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Abstract: The Zipoy-Voorhees solution is known as the γ-metric and/or q-metric being static and
axisymmetric vacuum solution of Einstein field equations which becomes strong curvature naked
singularity. The metric is characterized by two parameters, namely, the mass M and the dimensionless
deformation parameter γ. It is shown that the velocity of test particle orbiting around the central
γ-object can reach the speed of light, consequently, the total energy of the particle will be very high for
a specific value the deformation parameter of the spacetime. It is also shown that causality problem
arises in the interior region of the physical singularity for the specific value of the deformation
parameter when test particles can move with superluminal velocity being greater than the speed of
light that might be an additional tool for explaining the existence of tachyons for γ > 1/2 which are
invisible for an observer.
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1. Introduction

The mechanisms of the production of high-energy cosmic rays of energy 1020 eV
are quite an interesting and important task in modern astrophysics. There are several
mechanism to explain high-energy cosmic rays, for instance, Penrose process (PP) [1],
Blandford-Znajek (BZ) mechanism [2] and Banados-Silk-West (BSW) effect [3]. It is also
widely believed that sources of such high-energy cosmic rays are generated by the accelera-
tion of the charged particle in the presence of the external magnetic field in the vicinity of
the gravitational compact objects, such as Quasars and Blazars, etc... (See, e.g., [4–8]). A
very high centre energy production from the collisions of two particles in the vicinity of
the regular black holes has been discussed in Refs. [9,10].

In the present research note, we have demonstrated that high-energy neutral particles
can be generated due to the deformation of the spacetime around the gravitational compact
objects which can be in the form of the naked singularity. The naked singularity is a simple
example for the deformed spacetime which is a hypothetical astrophysical compact object
containing physical singularity and uncovered with an event horizon. The Penrose cosmic
censorship claims that gravitational singularity may not be observable. However, the
existence of naked singularity is important from observability of gravitational collapse
of objects to infinity density. One simple example of the naked singularity is given by
Zipoy-Voorhees spacetime, so-called the γ-metric [11,12] which is also known as the q-
metric [13–17].

In Ref. [18], the contribution of the scalar field in the γ-spacetime has been investigated.
Note that these spacetime metrics belong to Weyl’s class of solutions [19–21]. Several
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studies in the γ-metric can be found in the recent literature: optical appearance [22],
the accretion process [10,23], shadows [24,25], geodesics motion [26], spinning particle
motion [27] and charged particles dynamics [28,29].

In the present paper, we derive the expression for the orbital velocity by consid-
ering particle motion around the gravitational object described by the Zipoy-Voorhees
spacetime [11,12].

The paper is organized as follows. In Section 2, we provide a very detailed derivation
of the orbital velocity and energy of test particle in an arbitrary spacetime. In Section 3, we
determine the velocity and energy of particle orbiting around compact objects described by
the γ-metric. Finally, in Section 4, we summarize obtained results.

Throughout the paper, we choose the (−,+,+,+) signature for the metric tensor and
spherical coordinates xα = (t, r, θ, φ). Greek (Latin) indices run from 0 to 3 (1 to 3).

2. Formulation

The Lagrangian for test particle of mass m is given by

L =
1
2

mgαβ ẋα ẋβ , ẋα =
dxα

dλ
, (1)

where gαβ is the metric tensor, λ is an affine parameter, ẋα is the four-velocity normalized
as, gαβ ẋα ẋβ = −1, that allows to write the following expression:

gtt ṫ2(1− v2/c2) = −1 , (2)

where v is the relative three-velocity of particle measured in a frame of a local observer
defined as, v2 = v2

r̂ + v2
θ̂
+ v2

φ̂
, and the orthonormal components are given as [30–32]

vr̂ =
dr
dt

√
grr

−gtt
, vθ̂ =

dθ

dt

√
gθθ

−gtt
, vφ̂ =

dφ

dt

√
gφφ

−gtt
. (3)

The conserved quantities, namely, the energy and angular momentum of test particle
are given by

Pt = −E = mc2gtt ṫ , Pφ = L = mgφφφ̇ . (4)

Hereafter eliminating, ṫ, from Equations (4) and (2), the classical expression for the
energy as well as angular momentum of relativistic particle in the framework of general
relativity (GR) can be expressed as [30–32]

E =
mc2√−gtt√

1− v2/c2
, L =

mvφ
√gφφ√

1− v2/c2
. (5)

On the other hand, from the standard calculations one can easily obtain the effective
potential of test particle in the γ-spacetime. Using the normalization of the four-velocity of
particle, i.e., gαβ ẋα ẋβ = −1, and taking into account the expressions in (4), one can obtain
the expression for the effective potential in the form (See, e.g., [18,33]):

