pseudo-Finsler geometric struc-
ture modifying the previous definition and requiring that:

• there exists a connected component T of the pre-image of F2 ⊂ TM, such that on
T the metric defined by the Hessian exists, is smooth and has Lorentzian signature
(+, −, −, −).
A typical difference between Finsler and Riemann geometry consists in the necessity

to consider the fiber bundle since in the first case objects exist on Tx M, whereas in the
second, they do so on the manifold M. This fact implies that in Finsler geometry, vectors
and covectors must be studied in T(TM \ 0) and T∗(TM \ 0), respectively. Moreover, it
is necessary to introduce the horizontal-vertical decomposition and the related nonlinear
connection for the T(TM \ 0) and T∗(TM \ 0) structures, as in [38].

Considering T∗(TM \ 0), one can introduce the vertical distribution generated by the
derivative ∂/∂v as:

V : w ∈ T∗M→ Vw ⊂ Tw(T∗M) . (9)

Given the vertical distribution, it is possible to identify a complementary structure, the
horizontal distribution, named nonlinear connection, for which the Whitney decomposition is
valid [39]:

Tw(T∗M) = Nw ⊕Vw . (10)

The nonlinear connection is a collection of homogeneous functions of degree 1, locally
defined on the manifold, such that:

δ

δxµ =
∂

∂xµ + Nµν(x, p)
∂

∂pν
. (11)

In this work, we follow [38] and as nonlinear connection we choose the usual General
Relativity (GR) form:

Nµν(x, p) = Γα
µν(x)pα , (12)

where Γα
µν represents the GR affine connection. The choice for a nonlinear connection is not

uniquely defined, but this particular formulation is the most convenient one in this context.
Analogously, the cotangent space is spanned by the differential basis defined by:

δpµ = dpµ − Nµν(x, p)dxν . (13)

In the context of Finsler geometry, it is possible to generalize the definition of the
affine connection via the general Christoffel symbols:

Hα
µν(x, p) =

1
2

gαβ(x, p)
(

δgβ,ν(x, p)
δxµ +

δgµ,β(x, p)
δxν

−
δgµ,ν(x, p)

δxβ

)
(14)
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and the geodesic equations become:

d2xα

dτ2 + Hα
µν

dxµ

dτ

dxν

dτ
= 0 . (15)

The study conducted in this work can be generalized with these prescriptions in a
curved spacetime. In the following, we will consider a geometry with no matter induced
curvature for the investigation of the phenomenology introduced in the propagation
of UHECRs. Hence, the nonlinear connection Equation (12) is zero and the derivative
Equation (11) reduces to the usual partial derivative.

4. Finsler Geometry and HMSR

The MDR (1) can be interpreted as the Finsler pseudo-norm characterizing the space-
time (momentum space) structure. In HMSR, the standard physics is modified in a CPT-
even scenario, the MDRs, indeed, do not exhibit any dependence on helicities, for instance,
and are supposed to be equal for particles and the related antiparticles. A well-known
result about fundamental physics symmetry states that in a CPT-odd scenario the Lorentz
symmetry as usually formulated must be violated, whereas the opposite statement is
not automatically true, and therefore it is possible to violate or modify covariance, while
preserving the CPT symmetry [40,41]. A review on the implications of the CPT symmetry
in particle and astroparticle physics and its relation to the Lorentz/Poincaré symmetry is
presented, for instance, in [42].

Following the idea presented in [26], the MDR Equation (1) are promoted to the role
of a Finsler norm and the related momentum space metric is obtained as the Hessian of the
squared norm:

g̃µν(p) =
1
2

∂

∂pµ

∂

∂pν
F2(E, ~p) . (16)

Since the function F2 is 2-degree homogeneous, the computation produces a 0-
homogeneous tensor that can be written as:

g̃µν(p) = D4×4 + A4×4 , (17)

with a diagonal matrix D:

D =

(
(1 + h(|~p|/E)) ~0

~0t −(1 + k(|~p|/E))I3×3

)
. (18)

The matrix D is the associated generalized Hamilton’s space metric that effectively
contributes to the computation of the MDR Equation (1). Indeed, by direct calculation it is
straightforward to demonstrate the relation:

pµ g̃µν(p)pν = pµDµν(p)pν = E2
(

1 + h
(
|~p|
E

))
− |~p|2

(
1 + k

(
|~p|
E

))
. (19)

The complete Finsler metric tensor is written including the matrix A Equation (17)
and satisfies the Finsler requirement of a totally symmetric associated Cartan’s tensor:

Cµνα =
1
2

∂3F2(p)
∂pµ∂pν∂pα

. (20)

The matrix A has both diagonal and nondiagonal entries and thanks to the explicit
form acquired by the metric tensor g̃ it is simple to find out that this matrix gives no
contribution to the norm of a covector: pµ Aµν pν = 0 Equation (19). For the following
computations, it is important to emphasize that the entries of this matrix are first-order
perturbations under the assumption that the functions h, k ' O(1) and their derivatives
have a perturbative character See Appendix A, hence A ' O(1).
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From the Finsler co-metric, one can derive the metric associated with coordinate space
as the inverse one, via the defining equation:

g̃µαgαν = δ
µ
ν , (21)

obtaining the explicit form of the coordinate space metric:

gµν(p) = D∗ − A4×4 + O(2) (22)

and the diagonal matrix D∗:

D∗ =
(

(1− h(|~p|/E)) ~0
~0t −(1− k(|~p|/E))I3×3

)
, (23)

where O(2) indicates a second-order perturbation with respect to the scale fixed by the
function h and k Equation (1).

Lagrangian and Hamilton Finsler Geometry

In this work, we present a precise insight of the existing correlation between coordinate
and momentum space in the context of HMSR starting from the action:

S =
∫
Ldτ =

∫ (
ẋµ pµ −

λ

2
F2(p)

)
dτ

=
∫ (

ẋµ pµ −
λ

2

(
g̃αβ(p)pα pβ −m2

))
dτ , (24)

where the Lagrangian L is defined using a Lagrange multiplier λ to pose the constraint
that the MDR, F2(p) = m2, must be satisfied [43]. The action S is obtained integrating the
Lagrangian L with respect to the proper time τ.

