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Abstract: X-ray polarimetry promises us an unprecedented look at the structure of magnetic fields
and on the processes at the base of acceleration of particles up to ultrarelativistic energies in relativistic
jets. Crucial pieces of information are expected from observations of blazars (that are characterized
by the presence of a jet pointing close to the Earth), in particular of the subclass defined by a
synchrotron emission extending to the X-ray band (so-called high synchrotron peak blazars, HSP).
In this review, I give an account of some of the models and numerical simulations developed to
predict the polarimetric properties of HSP at high energy, contrasting the predictions of scenarios
assuming particle acceleration at shock fronts with those that are based on magnetic reconnection,
and I discuss the prospects for the observations of the upcoming Imaging X-ray Polarimetry Explorer
(IXPE) satellite.
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1. Introduction

The comprehension of the physical processes behind the acceleration of relativistic
particles (electrons, possibly nuclei) in the relativistic collimated outflows (jets) that are
associated with Active Galactic Nuclei (AGN) is one of the most intriguing challenges of
modern astrophysics. In fact, the energization of charged particles at (ultra)relativistic
energies involves strictly interlaced processes played by magnetic fields, plasma and
related instabilities (e.g., [1–3]). Moreover , relativistic jets are structures of enormous
complexity, where the interplay of several processes, acting at spatial and temporal scales
spanning several orders of magnitude, produces a rich phenomenology, as witnessed by
observations (e.g., [4]). While particle acceleration occurs all along the jet, from subpc to
the Mpc scale, remarkable effort has been dedicated to blazars, whose observed emission
is likely produced within the first parsecs from the black hole [5]. In these sources, the
jet is almost pointed toward the Earth and the consequent relativistic beaming causes a
strong amplification of the non-thermal emission, which covers the whole electromagnetic
spectrum (e.g., [3]).

Current studies converge to support two main general paths by which the energy
that is carried by a relativistic jet can be dissipated and made available for the acceleration
of relativistic particles: (a) for magnetically dominated jets (i.e., jets with a magnetization
parameter σ > 1, where we define σ = B2/4πρc2, with B being the magnetic field and
ρ as the plasma density) simulations show that a sizable part of the initial magnetic
energy can be dissipated through (relativistic) reconnection, being easily triggered during
the non-linear stages of jet instabilities (e.g., Kelvin–Helmholtz or current-driven kink
instabilities, (e.g., [6])). Particle-in-cell (PIC) simulations show that, in current sheets
associated with magnetic reconnection, particles can be efficiently accelerated forming
non-thermal energy distributions (e.g., [7–10]); (b) for weakly magnetized flows, instead, the
most likely dissipation sites are shocks (e.g., [11–13]), where the formation of non-thermal
populations occurs through the classical diffusive shock acceleration (DSA) mechanism
(e.g., [14–16]).
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Clearly, while simulations and theoretical studies can delineate the landscape of the
potential physical processes at action, only the confrontation with the observational evi-
dence can decide which mechanism(s) is ultimately responsible for particle acceleration
in jets. In this respect, for a long time, multiband polarimetric measurements have been
considered to be a powerful tool for investigating structure and dynamics of relativistic
jets, magnetic field geometries and particle acceleration (e.g., [4,17]). The regular multi-
wavelength monitoring of blazars, which was greatly intensified in the last decade after
the advent of Fermi-LAT, led to the identification of regular or common variability patterns,
often involving polarimetric properties. The evidence for systematic and large (∼180
degrees) variations of the polarization angle appears to be particularly important, being
often associated with gamma-ray flares (e.g., [18,19]). Possible interpretations advanced to
explain these observations include an emission region moving along a helical path in a jet
dominated by a toroidal field (e.g., [20–22], a jet bending at parsec scales [23,24], turbulence
in the flow (usually described in terms of stochastic models, (e.g., [25]), possibly generated
downstream of a standing shock [26,27].

In this review, I intend to focus on the potentialities offered to the study of the acceler-
ation mechanisms in jets by the new-generation of X-ray polarimeters, in particular the
forthcoming Imaging X-ray Polarimetry Explorer (IXPE) satellite [28]. Specifically, we will
focus our attention to the subclass of blazars characterized by the synchrotron component
peaking in the X-ray band, the so-called high synchrotron peak (HSP). Polarization mea-
surements of these sources in the X-rays, exploring the most energetic, freshly accelerated,
electrons, can provide unique in situ information on magnetic field geometry, turbulence,
and particle distribution inside the jets, key inputs to test and improve our models.

