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1. Introduction

The observations of gravitational waves performed within the LIGO experiment [1]
certainly represent one of the most important experimental confirmations of general rela-
tivity. However, various modifications and extensions of gravity are now being discussed.
The main motivations for these extensions are as follows: first, the need for development
of a perturbatively consistent gravity model, which is expected to be both renormalizable
and ghost-free; second, the necessity to explain the cosmic acceleration originally reported
in [2]. At the same time, the concept of Lorentz symmetry breaking, possessing vari-
ous motivations—string theory, minimal length, quantum fluctuations of geometry, loop
quantum gravity, etc.—can clearly be implemented within the context of gravity, and the
Lorentz-violating (LV) standard model extension (LV SME) [3,4] was generalized to include
gravity in [5]. All these studies clearly establish questions about possible gravitational
wave solutions in LV extended gravity models. It is well known that in Lorentz-breaking
extensions of other theories, e.g., electrodynamics plane wave solutions displaying nontriv-
ial behavior, such as birefringence and rotation of the polarization plane in the vacuum (see
e.g., [3,4]), it is natural to search for such phenomena also in the gravitational wave case.

The first study of plane wave solutions in LV gravity was performed in [6], where
the four-dimensional Chern–Simons (CS) modified gravity presenting Lorentz-breaking
behavior for the special form of the CS coefficient ϑ = kµxµ was considered. However,
it turns out that the only consistent plane wave solution in this theory displays only
usual, Lorentz-invariant dispersion relations, where the intensities of two polarizations
for gravitational waves are different. A more interesting situation takes place in [7], where
the additive one-derivative LV term breaks the gauge symmetry (for a detailed discussion
of gauge symmetry breaking in gravity see [8])—in this case two polarizations propagate
with distinct phase velocities depending on the Lorentz-breaking parameter and these are
different from the speed of light.

Therefore, the natural problem consists of studying plane wave solutions in gravity
theories with various recently proposed LV additive terms [9,10]. This issue will be
discussed in the present paper.

The structure of the paper is as follows. In Section 2, we consider the dispersion
relations in modified gravity models represented as a sum of the usual Einstein–Hilbert
action and terms introduced in [9]. In Section 3, we obtain the dispersion relations in
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theories whose action is given by a sum of the Einstein–Hilbert term and some new
linearized gauge-invariant terms. Finally, in Section 4, we summarize our results.

2. Dispersion Relations for Full-Fledged LV Terms in Gravitational Sector

In this section we consider the dispersion relations generated by additive full-fledged
LV terms in the gravitational sector, as proposed in [9]. Our starting point is the following
decomposition of the hµν tensor into its irreducible components originally introduced in [6]
(see also [7]):

h00 = n, h0i = ni
T + ∂inL;

hij = (δij − ∂i∂j

∇2 )φ +
∂i∂j

∇2 χ + (∂iξ
j
T + ∂jξ i

T) + hij
TT , (1)

where hij
TT ≡ h̃ij is transverse and traceless and ξ i

T is transverse. Our signature is
(+,−,−,−). In this case, the Lagrangian for a spin-2 field of the linearized gravity (see,
e.g., [11])

L0 =
1
4

∂µhα
α∂µhβ

β −
1
2

∂βhα
α∂µhβ

µ −
1
4

∂µhαβ∂µhαβ +
1
2

∂αhνβ∂νhαβ, (2)

which is nothing more than the well-known Einstein–Hilbert Lagrangian for the weak field,
takes the form (see, e.g., [6]):

LFP = −1
4

h̃ij�h̃ij +
1
2

φ�φ +
1
2
(∂iσ

j
T)

2 + φΛ, (3)

where σi
T = ni

T + ξ̇ i
T is transverse and Λ = ∇2(n + 2ṅL) + χ̈ is the Lagrange multiplier.