The equations of motion can be obtained varying the Lagrangian L. Hence, one can
obtain the partial derivatives with respect to the velocity ẋµ and the Lagrange multiplier λ:

∂L
∂ẋµ = 0 ⇒ d

dτ

(
∂L
∂ẋµ

)
= 0 ⇒

dpµ

dτ
= 0 (25a)

∂L
∂λ

= 0 ⇒ g̃µν(p)pµ pν = m2 . (25b)

The variation calculated with respect to the momentum pµ gives:

∂L
∂pµ

= 0 ⇒ ẋµ = λg̃µν(p)pν +
λ

2

(
∂g̃αβ(p)

∂pµ

)
pα pβ . (26)

A simple application of the Euler’s theorem on homogeneous functions implies that
the second term on the right-hand side of the previous relation is zero thanks to the 0-
homogeneity of the metric tensor. Therefore, the velocity can be written in the simple form:

ẋµ = λg̃µν(p)pν (27)

Inverting the previous relation, the momentum can be expressed as:

pµ = λ−1gµν ẋν . (28)

The momentum can be expressed as a function of the velocity solving Equation (28),
for instance, perturbatively. As a consequence, the coordinate space metric g̃µν(p), defined
as the inverse of the momentum space metric g̃µν(p), can be written as a function of
coordinate x and velocity ẋ:

g̃µν(p) = gµν(ẋ). (29)
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The Lagrangian can be computed substituting Equation (26) in the action Equation (24):

L =
1

2λ
gµν(p)ẋµ ẋν +

λ

2
m2 . (30)

The variation of the previous relation with respect to the parameter λ gives:

∂L
∂λ

= 0 ⇒
gµν(ẋ)ẋµ ẋν

λ2 = m2 ⇒ λ =

√
gµν(ẋ)ẋµ ẋν

m
(31)

and then the Lagrangian can be written as:

L = m
√

gµν(ẋ)ẋµ ẋν . (32)

From the Legendre transform of action Equation (24), it is possible to compute the
energy E solving the following equation for p0:

~̇x · ~̇p−L = 0 ⇒ g̃µν pµ pν −m2 = 0 , (33)

It is important to underline that this equation is equivalent to the mass-shell constraint
obtained from the MDR Equation (1). The energy E can finally be considered as the
Hamiltonian of the system:

H = E = p0 (34)

The relation between the Lagrangian and the Hamiltonian formulation has been
established and it is possible to compute the norm for the velocity ẋ. This function is
associated with the momentum space norm F which is defined via the MDR Equation (1).
The coordinate space norm can be determined starting from the metric Equation (22):

F(ẋ)2 = ẋµgµν(ẋ)ẋν = ẋµ
(

D∗µν − Aµν + O(2)
)

ẋν

= (1− h(|~p|/E))ẋ2
0 − (1− k(|~p|/E))~x2 + O(2) . (35)

As a final remark it is possible to state that the resulting structure is a Finsler geometry.

5. HMSR Generalized Finsler Spacetime

In the following we will consider a generalized Finsler geometry model to set the
stage of the HMSR formulation. In this context, we will obtain an extension of the Standard
Model (SM) of particle physics and will conduct the computations related with the GZK
cutoff phenomenon.

The generalized Finsler geometry is a less restrictive structure which does not require
a totally symmetric Cartan’s tensor associated to the metric Equation (20), therefore, the
construction of the geometry is easier. In this context the spacetime and the momentum
metrics Equations (17) and (22) can be simplified taking into account only the diagonal
parts Equations (18) and (23):

gµν(p) = D =

(
(1 + h(|~p|/E)) ~0

~0t −(1 + k(|~p|/E))I3×3

)
(36)

gµν(p) = D∗ =
(

(1− h(|~p|/E)) ~0
~0t −(1− k(|~p|/E))I3×3

)
. (37)

In this way, the coordinate and momentum metrics are reduced to the parts that really
contribute in evaluating the squared norm of a vector or a covector, respectively.

Starting from the defining equations:
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gµν(p) = e a
µ(p) ηab e b

ν (p) (38a)

g̃µν(p) = eµ
a(p) ηab eν

b(p) . (38b)

it is possible to compute the generalized associated vierbein, which can be written as:

e a
µ(p) =

( √
1 + h((|~p|/E)) ~0

~0t
√

1 + k((|~p|/E)) I3×3

)
(39a)

eµ
a(p) =

( √
1− h((|~p|/E)) ~0

~0t
√

1− k((|~p|/E)) I3×3

)
. (39b)

It is simple to determine the perturbative order O(1) of part of these matrix entries
using the approximation

√
1± ε ' 1± 1

2 ε, valid for ε� 1.
The form of the vierbein Equation (39) will be used in all the following computations,

for instance, when evaluating the kinematical invariants (the Mandelstam s variable of the
reactions involved in the GZK cut-off phenomenon).

5.1. Generalized Covariance

In the HMSR model [26] every particle has its personal modified spacetime, which
is parameterized by the particle momentum. This means that every physical quantity
related with a given particle is generalized and lives in a spacetime that acquires an
explicit dependence on the particle energy. It is therefore necessary to introduce an original
formalism to correlate different local spaces, using the generalized vierbein elements as
projectors from every spacetime to a common flat Minkowski support space. Here, we
report a scheme of how the correlation between different local spaces is established:

(TM, ηab, p) (TM, ηab, p′)

(Tx M, gµν(p)) (Tx M, gµν(p′)) .

e(p)

Λ

e(p′)

e◦Λ◦e−1

The Greek indices refer to the local curved geometric structures, whereas the Latin
ones refer to the common Minkowski support space. Referring to the previous scheme,
using the vierbein elements as projectors, the generalized Lorentz transformations can
be obtained:

Λ ν
µ (p) = ea

µ(Λp)Λ b
a eb

ν(p) , (40)

where the elements Λ b
a belong to the Lorentz group and are defined in the flat Minkowski

spacetime and the used vierbein is defined in Equation (39) and includes all terms up
to the perturbative order under consideration. The Lorentz covariance is promoted to a
diffeomorphism invariance and the introduced class of Modified Lorentz Transformations
(MLT) represent the isometries of the MDR of Equation (1). We point out that the previous
construction about the generalization of covariance is valid if the spacetime is metrizable
and admits a vierbein, hence the result is valid even in different contexts. Therefore, the
present prescription can be used to pose analogous definitions and set the stage of the
model in the context of the more restrictive Finsler geometry.