After a brief introduction of the two potential acceleration processes (magnetic recon-
nection and DSA), I will discuss some recent studies and simulations that were devoted
to the identification of the polarimetric signatures expected in the two scenarios and the
perspective to test and constrain these models by observations with the upcoming Imaging
X-ray Polarimetry Explorer (IXPE) satellite.

2. High Synchrotron Peak Blazars as Laboratories for Particle Acceleration

Before concentrating on the potentialities of polarimetric studies of blazars in the
X-ray band, it is worth illustrating the motivations to focus our attention on the particular
class of HSP.

Figure 1 reports the spectral energy distribution (SED) of the prototypical HSP Mkn
421. The two bumps, interpreted as produced through synchrotron and inverse Compton
emission (for the hadronic interpretation of the high-energy component, see, e.g., [29])
peak around 1 keV and 100 GeV, respectively. The high-energy component displays a tail
extending up to several TeV. Indeed, HSP are the most abundant sources that are detected
at TeV energies by the current Cherenkov telescopes.

In the simplest emission scenarios, the observed emission of HSP is reproduced by
assuming a single, compact emission region, which is homogeneously filled by a non-
thermal population of relativistic electrons and tangled magnetic field. Because of the
paucity of nuclear radiation fields in the core of HSP, it is largely assumed that the inverse
Compton scattering occurs on the synchrotron photons. In this greatly simplified model
(one zone SSC, synchrotron self-Compton), the degrees of freedom of the system are quite
limited and the observed SED allows us to greatly constrain the physical properties of
the emission region (e.g., [30,31]). In particular, relatively low magnetic fields (B . 0.1 G)
are generally derived (often well below equipartition with the radiating electrons, [32]),
implying that the electrons emitting synchrotron radiation in the X-ray band (hνX = 1–10
keV) are characterized by large Lorentz factors, of the order of γX = (2πmecνX/eBδ)1/2 ∼
105–106, where δ ≈ 10 is the relativistic Doppler factor. These large energies determine
severe radiative losses and, thus, very short radiative cooling times for these electrons
(tcool = 7.8× 105B−2

−1 γ−1
5 s). Because of the short lifetime, during the emission electrons

can propagate for very small distances, which implies that the synchrotron X-ray radiation



Galaxies 2021, 9, 37 3 of 17

must be produced very close to the region where particles gain their energy. This important
conclusion explains why the study of the polarimetric properties of the X-ray emission of
HSP can provide invaluable information on the acceleration processes. Another favorable
property of HSP is that the X-ray emission, close to the peak of the synchrotron hump, is
very bright (often exceeding 10−10 erg cm−2 s−1 in Mkn 421, see Figure 1), thus allowing for
precise polarimetric measurements, even with relatively short exposures (∼103 s, e.g., [33]).

Figure 1. The broadband spectral energy distribution of the prototypical HSP blazar Mkn 421 in a
low-medium state (data from [34]). The red line represents the emission calculated with a one-zone
synchrotron-self Compton model [32]. Vertical blue dotted lines define the energy range covered by
the X-ray polarimeter of the upcoming IXPE satellite, corresponding to the synchrotron emission
from the most energetic electrons.

3. Particle Acceleration in Blazar Jets: Shocks and Magnetic Reconnection

Acceleration at shock fronts has been classically considered to be the prime candidate
mechanism behind particle energization in several astrophysical environments—from the
solar system to cluster of galaxies [14,15]. For jets, in particular those that are associated
with blazars, early works already identified shocks (travelling or standing) as the sites
where the energetic emission is produced (e.g., [35,36]). Indeed, shocks are predicted to
form quite naturally in the supersonic flows characterizing relativistic jets. In particular,
so-called internal shocks are easily produced in unsteady flows, while (oblique) recon-
finement shocks mark the position where the external medium drives the recollimation
of an underpressured expanding jet. In a real jet, both kinds of shocks are likely to occur.
Models of blazar emission are usually built on the assumption of the existence of a generic
emission zone (often implicitly identified with the downstream shock region) filled by
a non-thermal population of particles whose physical origin is usually not defined (e.g.,
[31,37]). More refined models attempting to link the properties of the observed emission
to a more realistic physical picture have been recently developed and used to infer the
physical characteristics of the shock (e.g., [12,38]).