Veff ≡ −gtt

(
1 +

(L/mc)2

gφφ

)
=

(
E

mc2

)2
+ gtt

(
grr ṙ2 + gθθ θ̇2

)
. (6)

Considering the motion of particle at the equatorial plane θ = π/2 and θ̇ = 0 and by
applying the conditions ṙ = r̈ = 0, the critical values for the conserved quantities can be
found as
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E =
mc2√−gtt√
1− g′tt

g′φφ

gφφ

gtt

, L =
mc√gφφ√
1− g′tt

g′φφ

gφφ

gtt

√
g′tt
g′φφ

gφφ

gtt
, (7)

where prime denotes the derivative with respect to the radial coordinate.
Now, comparing the energy expressions (5) and (7), one can express the orbital velocity

of particle in the form:

v = vφ = c

√
g′tt
g′φφ

gφφ

gtt
= c

√
∂r ln gtt

∂r ln gφφ
, (8)

which can be easily determined for any spacetime geometry. It is easy to show that the
orbital velocity of particle at the photonsphere always equals to speed of the light, i.e., v = c.
Because the position of the photonsphere can be found from the fact that the denominator
of the energy expression (7) should be zero.

3. Results and Discussions

So far we have shown the detailed derivation of the expressions for the orbital velocity
and total energy of particle. Now one can apply these results for a given spacetime. As a
result, we choose the well-known γ-metric which is represented as [28,29]

gtt = −
(

1− 2M∗
γr

)γ

, gφφ = r2 sin2 θ

(
1− 2M∗

γr

)1−γ

, (9)

where γ is the deformation parameter of the spacetime geometry, M∗ = GM/c2, M is the
mass of the central object, G is the gravitational constant. In the case when γ = 1, the
metric (9) reduces to the Schwarzschild one, while for the large values of the γ parameter,
one can have

lim
γ→∞

gtt = −e−
2M∗

r , lim
γ→∞

gφφ = r2 sin2 θe
2M∗

r . (10)

Note that we are not interested in other two components of the metric tensor because
they are not involved in the previous analyses.

Hereafter performing simple algebraic manipulations, the orbital velocity of test
particle (8) in the γ-metric can be found as

v = c

√
γM∗

γr−M∗ − γM∗
. (11)

It is interesting to determine orbital velocity in the characteristic radii, namely, the
innermost stable circular orbit (ISCO) r±, photon-sphere rph and singularity rs can be found
as [28,29]

r± = M∗

(
3 +

1
γ
±

√
5− 1

γ2

)
, (12)

rph = M∗

(
2 +

1
γ

)
, rs =

2M∗
γ

, (13)

which leads to statement that the orbital velocity of test particle at the ISCO position is
determined as

v± = c

√
γ

2γ±
√

5γ2 − 1
. (14)
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Consequently, the energy expression for test particle (7) at the stable circular orbit
takes a form:

E±
mc2 =

√√√√2γ±
√

5γ2 − 1

γ±
√

5γ2 − 1

(
3γ− 1±

√
5γ2 − 1

3γ + 1±
√

5γ2 − 1

)γ

. (15)

Our analyses show that there is no problem with the velocity of particle at the positive
ISCO, v+, for any value of the γ parameter. However, at negative ISCO, it even might be
greater than the speed of light for the specific values of the γ parameter. Figure 1 shows
the dependence of the orbital velocity of the particle, v±, at the ISCO positions from the γ
parameter. One can see that the maximum value for the velocity at the positive ISCO is
v+ ≤ c/

√
2 ' 0.7c for γ = 1/

√
5, while for the large value of the γ parameter, it will be

v+ = c
√√

5− 2 ' 0.486c. Interestingly, as we see from Figure 1, the velocity of particle
at the negative ISCO may reach the speed of light, i.e., v− = c at γ = 1/2, while it is
greater than the speed of light for γ > 1/2 that leads to causality problem. Here, one might
conclude that there is a tool/mechanism for the possible generation of tachyon which is a
purely hypothetical particle with the superluminal velocity being greater than the speed of
light. However, one has to keep in mind that tachyon might exist only beyond the physical
singularity i.e. inside the singularity, and is consequently invisible for an observer.