5.2. Affine and Spinorial Connections

The geometrical structure is characterized by the affine and the spinorial connections.
In Finsler geometry, the affine connection, that is the Christoffel symbol, can be defined
using Equation (14). In the case of zero spacetime curvature, the nonlinear connection
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Equation (12) is Nµν = 0 and therefore the derivative Equation (14) reduces to the ordi-
nary one:

δ

δxµ =
∂

∂xµ . (41)

Since in the case of absence of curvature, the metric depends only on the momen-
tum (or equivalently on the velocity) and not on the coordinates, the Christoffel symbol
Equation (14) becomes:

Hα
µν(x, p) =

1
2

gαβ(p)
(

∂gβ,ν(p)
∂xµ +

∂gµ,β(p)
∂xν

−
∂gµ,ν(p)

∂xβ

)
= 0 . (42)

The explicit form of the covariant derivative is a consequence of this result and it is
equal to the ordinary derivative in flat spacetime:

∇µvν = ∂µvν + Hν
µαvα = ∂µvν . (43)

Now it is possible to define the spinorial connection using the covariant derivative:

ωµab = e ν
a∇µebν = e ν

a ∂µebν . (44)

It is trivial to demonstrate that all the connection coefficients vanish since the vierbein
depends on the momentum but not on the coordinates. Finally, we obtain the total geo-
metric covariant derivative, which will be useful in defining the minimal extension of the
Standard Model (SM) of particle physics:

Dµv ν
a = ∂µv ν

a + Γ ν
µαv α

a −ω a
µνv ν

b ' ∂µv ν
b . (45)

The resulting spacetime geometry is therefore a flat Finsler pseudo-structure [43–48],
whereas the associated momentum space is asymptotically flat.

5.3. Modified Poincaré Brackets

As a final result about the geometrical structure introduced by HMSR, we report the
modified Poincaré brackets, computed for the local structure using the vierbein projectors:

{x̃µ, x̃ν} = {xie µ
i (p), xje ν

j (p)} = {xi, e ν
j (p)}e µ

i (p)xj + {e µ
i (p), xj}xie ν

j (p) (46a)

{x̃µ, p̃ν} = {xie µ
i (p), pje

j
ν(p)} = {xi, pj}e

µ
i (p)ej

ν(p) + {xi, ej
ν(p)}e µ

i (p)pj

= δ
µ
ν + {xi, ej

ν(p)}e µ
i (p)pj (46b)

{ p̃µ, p̃ν} = {piei
µ(p), pje

j
ν(p)} = 0 , (46c)

where {x̃µ} are the local coordinates and {xi, ej
ν(p)} 6= 0 since the vierbein ej

ν(p) is
a function of the momentum pµ. Hence, time and space coordinates do not commute
anymore [31]. Using the explicit form of the vierbein Equation (39) and admitting for the
perturbation functions the approximations (See Appendix A) :

h
(
|~p|
E

)
= α

(
|~p|
E

)
+ . . . (47a)

k
(
|~p|
E

)
= β

(
|~p|
E

)
+ . . . (47b)
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it is possible to obtain the following relations valid at the first perturbative order:

[x̃µ, x̃ν] = θµν (48a)

[x̃µ, p̃ν] = δ
µ
ν + [xi, ej

ν(p)]e µ
i (p)pj ' δ

µ
ν

(
1− 1

2
(α + 3β)

(
|~p|
E

)2
)

(48b)

[ p̃µ, p̃ν] = 0 , (48c)

with the antisymmetric matrix θµν that satisfies the relations:

θij = θ00 = 0 ∀i, j ∈ 1, 2, 3 (49)

θ0i = −θi0 ' 1
2

(
β

(
|~p|xi

E2

)
− α

(
|~p|x0

E|~p|

))
' 1

2
(β− α) (50)

in the high energy limit, proving that the spacetime coordinates do not commute any-
more [49] if the parameters α and β are different, that is h 6= k Equation (1).

The relation existing between noncommutative field theory and LIV was analyzed
in [50]; here we introduced a framework to investigate this point in the context of modi-
fied covariance.

6. Minimal Extension of the Standard Model in Covariance-Preserving Scenario

In the HMSR framework, the SM of particle physics can be amended in order to
include the QG-caused perturbations preserving the covariance of the theory, even if in an
amended formulation. Following, for instance, a strategy analogous to that used for the
isotropic sector of the Standard Model Extension (SME) [19], the theory formulation requires
the definition of the modified Dirac matrices with the related Clifford algebra and spinors.

6.1. Modified Clifford Algebra and Spinors

The Dirac matrices acquire an explicit dependence on the particle momentum and
again using the vierbein projectors Equation (39) they can be written as:

Γµ = e µ
a (p) γa Γ5 =

εµναβ

4!
ΓµΓνΓαΓβ = γ5 . (51)

The γ5 matrix is constant and this means that the chiral projectors are not affected.
The Dirac matrices modified via Equation (51) satisfy the defining relation of the

Clifford algebra:
{Γµ, Γν} = 2 gµν(p) = 2 e a

µ(p) ηab e b
ν (p) . (52)

The definition of spinor fields is now amended preserving the usual plane-wave for-
mulation:

ψ+(x) = ur(p)e−ipµxµ
(53a)

ψ−(x) = vr(p)eipµxµ
. (53b)

The normalization of the spinors ur(p) and vr(p) is modified since these are defined
using the newly introduced metric Equation (22) and the related internal product.