A point worth mentioning here concerns the role of turbulence. It is well known
that a sufficiently high level of disorder of the magnetic field lines (allowing for the rapid
diffusion of particles in the downstream flow to counterbalance advection) is generally
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required for the DSA to work [14]. In fact, turbulence is thought to be induced by the
accelerated particles themselves, which are able to excite Alfven waves in the flow (e.g.,
[39]). Studies that are based on the modeling of blazar emission suggest that turbulence
could decay quite rapidly after the shock [12]. As we will discuss below, turbulence,
disturbing the order of the magnetic field, is an important player in polarimetric studies,
with a strong impact on the expected degree of polarization of the emitted radiation.

Recent investigations [40] pointed out that, for jets with sufficiently high magnetiza-
tion (σ > 0.1), DSA is relatively inefficient and can only produce a significant non-thermal
component for mildly relativistic shocks and under special configurations in which the
magnetic field lines in the upstream flow are nearly orthogonal to the shock front (i.e.,
parallel shocks). This, together with other lines of evidence, concur to support the view that,
besides shocks, current sheets associated with magnetic reconnection sites can potentially
play an important role in accelerating the particles that produce the strong non-thermal
emission from jets. In fact, (1) MHD simulations agree on the fact that jets start as mag-
netically dominated outflows in which the magnetic energy is progressively converted
to kinetic energy while the jet accelerates (e.g., [41,42]). As it is quite well known, (2)
magnetically dominated jets are prone to several kinds of instabilities, in particular the
current-driven kink instability whose non-linear stages create the conditions for efficient
dissipation of magnetic energy through magnetic reconnection. (3) PIC simulations con-
vincingly show that current sheets formed in highly magnetized plasmas are sites of fast,
relativistic reconnection that can sustain efficient acceleration of particles with (possibly
anisotropic, [43]) non-thermal distributions (e.g., [7–10]). An alternative to reconnection
induced by instabilities is a scenario assuming a striped-wind jet, with a magnetic field
organized in layers of opposite polarity [44,45]. The continuous dissipation of magnetic
field through reconnection at the layer interfaces naturally drives the acceleration of the jet
and particle acceleration.

It is important to remark that the two mechanisms mentioned above (i.e., shock and
magnetic reconnection) are not mutually exclusive and they can simultaneously operate
in the same jet, possibly at different distances (i.e., reconnection in the inner, magnetically
dominated regions, DSA at large scales, where the jet is likely matter dominated, (e.g.,
[14])). Clearly, this would increase the degree of complexity of the system (Figure 2).

Figure 2. A possible global scenario for dissipation and particle acceleration in relativistic jets.
The jet starts as a magnetically dominated flow which progressively accelerates. In this region the
main channel for energy dissipation is magnetic reconnection, likely triggered by current-driven
instabilities. During the acceleration phase, the magnetic energy is converted into kinetic bulk energy
(schematic plot on the left) until substantial equipartition is reached. At larger distances the reduced
magnetization of the flow allows efficient particle acceleration by shocks.
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4. Modeling X-ray Polarimetric Signatures in HSP

Theoretical studies and numerical simulations are increasing and extending our under-
standing of the intricate network of physical processes behind the acceleration of relativistic
particles in jets. However, despite the important efforts, the gained knowledge is still too
limited to make precise predictions to be compared with observations. Perhaps the most
important difficulty is represented by the huge range of spatial and temporal scales that
are involved. In fact, while PIC simulations offer a detailed description of the dynamics
at very small scales (including particle acceleration), the emission from jets involves their
global structure and dynamics (i.e., instabilities, shocks), which are best captured by a fluid
MHD treatment.

In order to produce an approximate view of the expected emission, it is therefore
useful to adopt simplified models that can incorporate some of the results obtained through
simulations, but that are also suitable to a simple analysis. In the following, I will try to
offer a glimpse of the current research along these lines and of some of the most relevant
results for polarimetry in the X-ray band.

4.1. Shocks: Large Scale vs. Small Scale Treatments

The polarimetric signatures that are associated with shocks in jets have been explored
in several works (e.g., [46–51]). These studies are generally based on the MHD description
and consider the macroscopic properties of plasma and magnetic field in the downstream
region to characterize the emitted radiation. A general feature is that, due to the com-
pression that is operated by the shock, the field downstream of the shock develops a
predominant component parallel to the shock front, regulating the polarization of the
emitted radiation.