A similar situation can happen with the energy of particle E±. Figure 2 illustrates
the dependence of the particle’s energy at the ISCO position from the γ parameter. The
analyses show that the positive solution of the energy E+ of particle is always finite for
any value of the γ parameter. For γ = 1, the energy of particle at the positive ISCO will be
E = (2

√
2/3)mc2, however, at the negative ISCO, i.e., E−, it tends to infinity for γ = 1/2 or

lim
γ→1/2

E− = ∞ , (16)

while in this case, the particle’s velocity tends to the speed of light. If one slightly increases
the γ parameter from the value of γ = 1/2 then the energy of particle E− will be imaginary
with v− > c which produces a causality problem (corresponds to tachyon). To compare the
results we also present the energy as well as velocity of particle in the Schwarzschild and
extreme Reissner-Nordström (RN) spacetimes. The obtained results are listed in Table 1.

0.5 0.6 0.7 0.8 0.9 1.0
0.4

0.6

0.8

1.0

1.2

1.4

γ

ν
/c

Tachyon

v+

v-

Figure 1. The orbital velocity of particle at the closest stable orbit as functions of the γ parameter.
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Figure 2. The total energy of particle at the ISCO position as functions of the γ parameter.

Table 1. The orbital velocity and energy of test particles orbiting at the ISCO position around the
central objects described by the Schwarzschild, extreme Reissner-Nordström RN and γ-metric.

Spacetime −gtt gφφ/r2 sin2 θ v/c E/mc2

Schwarzschild 1− 2M∗/r 1 1/2
√

8/3
Extreme RN (1−M∗/r)2 1 ≤1/

√
3 ≤

√
27/32

γ-metric (1− 2M∗/γr)γ (1− 2M∗/γr)1−γ ∼ 1 ∼∞

As we mentioned before the dependence of the characteristic radii from the γ param-
eter has been discussed by the number of authors [27–29]. However, there are still open
questions on the behavior of the characteristic radii, in particular, when the value of the
parameter is around γ = 1/2. Here, one can clearly answer this question. The asymptotic
behaviours of characteristic radii in (12) and (13) reads

lim
γ→∞

r± =
(

3±
√

5
)

M∗ , lim
γ→∞

rph = 2M∗ , lim
γ→∞

r∗ = 0 . (17)

Figure 3 illustrates the dependence of the characteristic radii from the γ parameter. As
one can see from the figure that the positive ISCO position is well defined for any value of
γ parameter, while the negative ISCO disappears in the range (1/2, 1) of the γ parameter
and lies in the inner region of the singularity, and for γ > 1, it again appears with the
lower values than the position of the photonsphere. As we have already found that the
orbital velocity at the photon-sphere is equal to the speed of light. From Figure 3, one can
see that γ = 1/2 is the critical point for all radii and below this value, the photon-sphere
disappears while above this value the ISCO position r− disappears. Test particle with a
velocity greater than the speed of light might exist at the inner region of the singularity.
Finally, one can conclude that the ISCO position r− is responsible for a relativistic particle
for γ < 1/2 and for tachyon at γ > 1/2 which is invisible for the observer.

It is worth noting that the structure of the γ-metric is very similar to the well-known
Janis-Newman-Winnicour (JNW) spacetime, in particular, at an equatorial plane they are
identical. However, in the case of the JNW metric, the γ parameter arises due to the
massless-scalar field. The performed calculations will be the same in this metric. That is
why we also easily can follow our approach and apply it to JNW spacetime.
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Figure 3. Dependence of the characteristic radii, namely, ISCO, photonsphere and singularity of the
spacetime from the γ parameter.

4. Summary

In the present research note, we have derived the explicit expression for the orbital
velocity of test particle in arbitrary spacetime. The classical expression for the energy of
relativistic particle has been derived in the frame of general relativity.

It is shown that the orbital velocity of massless particle (photon) is equal to the speed
of light in arbitrary spacetime. We underline that test particle orbits at the ISCO position
around the gravitational object with relativistic velocity, in particular, with half of the speed
of light, i.e., v = c/2 around the Schwarzschild black hole, while with v ≤ c/

√
3 around

the maximally charged black hole (the extreme RN spacetime).
It is investigated that particle may orbit around the gravitational compact object

described by the γ-metric with the velocity of v ≤ c/
√

2 at the positive ISCO position
shown in Equation (12), even it can orbit with a velocity greater than the speed of light at
the negative ISCO position r− that might be an additional tool for explaining the existence
of tachyon interior region of the singularity.

It is also shown that the energy of particle in the spacetime of γ-metric is finite
at the positive ISCO position, while it is extremely high at the negative ISCO position
(i.e., E− → ∞) when γ = 1/2. That is why one can conclude that the gravitational object
described by γ-metric might be the source of the high-energy relativistic particles.
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