From the previous definitions the modified Dirac equation can be derived:(
iΓµ∂µ −m

)
ψ = 0 . (54)

An important consistency check of the new formalism can be obtained verifying that
Equation (54) implies the MDR Equation (1).
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(iΓµ∂µ + m)(iΓµ∂µ −m)ψ+ = 0 (55a)

⇒ (Γµ pµ + m)(Γµ pµ −m)ur(p) = 0 (55b)

⇒
(

1
2
{Γµ, Γν}pµ pν −m2

)
ur(p) = 0 (55c)

⇒ (pµgµν pν −m2)ur(p) = 0 . (55d)

As a final result, a minimal extension of the SM can be obtained from the formalism
here introduced. Indeed using the vierbein elements to project to a common Minkowski
support spacetime the physical quantities related to different interacting particles and using
the explicit form of the total covariant derivative Equation (45), the minimal extension of
the SM can be formulated for a flat spacetime. Here we illustrate the amended formulation
of quantum electrodynamics (QED), whose Lagrangian can be written in the form:

L =
√
|det [g]| ψ(iΓµ∂µ −m)ψ + e

√
|det [g̃]| ψ Γµ(p, p′)ψ eµ

a Aa , (56)

where the term
√
|det [g]| is borrowed from the formulation of QFT in curved spacetime.

The vierbein element e is related to the gauge field Aa(x). The gauge field is supposed as
Lorentz-covariant in the usual meaning, that is, the MAV of photons is the usual speed
of light c. The gauge field therefore is set on a Minkowski spacetime (TM, ηab) and the
vierbein is given by: eµ

a = δ
µ
a. The QG corrections can be introduced in the generic gauge

boson sector modifying the definition of the vierbein related to the gauge field, as done for
the massive fermion fields.

The interaction is governed by the conserved current.

Jµ = e
√∣∣∣det 1

2{Γµ, Γν}
∣∣∣ ψ Γµ ψ = e

√
|det [g]| ψ Γµ ψ . (57)

In the low-energy scenario, the covariance perturbations in the conserved current
are negligible, whereas in the high-energy limit the formulation admits a constant form,
since one can consider the incoming and outgoing momenta with the same constant
high-energy limit.

6.2. Gauge Symmetry

The SM minimal extension obtained in the context of HMSR preserves the classic
internal gauge symmetry SU(3)⊗ SU(2)⊗U(1). This result can be stated formulating an
amended version of the Coleman–Mandula theorem [26]. The modified gauge symmetry
group acquires the explicit form:

P({p})⊗ Gint , (58)

where P({p}) is the kinematical symmetry group and is given by the direct product of the
momentum-dependent Poincaré groups associated with the different particle species.

P({p}) =
⊗

i
P (i)(p(i)

)
(59)

and Gint is the internal gauge symmetry group, in this case the usual SM gauge group:

Gint = SU(3)⊗ SU(2)⊗U(1) . (60)
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6.3. Modified Kinematics

HMSR theory perturbs the kinematics geometrizing the interaction of free propagat-
ing particles with the supposed quantized structure of the spacetime. In this work, we
investigate the phenomenological effects introduced by QG in the UHECRs propagation,
where the main effects are caused by the modification of the kinematics. The detectable
effects are caused by the interaction of different particle species, which modify in a proper
way the related spacetime.

Introducing a generalized internal product in the momentum space for more than two
different interacting particle species, it is possible to obtain a generalized formulation for
the Mandelstam variables s, t and u, which are the dynamical invariant quantities linked to
a reaction.

Considering p and q as the momenta of two interacting particles of different species,
the internal product of their sum can be defined as:(

p + q|p + q
)
= (pµ e µ

a (p) + qµ ẽ µ
a (q)) ηab (pν e ν

b (p) + qν ẽ ν
b (q)) , (61)

where the vierbeins e µ
a (p) and ẽ µ

a (q) are associated, respectively, with the two different
particle species. The formulation of the modified internal product can be simplified in
the form:

(
p + q|p + q

)
=

(
p
q

)t

· G ·
(

p
q

)
=
(

p q
)( gµν(p) eaµ(p)ẽ β

a (q)
ẽaα(q)e ν

a (p) g̃αβ(q)

)(
p
q

)
= pµ gµν(p) pν + pµ eaµ ẽ β

a (q) qβ

+ qα ẽaα(q) e ν
a (p) pν + qα g̃αβ(q) qβ , (62)

using the generalized metric:

G =

(
gµν(p) eaµ(p)ẽ β

a (q)
ẽaα(q)e ν

a (p) g̃αβ(q)

)
. (63)

The inner product defined in Equation (62) is invariant with respect to the Modified
Lorentz Transformations (MLT) introduced in HMSR:

Λ =

(
Λ µ′

µ 0
0 Λ̃ α′

α

)
. (64)

The inner product remains invariant under the action of such generalized Lorentz
transformations, indeed one can obtain:

(
p + q|p + q

)
=

(
p
q

)t

· G ·
(

p
q

)
=

(
Λ
(

p
q

))t

·Λ · G ·Λt ·Λ
(

p
q

)
=
(
Λ(p + q)|Λ(p + q)

)
. (65)

Λ · G ·Λt is the metric evaluated for the two particle momenta Λp, Λ̃q.
The new formalism here introduced guarantees that HMSR theory can deal with the

interaction of different particle species in the context of a QG-modified kinematics without
the necessity of the introduction of a preferred reference frame.

7. Ultra-High-Energy Cosmic Ray Propagation

Before investigating the QG-induced phenomenology in UHECRs physics, it is useful
to illustrate the standard physics predictions for these highly energetic particles. During
their propagation, at sufficiently high energies, UHECRs can interact with the CMB and
depending on their nature and energy their flux is attenuated. For instance, a propagating
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CR bare nucleus X with atomic number A can undergo a photo-dissociation process
interacting with the CMB and emitting one or more nucleons:

XA + γ → X(A−k) + n1 + . . . + nk , (66)

where ni is a generic nucleon. The proton propagation is influenced by different interaction
processes with the CMB, hence it can undergo, for instance, a pair production process:

p + γ → p + e− + e+ . (67)

This process is the main interaction mechanism with the CMB for CR protons with
an energy lower than the threshold E ∼ 5× 1019 eV. The dominant process for UHECR
protons with an energy exceeding this threshold is the ∆ particle resonance photopion
production process:

p + γ → ∆ → p + π0

p + γ → ∆ → n + π+ .
(68)