Recent studies demonstrated that models based on MHD shocks are able to reproduce
part of the observed phenomenology, for instance the large polarization angle swings
that are often observed in powerful blazars (possibly caused by light travel time effects
within an underlying axisymmetric emission region [51,52]), although they cannot explain
angle rotations of more than 180 degree or rotations with different directions in the same
source. Dedicated MHD simulations (assuming helical force-free magnetic fields) reveal
that the agreement with the phenomenology that is displayed by the optical polarization
is possible only for highly-magnetized jets [51]. In fact, for low magnetization (σ . 0.1)
the resulting degree of polarization during the late phases of a flare reaches quite high
values (Π ' 40–50%), in contrast with the usual observed behavior. A better agreement
with observations (i.e., a degree of polarization approaching a few percents during decay
phases) is reached when large magnetization (σ∼10) is considered. This result appears in
remarkable contrast with the small acceleration efficiency anticipated for shocks in highly
magnetized flows [40].

Models that are based on a large-scale approach are surely valid for the low-energy
(e.g., optical in HSP blazars) emission, produced by long-living electrons that can travel to
large distances after being accelerated and, therefore, experience an average field that is
well represented by the MHD treatment. However, this approach neglects two ingredients
that, likely not greatly affecting the properties of the optical emission, can critically shape
the emission at higher energies, in particular in the X-ray band. In fact, (1) the severe
cooling limits the propagation of the most energetic electrons to a very thin layer after the
shock front. Therefore (2), the complex small-scale structure of the magnetic field close to
the shock, not captured by large-scale MHD simulations, has to be properly considered in
deriving the polarimetric properties.

In fact, PIC simulations of shocks confirm early predictions (e.g., [39]) that streaming
suprathermal ions excite circularly polarized Alfven waves that, in the downstream com-
pressed flow, sufficiently close to the front, emerge as an intense magnetic field component
parallel to the shock front (e.g., [53]). As an example, we report (see Figure 3, upper panel)
the results of a simulations starting with a weakly magnetized (σ = 0.1) upstream flow
with a magnetic field that is slightly inclined with an angle of 10 deg with the shock normal.



Galaxies 2021, 9, 37 6 of 17

The second panel shows the magnetic energy (normalized to the value in upstream flow).
The presence of the self-produced field that is close to the shock is rather evident, as well as
(third panel) the fact that the field is prevalently parallel to the shock (or orthogonal to the
axis). At the shock, the self-generated field contains an energy approximately 20 times that
of the original (almost perpendicular) field. However, this self-produced field component
decays relatively quickly with distance, and sufficiently far from the shock, the magnetic
field recovers the MHD expectations.

Figure 3. (Upper panel a–d) The results of a PIC simulations of a parallel, mildly relativistic, low
magnetization shock. The panel reports (top to bottom) the spatial profile of density, magnetic energy
normalized to that carried by the upstream flow, average angle between the magnetic field and the
shock normal and average Lorentz factor of the accelerated electrons. The second panel clearly shows
the generation of a strong magnetic field at the shock parallel to the front (third panel). From [54].
Reproduced with kind permission from Oxford University Press and the Royal Astronomical Society.
(Lower panel) Cartoon of the model, bei g inspired by PIC simulations, assumed to calculate the
expected polarization for the shock scenario. Electrons that are accelerated at the shock (right) are
advected downstream and cool through synchrotron and SSC emission. Electrons emitting in the
X-ray band (blue), which have a quite limited lifetime, emit very close to the shock front, where the
magnetic field is dominated by the self-generated component parallel to the shock (blue arrows).
Being produced in a region with a well defined direction of the field, the synchrotron emission
from these electrons is highly polarized. Electrons with lower energy (green and orange) produce
synchrotron radiation at a lower frequency (UV, optical) and, because of the longer cooling timescale,
can propagate at distances where the self-generated field decays below the field carried by the flow,
which are assumed to be nearly perpendicular to the shock. The integrated emission from these low
energy electrons originates in a region in which the two (orthogonal) components of the field are, on
average, comparable, which leads to a low degree of polarization.
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Being informed by these results, References [33,54] presented a model for the polar-
ization of the synchrotron radiation produced by high-energy particles accelerated at a
shock—being particularly suitable for describing the expected properties of the X-ray emis-
sion. The adopted set-up is simple: the jet is modeled as a cylinder, and it is assumed that
the observer lies at an angle θv = 1/Γd, where Γd is the bulk Lorentz factor of the down-
stream plasma. In this condition, in the downstream frame the line of sight is perpendicular
to the jet axis. A key ingredient taken into account in the model is the different cooling
length that is associated with electrons of different energies (and, therefore, emitting at
different frequencies). Indeed, since the cooling time of an electron of energy E scales as
tcool ∝ 1/E, electrons emitting, for instance, in the X-rays have a quite smaller lifetime than
those producing optical radiation. Because electrons are assumed to be advected by the
downstream flow with speed vadv, the emission of the X-ray radiation is concentrated in
a very thin layer of thickness λcool ' vadvtcool after the shock front, while, because of the
longer lifetime of the corresponding electrons, the optical radiation is produced in a much
larger volume (see the cartoon in Figure 3, lower panel). In Figure 4, I report an example
of the profile of the maximum synchrotron frequency in the downstream region (see [33]
for details on the adopted parameters). Clearly, X-rays (E > 1 keV) are only produced at a
small distance from the shock.

The energy-dependent stratification of the electrons, together with the presence of
the strong, decaying self-generated field, shape the polarimetric properties of the emitted
synchrotron radiation. The radiation that is produced by particles at high energy (i.e., in
the X-ray band), close to the front—where the projected magnetic field is well defined,
being largely dominated by the parallel self-generated component (see the blue and red
lines in Figure 4)—will acquire a large degree of polarization. On the other hand, particles
of low energy, while advected by the downstream flow, shine over a large portion of the
downstream volume. Because the self-generated field only dominates in the close vicinity
of the shock, the low-energy (e.g., optical) emission that is produced by these electrons
will become less polarized (see also [55,56], which, however, do not consider the role of the
self-generated fields).

Figure 5 (left panel) reports the resulting time-dependent flux (upper panel), degree
of polarization (middle), and angle of polarization (lower), while assuming that the self-
generated fields decay with distance from the shock front, being located at zsh) as a power
law B ∝ (z/zsh)

−m, with m = 3 and assuming two different injection durations , i.e.,
tdur = 0.1× r/c (left) and tdur = r/c (right), where r = 1015 cm is the assumed jet radius.
The curves are shown for the (observed) energies that correspond to hard X-rays, soft
X-rays, and the optical band.

As mentioned above, the hard X-ray emission, which is produced by energetic, rapidly
cooling electrons, is concentrated in a thin layer after the shock, where the magnetic
field is largely dominated by the self-generated field. At these energies, the degree of
polarization quickly stabilizes around Π ' 40%. In the soft X-ray band, on the other
hand, the cooling length of the electrons, λcool, is longer than the distance over which the
self-generated field decays significantly, λdecay, i.e., λcool & λdecay. Therefore, while in
the initial phase, the degree of polarization is similar to that at higher energies, it rapidly
decreases, reaching a stationary state at Π ' 10%. Note that the angle of polarization
χ does not change, since the observed polarization, although diluted, is dominated by
the strong self-generated field (parallel to the shock front). At optical frequencies, the
situation is different. Indeed, the electrons emitting at these frequencies are characterized
by a cooling length comparable with the full extension of the downstream region and much
larger than the decay length of the self-generated field, λcool � λdecay. Therefore, after an
initial phase that is characterized by an evolution similar to that of the X-ray, the degree
of polarization monotonically decreases and reaches Π = 0 (when the emission produced
in regions with magnetic field orientation differing by π/2 exactly balances) and then it
increases again. The time at which Π = 0 is marked by a flip of the angle of polarization by
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∆χ = π/2, flagging the fact that the emission is now dominated by region in which the
magnetic field is oriented along the jet axis (i.e., the original upstream magnetic field).

The qualitative behavior that is discussed above is quite robust and it does not depend
on the details of the set-up (e.g., profile of the field, duration of the event). Therefore a
natural consequence of this scenario is a relatively large polarization in the (medium-hard)
X-rays, a prediction soon testable by IXPE. Figure 5 (right panel) shows a simulation of
the expected performances of IXPE assuming as a target Mkn 421. The simulation nicely
shows that IXPE can easily follow the evolution of the polarization during a flare. These
observations, complemented by polarimetric monitoring in other bands (in particular
optical), will soon allow us to test the model.

The simplified scenario that is described above has important caveats to consider.
Among the most important points worth mentioning is that it assumes a perfect planar
geometry, a likely good approximation for internal shocks that are produced by variations
of speed within the flow but not suitable to describe oblique shocks induced by recollima-
tion (e.g., [50,57,58]). Moreover, in the downstream region, we do not consider turbulence.
Therefore, electrons are simply advected by the flow and do not diffuse. Similarly, the
self-generated field is not disturbed by possible turbulence that could (at least partially)
perturb its ideal geometry, likely reducing the expected degree of polarization. Finally,
while the study described here provides a first glimpse of the expected behavior, a more
complete exploration of the parameter space is necessary to compare the theoretical expec-
tations with observations.