These dissipation mechanisms make the universe opaque to the propagation of CR,
particularly for the most energetic component (UHECR), with an energy that exceeds the
threshold E ∼ 5× 1019 eV. In this work, we are particularly interested in the UHECRs
propagation since CRs can be useful in investigating QG phenomenology thanks to their
huge energy and propagation length. QG effects in some theories are expected as more
evident at high energies and their perturbations can sum up during the propagation of this
kind of particles. The photopion production is the main attenuation interaction of UHECRs
and is the core mechanism for the so-called GZK cut-off phenomenon for protons [2,3]. This
effect poses an upper limit on the energy of protons detected at ground and coming from
distant sources. Since through this effect a particle dissipates energy, but is not annihilated,
a proton with enough energy can undergo the same interaction process again, and can
undergo what is known as a stochastic dissipation process. This way, it becomes possible
to evaluate the attenuation length, defined as the average distance that the proton has to
travel in order to reduce its energy by a factor of 1/e. The inverse of the attenuation length
is given by [51]:

1
lpγ

=
∫ +∞

εth

n(ε)dε
∫ +1

−1

1
2

s (1− µ) σpγ(s)K(s)dµ (69)

=
∫ +∞

εth

n(ε)dε
∫ +1

−1

1
2

s (1− vp cos θ) σpγ(s)K(s)d cos θ , (70)

where σpγ(s) is the proton–photon interaction cross section as a function of the squared
center of mass energy (the Mandelstam s variable), n(ε) represents the background photon
density per unit volume and photon energy ε, µ = cos θ is the impact parameter and εth is
the interaction threshold energy. K(s) represents the reaction inelasticity, that is, the energy
fraction available for secondary-particle production during the reaction. Complementary
to the inelasticity is the elasticity function, defined as the energy fraction preserved by
the primary particle after the interaction, η = Eout/Ein with the incoming particle energy
Ein and the residual energy Eout. Elasticity and inelasticity are connected by the simple
relation: K = (1− η).

The Mandelstam s can be computed introducing the photon four-momentum (ε′, ~p′γ)
defined in the rest frame of the nucleus. In the high-energy limit approximation for the
proton velocity vp ' 1, with ds = −2Epε d cos θ, the following relations hold:

s = (mp + ε′)2 − |~p′γ|2 = m2
p + 2mpε′ (71)

ε′ = γε(1− vp cos θ) , (72)
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hence, the inverse of the attenuation length Equation (69) can be written as:

1
lpγ

=
1

2 γ2

∫ +∞

ε′th/2γ
dε

n(ε)
ε2

∫ ε′max=2γε

ε′th

1
2

ε′ σpγ(ε
′)K(ε′)dε′ , (73)

where the primed quantities are defined in the proton rest frame, whereas the other quanti-
ties are defined in the laboratory rest frame. Since the n(ε) distribution is a Planckian func-
tion of the temperature T, a further simplification of the previous relation of Equation (73)
is possible, obtaining the explicit form for the inverse of the attenuation length [5]:

1
lpγ

= − kB T
2 π2 γ2

∫ +∞

ε′th

ε′ σpγ(ε
′)K(ε′) ln

(
1− e−ε′/2KTγ

)
dε′ . (74)

The inelasticity computed for the standard physics case is given by the relation [51]:

K(s) =
1
2

(
1−

m2
p −m2

π

s

)
. (75)

8. QG Introduced Phenomenology in UHECR Propagation

In this work, we present a review of the QG presumed effects in the UHECR sector
as predicted in the context of the HMSR model [26]. The results, already presented in
a previous work [8], are better justified by a generalized formulation of the model, that
indicates a strategy to set the investigation in curved spacetime. Moreover, in this work
we conduct our analysis in the HMSR framework, but in the context of a Finsler geometry
structure obtained by starting from a MDR written in a more general form Equation (1)
than the one given by Equation (3) and used in previous works [7,8].

Following the theoretical framework introduced by HMSR, the kinematics of free
particles are modified in order to include the QG effects. The kinematical perturbations
modify the allowed phase space for the reaction and may therefore influence the processes
involved in UHECR propagation. The introduction of QG phenomenology can indeed
affect the photopion production mechanism, the core reaction underlying the GZK phe-
nomenon [5–8]. The QG-caused reduction of the allowed phase space can modify the
inelasticity K Equation (75). The consequent reduction of the inelasticity means that the
incoming UHECR proton dissipates less energy during the GZK process and therefore the
resulting opacity horizon is enlarged with respect to the standard model physics prediction.

8.1. Constraints from ∆ Resonance Creation

The photopion production requires a ∆ particle creation (Equation (68)) and can occur
passing through a real ∆ particle, in the case of the dominant process, or alternatively
through a virtual one. The introduction of QG phenomenology can presumably modify only
the GZK cut-off phenomenon, enlarging the foreseen opacity sphere without a complete
suppression. The observed UHECR flux suppression can be caused by the exhaustion of
the sources energy or by the Universe opacity to the propagation of CR [52,53]. In the last
scenario, an uncertainty exists about the dimension of the foreseen opacity horizon. The
production of the real ∆ particle must therefore be preserved in order to foresee only small
QG-induced deviations from the standard physics predictions for the GZK process. The four-
momenta used in the following computations are considered as covariant vectors in order to
simplify the use of the MLT for changing the reference frame. In the proton-CMB interaction
process the production of a ∆ particle is allowed if the proton-CMB interaction free energy,
that is the Mandelstam

√
s variable, exceeds the rest energy of the particle resonance. As a

consequence of this threshold energy consideration, a first constraint on the magnitude of
the QG perturbation parameters can be posed. Using the generalized internal product and
the formalism developed for the modified kinematics in the Equations (61) and (62) one can
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write the Mandelstam s variable as a function of the proton and the photon four-momenta,
respectively, p(p) = (E(p), ~p(p)) and p(γ) = (E(γ), ~p(γ)):

s =
(

pµ

(p)e
a
µ(pp) + pµ

γea
µ(pγ)

)
ηab

(
pν
(p)e

b
ν(pp) + pν

γeb
ν(pγ)

)
= pµ

(p)e
a
ν(pp) ηab eb

ν(pp)pν
(p) + pµ

(p)e
a
ν(pp) ηab eb

ν(pγ)pν
(γ)

+ pµ

(γ)
ea

ν(pγ) ηab eb
ν(pp)pν

(p)