Figure 4. The spatial profiles of the ratio between the averaged perpendicular component of the
magnetic field projected onto the plane of the sky and the parallel magnetic field component as a
function of the distance from the shock front for the model that si assumed in [33,54]. The profiles
correspond to m = 3 (red) and m = 5 (blue). The solid curve shows the maximum synchrotron
photon energy (in the observer frame) as a function of the distance from the shock front. The
synchrotron radiation in the X-ray range (hνmax > 1 keV) is produced in the region where the field is
dominated by the component parallel to the shock front, causing a large degree of polarization. From
[33]. Reproduced with kind permission from Oxford University Press and the Royal Astronomical
Society.

An important role for turbulence was assumed in [26]. The scenario at the base of
the model (see Figure 6) assumes that highly-turbulent plasma flowing in the jet crosses a
standing conical shock (that is easily produced through the jet recollimation by an external
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medium, e.g., [57,59]). At the shock, particles are accelerated with an efficiency that
depends on the angle of the local magnetic field relative to the shock front. In this model,
the variability of flux and polarization observed in blazars is directly determined by the
turbulent nature of the flow. Quite interestingly, despite the fact that the emission from
turbulent cells is uncorrelated, the model reproduces coherent rotations of the polarization
angle (also see [25]). A prediction of the model is also that the time-averaged degree of
polarization increases with energies, since the volume filling factor of electrons at the
highest energies is very small and, thus, only a few turbulent cells contribute at high
frequency. The model was particularly tailored for powerful blazars, for which the X-ray
emission is produced by inverse Compton scattering by electrons of relatively low energy.

As noted above, quite generally, in any scenario where turbulence plays a major role in
determining the properties of the emission (in particular, of the polarization), one expects
that the number of turbulent cells contributing to the emission depends on the frequency.
In particular, for HSP, we can expect that the optical band receives the contribution of many
cells, while only a few cells have the right, somewhat extreme, parameters (magnetic field,
maximum energy of the electrons) that are suitable for providing a substantial contribution
in the X-ray band (e.g., [60]). In this scheme, one can infer the degree of polarization (that
is expected to scale as Πν ∝ 1/

√
Nν, where Nν is the number of cells contributing at a

given frequency) in the X-ray band once that in the optical is known and a relation between
ν and Nν is assumed. For a specific set of assumptions, [61] found that, for typical HSP
(Mkn 421, 1ES1959+650), the predicted degree of polarization is not much larger than that
corresponding to the optical emission, i.e., ΠX . 10%. Clearly, observations by IXPE will
soon confirm or reject this prediction.

Figure 5. (a) Upper panel: normalized light curves at 10 keV (light blue), 1 keV (orange), and in the optical band (green)
assuming m = 3 and an injection (rest frame) timescale tdur = 0.1× r/c (left) and tdur = r/c (right), where r = 1015 cm is
the assumed jet radius. The dashed line shows the polarized flux. Middle panel: the degree of polarization in the three
bands. Lower panel: polarization angle in the three bands. All of the quantities are expressed in the observer frame. (b)
Lightcurve (upper panel) and degree of polarization (lower panel) in the IXPE band (2–8 keV) for the case m = 3 and
tdur = r/c. In the lower panel we show the minimum detectable polarization (MDP) at 99% confidence for exposures of 1
ksec, for two peak fluxes and spectral photon index (1.5, solid; 3, dashed). From [33]. Reproduced with kind permission
from Oxford University Press and the Royal Astronomical Society.
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Figure 6. A cartoon of the model considered in [26]. Plasma flowing in the jet encounters an oblique
shock, where particle acceleration occurs through DSA. In the downstream region the flow is assumed
to be highly turbulent and it is modeled by assuming cells in which the physical parameters (in
particular, the magnetic field orientation and maximum energy of the electrons) can assume different
values. From [26]. Reproduced by permission of the AAS.

4.2. Magnetic Reconnection in Unstable Jets

The possibility that particles are boosted to relativistic energies in current sheets,
where magnetic energy is released through the reconnection of field lines with opposite
polarity, is currently supported by extensive PIC simulations. For high magnetization
(σ� 1), the system is indeed able to produce particles with energy distributions showing
a prominent power law tail extending to relativistic energies, whose slope is linked to
the plasma magnetization (the spectra are harder for larger magnetization, [62]). Recent
studies [63–66] consolidated the application to blazars of the scenario based on particle
acceleration in current sheets. In this framework, one can reproduce the main observational
properties of the emission, including the ultra-fast events that were recorded in gamma
rays [43,67]. Geometries favorable for efficient reconnection are likely to develop under the
effect of macroscopic fluid instabilities of the flow, i.e., current driven (kink) instability or
Kelvin–Helmholtz instability at the jet/environment interface [6,68–71]