= pµ

(p)gµν(pp)pν
(p) + 2pµ

(p)e
a
µ(pp) ηab δb

ν pν
(γ) ≥ m2

∆ . (76)

The vierbein Equation (39) has been used to project the momenta of different particles
to the common support Minkowski spacetime and the symmetry of the mixed product of
pp and pγ has been used. Photons are assumed to be Lorentz-invariant, hence the related
vierbein is defined as usual: ea

µ(pγ) = δa
µ. Using the explicit form of the squared Finsler

norm F2(p) given in Equation (35), the following inequality can be derived reordering the
terms of the previous relation in an opportune manner:

E2
p(1− hp(pp))− |~pp|2(1− kp(pp)) + 2EpEγ

(
1− 1

2
hp(pp)

)
− 2~pp · ~pγ

(
1− 1

2
kp(pp)

)
≥ m2

∆ , (77)

where hp(pp) and kp(pp) are the proton QG perturbation functions taken from the MDR
Equation (39). The following inequality can be derived from the previous Equation (77)
using the MDR Equation (1):

2
(
hp(pp)− kp(pp)

)
E2

p − EpEγ

(
4 + (hp(pp)− kp(pp))︸ ︷︷ ︸

O(1)

)
+ m2

∆ −m2
p ≤ 0 , (78)

where m∆ ' 1232 MeV, mp ' 938 MeV. The covariant formulation of the model is funda-
mental since it allows the change of the reference frame. Indeed, in order to simplify the
computation, it is possible to choose the more suitable reference frame, where the involved
energy scales ratio allows the suppression of some perturbative terms. One can therefore
consider the laboratory frame, where the proton energy is much higher than the CMB
one. Considering that the UHECR proton energy has an upper limit Ep . 1021 eV [1] and
taking into account the tiny average value of the CMB energy Eγ ' 1.16× 10−3 eV, one
can neglect the O(1) contributions in the second term obtaining:

2
(
hp(pp)− kp(pp)

)
E2

p − 4EpEγ + m2
∆ −m2

p ≤ 0 . (79)

Defining the function fp = hp − kp the result obtained is comparable with the one
presented in [7,8]. The derived inequality must be satisfied in order to produce a ∆
resonance, otherwise the QG perturbations totally suppress the GZK effect. Imposing the
validity of the previous relation the following constraint can be derived:

fp(pp) ≤
2Eγ

m2
∆ −m2

p
. (80)

Substituting the approximated average value of the CMB energy in the previous
inequality one can obtain the approximated constraint:

fp(pp) . 10−21 . (81)

where m2
∆ −m2

p ∼ 1018 eV and Eγ ∼ 10−3 eV. The obtained constraint is consistent with
the upper limit 4.5 · 10−23 obtained numerically in [5] for the QG perturbation magnitude.
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As a final remark from the relations Equations (78) and (80), it follows that in order to
generate visible effects on the GZK phenomenon, the QG perturbation function fp must
satisfy the relation:

fp(pp) = hp(pp)− kp(pp) > 0 . (82)

Indeed from Equation (78) the high-energy limit excludes the possibility of any sup-
pression of the GZK cut-off in the case of a negative function fp. We underline that the
choice of positive values of the perturbation fp corresponds to the introduction of an
effective MAV in the MDR of Equation (1) for every massive particle, which is lower than
the standard speed of light.

8.2. Modified Inelasticity

The introduction of QG perturbations can modify the phase space allowed for the
photopion production process, determining a modification of the inelasticity function
K(s) Equation (75). In this work, we evaluate the new inelasticity in the context of the
generalized Finsler geometry here introduced following the approach of [7,8], originally
inspired by [5,6]. In the following, all the computations are conducted again considering
the four-momenta as covariant vectors, in order to simplify the computations transforming
the reference frame with the MLT. The introduction of the center-of-mass (CM) reference
frame is useful and it is defined via the relation:

~p∗p + ~p∗π = 0 , (83)

where the momenta are defined on the common Minkowski support spacetime (TM, ηab)
and ∗ labels the quantities related to the CM frame.

The next element necessary in evaluating the change from the CM to a generic ref-
erence frame is the γCM Lorentz factor. Starting from the free energy available for the
photopion production

√
s = E∗p + E∗π one can obtain the relation:

γCM(E∗p + E∗π) = γCM
√

s = (Ep + Eπ) ⇒ γCM =
Ep + Eπ√

s
=

Etot√
s

. (84)

Using the CM definition Equation (83) the relation |~p∗p| = |~p∗π | follows and the four-
momentum of the photopion can be written in the CM reference frame as p∗π = (

√
s−

E∗p, ~p∗p) = (E∗π , ~p∗π). From the latter, the free energy necessary to produce a photopion in
the CM frame can be computed using the squared Finsler norm Equation (35):

pµ

(π)
ea

µ(pπ) ηab eb
ν(pπ)pν

(π) = m2
π

⇒
(√

s− E∗(p)
)2(1− hπ(pπ)

)
− |~p∗(p)|

(
1− kπ(pπ)

)
=
(
s− 2

√
sE∗(p)

)(
1− hπ(pπ)

)
+ E∗2(p)

(
1− hp(pp)

)
+ E∗2(p)

(
hp(pp)− hπ(pπ)

)
− |~p∗(p)|

2(1− kp(pp)
)
− |~p∗(p)|

2(kp(pp)− kπ(pπ)
)

=
(
s− 2

√
sE∗(p)

)(
1− hπ(pπ)

)
+ m2

p
(
1− hπ(pπ)

)
+ E∗2(p)

(
hp(pp)− hπ(pπ)

)
− |~p∗(p)|

2(kp(pp)− kπ(pπ)
)
= m2

π , (85)

hp and kp are the perturbation functions of the proton MDR of Equation (1) and hπ and kπ

are the analogous functions for the pion MDR, p and π label, respectively, the elements
related to the proton and the pion.