The number of studies of the polarimetric properties of the synchrotron radiation
produced by electrons accelerated through magnetic reconnection is still limited. From the
point of view of polarimetric measurements, it is conceptually important to distinguish
between the effects that are related to the small-scale structure of the magnetic field
associated with a single current sheet from the imprints of large-scale fields shaped by
the macroscopic dynamics of the system. For instance, recent specific PIC studies [72–74]
focus on the polarimetric properties of the synchrotron radiation produced by particles
diffusing in the complex field that is associated with a single current sheet. The derived
synthetic lightcurves reveal large (exceeding 50%) and variable polarization fractions and
ample variations of the angle of polarization (up to ∆χ = 180◦). However, the largest
timescale of these variations, ∆t is of the order of the light crossing time of the largest
plasmoids that formed in the system, ∆t . 0.1L/c, where the size of the system L is of the
order of the jet radius rj. For typical physical parameters, this timescale is of the order
of ∆t ≈ 103 s, barely accessible by observations in the X-ray band. This implies that,
even if the degree of polarization assumes large values during the evolution, the plane of
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polarization of the radiation recorded by our instruments will inevitably rotate by a large
angle during a single exposure, resulting in an averaged smaller degree of polarization.
Moreover, one should consider that several current sheets with different orientations could
be active at the same time, further diluting the polarization of the emerging radiation.
Therefore, the comparison of the prediction of these small-scale models with the results of
actual polarimetric observations necessarily involves the time average of the polarimetric
quantities. Studies that are based on the fluid MHD simulations focus on the large scale
description of the system (e.g., [68,71,73]). This approach is unable to resolve the structure
of the current sheets, but, on the other hand, can trace the long-term development of the
large-scale topology of field lines in the the entire system. High-energy particles that are
injected at reconnection sites can therefore be followed and their emission can be properly
modeled when considering the local (but still at the fluid scale) magnetic fields. Under
these conditions, the variations of the properties of the emitted radiation occur on relatively
long timescales, of the order of the instability growth time and/or light-crossing time of the
jet, leading to changes of the polarization angle slow enough to be observationally resolved
and, therefore, allowing for tracking the evolution of the polarization.

The investigation of the polarization signatures expected for a jet susceptible to the
current driven kink instability has been described in e.g., [68,71]. In the following, we briefly
describe the results that were reported in [68], which explicitly discusses the expected
polarimetric signatures for the X-ray band.

The system is idealized as a column of plasma with a magnetic field with both poloidal
and toroidal components. It is well known that, when the ratio between the toroidal and
the poloidal components exceeds a given value (that is dictated by the detailed structure of
the magnetic field), the column is subject to current-driven instabilities, among which the
most important is the so-called kink mode (e.g., [75]).

The onset of the instability produces a helical deformation of the jet that, in turn, leads
to the formation of a complex system of current sheets (see Figure 7), where magnetic
energy is rapidly dissipated through reconnection. As demonstrated by PIC simulations, a
sizable fraction of the released energy is channeled into high-energy particles following
nearly power law energy distributions. The simulation assumes that high-energy electrons
are injected at current sheets and it follows these particles while they are advected by the
flow (diffusion, possibly induced by turbulence, is negligible at least in the early phases)
allowing to calculate the properties of the emitted synchrotron radiation. While cooling
is not explicitly taken into account, the emission at different energies is estimated when
comparing the time of injection of the electrons and their cooling time. In this way, one can
consider the emission of both freshly accelerated electrons (assumed to emit in the X-rays)
and long-lived ones, emitting at low frequencies, as shown by Figure 7. The particles are
confined in the current sheet (at least during the early phases of the evolution, when the
luminosity of the produced radiation is maximal) and do not diffuse outside.

Figure 8 shows the resulting properties of the emission. After a short transient phase,
the degree of polarization settles around 20%. This relatively low value is determined by
the contribution of several active current sheets with different orientation that determine
an effective dilution of the total polarization. Remarkably, X-rays and optical frequencies
are characterized by quite similar values and evolution of Π. This is clearly related to
the fact that, as discussed above, particles are confined in the current sheet and therefore
probe very similar magnetic field structures. If, as suggested by recent works, (e.g., [70]),
a relatively high-level of turbulence develops at late times, the corresponding enhanced
diffusion of particles could induce appreciable differences between the emission of freshly
injected particles (emitting at X-rays) and that associated with old electrons.

A quite important feature is that the polarization angle displays important changes,
with multiple rotations by ∆χ ≈ 90◦. As stressed above, these changes are slow enough to
be followed with current instruments, thus making it possible to measure the degree of
polarization and its evolution during a flare.
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Figure 7. (a) The positions of the particles in a transverse section of the jet, in green the particles that
have an age less than rj/c (still not cooled and, hence, assumed to emit high-energy radiation) and in
red the particles that have an age between 3rj/c and 10rj/c (cooled, emitting in the optical). (b) Plot
of the the density of particles in the same section of the jet. The panels refer to the time at which the
dissipation is maximal. From [68]. Reproduced with kind permission from Oxford University Press
and the Royal Astronomical Society.

While these simulations already offer an interesting view of the expected polarimetric
signatures that are associated with magnetic reconnection induced by kink instability, a
more robust investigation should include a better treatment of the particle injection and
cooling and transport.

a)

Figure 8. Cont.
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b)

c)

Figure 8. (a) Plot of the total emission in the X-ray (black) and optical (red) bands as a function of
time for the simulation presented in [68]. Each curve is normalized to its peak value. (b) Polarization
fraction in the X-ray (black) and optical (red) bands as a function of time. (c) Evolution of the
polarization angle of the integrated emission as a function of time (colors as above). From [68].
Reproduced with kind permission from Oxford University Press and the Royal Astronomical Society.

5. Outlook

The polarization measurements of the X-ray synchrotron emission from blazars of
the HSP class promise to shed light on the basic mechanism(s) responsible for energy
dissipation and particle acceleration in jets. In this review, we focus on the anticipated
polarimetric properties for two potential mechanisms, i.e., diffusive shock acceleration and
magnetic reconnection.

As clearly shown in Figures 5 and 8, the two specific scenarios that are discussed above,
i.e., DSA with self-produced magnetic fields and magnetic reconnection that is induced
by kink instability, lead to quite different predictions for the polarimetric properties in the
X-ray band (a summary is reported in Table 1):

(1) For acceleration by shocks that are characterized by a magnetic field with a strong self-
produced component, one anticipates a quite large (around 40% for the parameters
assumed in [33,54]) and stable degree of polarization of the X-ray emission. Moreover,
since the emission occurs in a region that is characterized by a well defined orientation
of the magnetic field, the angle of polarization is not expected to display large changes
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during the evolution of a flare. However, at optical frequencies, one predicts a more
complex behavior. It is important to note that, while, for the X-ray band, it is likely
that the emission is dominated by a single component (especially during flares), in the
case of the optical emission it is quite likely that several components (or large portion
of the jet) can contribute to the observed flux. This likely implies a dilution of the
measured polarization in the optical, in agreement with the usually low (around 10%)
average degree of polarization measured in BL Lac objects. As discussed above, this
simple model neglects the possibly important role of turbulence in the downstream
flow. A high level of turbulence can destroy the order of the self-generated field,
greatly affecting the resulting polarization.

(2) In the case of flares that are powered by the dissipation of magnetic energy in current
sheets produced during the evolution of instabilities one expects a relatively small
polarization (around 20%) at all bands, as a result of the simultaneous contribution
of several active current sheets with different orientation. Moreover, the evolution
of the instability results in significant variations of the angle of polarization over
timescales that IXPE can easily resolve. The confinement of particles within the
current sheets mainly determines the similar polarization in the optical and the X-
ray band. However, the development of turbulence, which results in the effective
energy-dependent diffusion of particles, could have an important role in shaping the
polarimetric properties. Further studies are required to clarify the situation.

Table 1. Summary of predicted polarization features for some of the scenarios discussed in the text.

Optical Medium-Hard X-rays

Shock (turbulent) Π . 15%, variable; Π . 30%, highly variable
χ variable, smooth rotations possible highly and rapidly variable

Shock (self-produced field) Π . 20%, slowly variable, Π & 40% substantially constant,
flips by ∆χ = 90 deg constant χ = 0

Reconnection (kink-induced) Π . 20–30%, moderately variable same as optical
smooth rotations, ∆χ & 90 deg as optical

Despite the high degree of simplification, the two scenarios that are described above
represent solid theoretical benchmarks that can be easily contrasted with future data. In
particular, IXPE (planned to be launched at the end of 2021) will allow us to study in great
detail the polarimetric properties of HSP, providing us an unprecedented test bed for our
models.
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