We underline that the computation made here for the modifications induced on the
inelasticity are still valid in the context of the more restrictive Finsler geometry. Indeed, the
computation is conducted using the MDR Equation (1), that is the norm Equation (35).
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From the previous equation and neglecting the O(2) perturbations in Equation (35),
the following equality can be obtained:

E∗p =
s + (m2

p −m2
π)(1 + hπ) + E∗2p (hp − hπ)− |~p∗p|2(kp − kπ)

2
√

s

=
s + (m2

p −m2
π)(1 + hπ) + hpπE∗2p − kpπ |~p∗p|2

2
√

s
= F(s) , (86)

where hpπ = hp − hπ and kpπ = kp − kπ are the QG perturbation parameters. Considering
the high-energy limit E∗p ' |~p∗p| in the previous relation the residual proton energy after the
photopion reaction can be increased if the QG parameters satisfy the inequality hpπ > kpπ

and therefore the relation hpπ > 0. The proton-dominant correction hp must be larger
than the pion one kp in order to produce a dilatation of the GZK sphere. In this work,
we assume the gravitational nature of the perturbation effects caused by the supposed
quantum structure of the background, hence the heavier particles have a bigger QG-induced
modification. As a consequence, the correction factors of the pion can be considered
negligible and it is possible to pose hpπ ' hp and kpπ ' kp.
Now the following approximations can be introduced:

p∗p ' E∗p = (1− Kπ(θ))
√

s (87a)

p∗π ' E∗π = Kπ(θ)
√

s . (87b)

E∗p + E∗π =
√

s represents the initial free total energy and E′p and E′π are the final energies
of the proton and the pion, respectively.

Using the Lorentz transformations for changing reference frames, one can obtain
the following:

E′p = γCM(E∗p + β cos θp∗p) (88a)

E∗p = (1− kπ(θ))
√

s , (88b)

where Kπ(θ) is the pion inelasticity depending on the impact angle.
In the high-energy limit, where for ultra-relativistic particles |~p| ∼ E and the velocity

factor β ∼ 1 and γCM is approximated by Equation (84), the following equation can
be derived:

(1− Kπ(θ)) =
1√

s

(
F(s) + cos θ

√
F(s)2 −m2

p + 2(hp − kp)|~p|2
)

. (89)

Posing fp = (hp − kp) in the previous relation, it is possible to obtain the following one:

(1− Kπ(θ)) =
1√

s

(
F(s) + cos θ

√
F(s)2 −m2

p + 2 fp|~p|2
)

(90)

where the latter result was obtained in [7,8]. The previous equation can be numerically
solved in order to evaluate the inelasticity as a function of the collision angle θ. The
numerical computation is conducted in the high-energy limit, hence by using Equation (87)
and
√

s = E∗p + E∗π is the initial energy for the process.
The free energy s can be written as:

s = (Ep + ε′)2 − |~pγ|2 = 2mpε′ + m2
p , (91)

introducing the energy of the photon ε′ defined in the proton rest frame ~pp = 0.
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The inelasticity is finally averaged over the interval θ ∈ [0, π]:

Kπ =
1
π

∫ π

0
Kπ(θ) dθ . (92)

In the following, we plot in Figures 1 and 2 the inelasticity for different choices of the
parameter fp = (hp − kp) in order to compare the standard physics predicted result with
the QG induced modifications. The parameter fp is constrained to be positive in order to
guarantee detectable QG effects. This hypothesis corresponds to the introduction of a MAV
inferior to the classical speed of light c for every massive particle species. The parameter is
even constrained from above by the limit obtained in the previous section Equation (81),
hence the plausible parameter must be included in the interval 0 < fp . 10−22. The
inelasticity is plotted as a function of the proton energy Ep, defined in the laboratory
reference frame, and the photon energy ε′, defined in the proton rest frame. Under these
hypotheses, the QG perturbations cause a dramatic drop of the inelasticity value, which
is more visible for increasing values of the parameter fp. This implies a reduction of the
allowed phase space for the photopion production process, and an enlargement of the
foreseen proton opacity horizon for an increasing magnitude of the QG perturbation.

9. Simulated Attenuation Length

The impact of the QG perturbations on the UHECR free propagation can be evaluated
computing the value of the attenuation length as a function of the modified inelasticity K
in Equation (74). In this work, we present the attenuation length, as in a previous work [8],
obtained using an ad hoc modified version of the simulation software SimProp [27]. In this
software version, we substituted the inelasticity predicted by the standard model physics
with the modified one, being a function not only of the proton and the CMB energy but
also of the QG parameter. The analysis is conducted neglecting the interaction of the UHE
protons with the EBL. This interaction is dominant at energies below∼5× 1019 eV. Slightly
above this threshold the ELB interaction might give a 10% contribution in determining the
attenuation length [54]. Hence the prediction presented in Figures 3 and 4 can be affected
by ELB interaction at energies below the photopion production threshold (∼5 × 1019 eV).
For UHE protons exceeding this energy limit the effect produced seems to be a negligible
reduction of the mean free path. In Figures 3 and 4 it is visible that the increase of the
opacity horizon can be caused by the QG-induced modification of Lorentz covariance. In
the QG-less scenario the attenuation length decreases for increasing CR energy values. In
the presence of QG, the interaction length at first decreases with the energy, but then after
an inflection point, which depends on the energy, this quantity starts rising for increasing
energy values. This effect is caused by the reduction of the average energy lost for every
proton-CMB interaction caused by the reduction of the inelasticity. For a QG parameter
of fp ∼ 10−22 the modifications in the attenuation length are appreciable starting from an
energy E ∼ 1020 eV of the incoming proton, instead for a parameter fp ∼ 2× 10−22 the
perturbation starts being appreciable yet at an energy E ∼ 6× 1019 eV. The analysis can be
improved taking into account even the electron–positron pair production. This effect is
not dominant at the highest energies, but would presumably further increase the energy
loss process.
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Figure 1. Comparison of standard physics inelasticity (LIV parameter fpπ ' fp = 0) with the modified ones obtained for
different LIV parameters ( fpπ ' fp = 1× 10−24; 5× 10−23; 1× 10−22) as a function of the proton energy Ep and of the
photon energy ε′ defined in the proton rest frame (3D plot).

Figure 2. Cont.
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Figure 2. Level plot of the same comparison of the previous figure, the color scale indicates the numerical value of the
inelasticity magnitude: standard case vs. the modified ones, obtained as a function of the proton energy Ep and of the
photon energy ε′ defined in the proton rest frame.

Figure 3. Attenuation length as a function of energy, plotted for ten different values of the LIV
parameter.

Figure 4. Attenuation length as a function of energy; blow up of the plot in Figure (4).
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10. Conclusions

In this work, we investigated the possibility of exploiting the UHECR physics to detect
supposed signatures of the quantum structure of spacetime. Nowadays, the Lorentz covari-
ance stands at the base of our physics knowledge, but QG can introduce small departures
from the classic scenario. We studied these supposed departures simulating UHECRs
propagation in a framework of Lorentz covariance modification. In this research, we gen-
eralize the results of previous works [7,8] in the context of a more complete formulation
of the HMSR model [26]. Indeed, in our proposal a way is outlined to generalize HMSR
theory in curved spacetime introducing a formalism that defines the threshold energy of
reactions in a modified covariant framework. The model foresees a minimal extension
of the particle SM, preserves the usual gauge symmetry SU(3)⊗ SU(2)⊗U(1) and does
not introduce exotic particles or reactions. The resulting geometry is a generalized Finsler
spacetime and all the GZK cutoff modification effects have been computed in this context.
We underline that the methodology here introduced can be used to set the stage of the
model in the context of the more restrictive Finsler geometry and we have demonstrated
that the inelasticity modification that underlies the opacity sphere enlargement can be still
computed in the Finsler spacetime. Moreover, a generalized analysis framework for the
possible QG induced effects is introduced investigating a more general form of the MDRs.
Finally, we can state that all the presented results are obtained in the context of a more
complete theoretical model formulation.

Our proposal is analogous to that of [4], but is based on a covariant formulation, such
as in DSR theories [55,56]. The kinematical solution presented in our work is based on
the hypothesis that the QG induced corrections are particle species depending and are
caused by the particle interplay with the QG structure of spacetime. The introduced QG
phenomenology is limited to the free particle kinematics since nowadays it is not totally
clear how DSR theories can affect the process dynamics, since the related computations
are incredibly complicated [57]. However, the kinematic perturbation here introduced
can modify the allowed phase space for different particle interaction processes amending
the related threshold energies. Hence, in this scenario QG may affect the interaction of
different particle species, such as in the case of the GZK cut-off phenomenon.

The conducted simulations foresee an enlargement of the attenuation length in accor-
dance with other works [5–8,58,59], but are obtained in a covariance-preserving scenario
as proposed in [60].

We emphasize the importance of preserving covariance in the HMSR model, even if in
an amended formulation, which allows the definition of relativistic kinematical invariants.
As a direct consequence, it is possible to choose the most suitable reference frame to simplify
the computations, suppressing some perturbation terms thanks to the involved energy
scale ratios. Furthermore, in the astroparticle sector, covariance can be a great experimental
advantage, since all the obtained data can be collected without the necessity to introduce
any sidereal discrimination related to the orientation of the detector with respect to a fixed
privileged reference frame.

The analysis strategy presented in this work can be improved including a heavier
UHECR component, which is a more realistic CR composition, as indicated by the Pierre
Auger collaboration [16]. The QG perturbations are expected to be larger for a CR compo-
nent heavier than protons. Indeed, the kinematical perturbations can affect the propagation
of bare nuclei in a more significant way, amending the threshold processes underlying the
heavy UHECR photodissociation. This improvement of the analysis will be necessary since
presently the measured UHECR composition suggests that the spectrum end is not caused
only by the GZK cut-off.
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Abbreviations
The following abbreviations are used in this manuscript:

CR Cosmic Ray
UHECR Ultra-High-Energy Cosmic Ray
UHE Ultra-High-Energy
CMB Cosmic Microwave Background
ELB Extragalactic Light Background
GMF Galactic Magnetic Field
EGMF Extragalactic Magnetic Field
SM Standard Model
SR Special Relativity
GR General Relativity
QG Quantum Gravity
SME Standard Model Extension
HMSR Homogeneously Modified Special Relativity
DSR Doubly Special Relativity
QFT Quantum Field Theory

Appendix A

In this appendix, we show that it is possible to choose perturbations h and k, functions
of the ratio |~p|/E, whose derivatives exhibit again a perturbative character. If we admit for
these functions the general form:

h
(
|~p|
E

)
= ∑

n
αn

(
|~p|
E

)n
k
(
|~p|
E

)
= ∑

n
βn

(
|~p|
E

)n
, (A1)

where the function magnitude is encoded in the coefficients αn � 1 and βn � 1, hence it is
possible to choose these coefficients in order to pose: h, k ' O(1).

The definition domain of h and k is the interval [0, 1). Hence, requiring a strongly
limited magnitude, even in the high-energy limit |~p|, E→ +∞, one obtains the convergence
of the series:

∑
n

αn < +∞, ∑
n

βn < +∞. (A2)

Therefore, the sequences αn, βn must decrease fast enough admitting the limit

αn, βn → 0. (A3)

The derivatives of the functions h and k with respect to the variables pi and E take the
following form:

∂h(p)
∂pi

= ∑
n

n αn
pi|~p|n−2

En (A4a)

∂h(p)
∂E

= −∑
n

n αn
|~p|n
En+1 , (A4b)

where i ∈ {1, 2, 3}.
A simple check of the assertion can be obtained considering the h and k as linear,

that is, series ending at the first expansion term. In this case, the magnitude order of the
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functions and their respective derivatives is determined by the coefficients α1 and β1 and
therefore present the same perturbation character.

In the more general case, the assertion can be proved as a direct consequence of these
last equations, indeed it is possible to choose the coefficients αn and βn such that even the
derivatives of the functions h and k are limited in the definition domain and their magni-
tudes are determined again by the first coefficients of the expansions, since they belong to
quickly decreasing sequences. The chosen perturbation functions h and k admit, therefore,
derivatives with the same magnitude, proving the assertion. Some explicit examples are
the linear function α(|~p|/E), the truncated exponential series exp(α|~p|/E) − 1 and the
trigonometric function sin(α|~p|/E), with an ad hoc choice for the coefficient α, which must
be strongly limited and determines the perturbative character of the selected function.

The perturbative order of the matrix A follows from a direct computation. Indeed, the
entries of the matrix A involve first and second-order derivatives of the perturbation func-
tions h and k multiplied, respectively, by the momentum to the first or the second power.
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