These quantities show that h̃ij is the only propagating field [6].
For this Lagrangian, the dispersion relations for the only physical modes presented by

h̃ij are the usual ones, E2 = ~p2, as it must be.
So, let us perform a similar decomposition for various additive LV terms intro-

duced in table VI given in [9] in the linearized case, with dimensions of these terms
up to 6. Since we are interested in the dynamics of h̃ij, which is traceless, we can as-
sume

√
|g| = 1. In addition, in the linearized case, we can require the external vectors

(tensors) (
^
k
(n)

)µ1 ...µn−2 ≡ (k(n))µ1 ...µn−2 to be (approximately) constant in order to avoid
non-constant free parameters in dispersion relations (i.e., to require that only gravita-
tional fields can propagate), so all derivatives of external vectors (tensors) are disregarded.
From the physical viewpoint, this condition is consistent with the conservation of the
energy–momentum tensor since it corresponds to the homogeneity of space–time.

From now, our methodology is as follows. For any additive Lorentz-breaking term,
we will keep only its observable (transverse-traceless) components, obtaining thus extra
contributions to the Lagrangians of these components, and we will study the propagation
of the plane waves described by these physical components and corresponding dispersion
relations. For the sake of simplicity, we assume that the Lorentz-breaking tensor parameters
can be completely characterized by one Lorentz-breaking vector (or pseudovector), similar
to aether terms [12,13].

The simplest example of the LV parameter in gravity given in [9] is (
^
k
(3)
Γ )µ ≡ (k(3))µ

defining the dimension-3 operator (k(3))µΓα
µα. In the linearized case, we can write

Γα
µα = −1

2
hαγ∂µhαγ + O(h3).

Let us assume that our plane gravitational wave propagates along the x3 = z axis,
i.e., hµν = h̃µνei(Et−pz). In this case, there will be no second derivatives acting on any
components of decomposition of hµν except of the usual transverse-traceless h̃ij. Similarly
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to [6,7], we can define two polarizations of h̃ij as follows: h̃11 = −h̃22 = T, h12 = h21 = S;
all other components of h̃ij are zero.

First of all, in this case we have (with (k(3))µ ≡ kµ)

L(3) = −1
2
(k(3))µ h̃ij∂µ h̃ij = −

1
2
(k0h̃ij∂0h̃ij + k3h̃ij∂3h̃ij), (4)

where we disregarded all other components of hµν. We immediately see that this term
is evidently a total derivative, hence its impact on the modified linearized equations of
motion is trivial; thus, the adding of L(3) will not affect plane wave solutions independently
of the direction of the vector (k(3))µ. Unlike (4), the term εµνλρbµhνα∂λhα

ρ discussed in [7],
which is also a dimension-3 term, is described by a pseudo-vector bµ, and in this case the
dispersion relations are different, so that for bµ = − b

2 ẑ, i.e., the LV vector is parallel to
the wave direction; they look like (E± b)2 − (p + b)2 = 0, which implies a group velocity
less than the speed of light [7]. Moreover, this term cannot be expressed in terms of usual
geometric objects, such as a connection or a curvature, hence it is apparently well-defined
only within a linearized gravity but not in a full-fledged one. We note that this term
breaks the gauge symmetry, and this fact establishes a natural question about the impact
of breaking the gauge symmetry on the dispersion relations (see [8] for a discussion of
violating the general covariance in gravity). In this section and in the next one, we will
work both in gauge-breaking and gauge-invariant scenarios in order to see if the breaking
of gauge invariance implies unusual dispersion relations.

For studying of higher-order terms, it is useful to write down lower-order contribu-
tions to the Riemann and Ricci tensors. For the Riemann tensor we have (cf. [11])

Rµναβ =
1
2
(∂ν∂αhµβ − ∂µ∂αhνβ − ∂ν∂βhµα + ∂µ∂βhνα) +

+ ∂αΓ(2)
µ,νβ − ∂βΓ(2)

µ,να + Γ(1)γ
βν Γ(1)

µ,γα − Γ(1)γ
αν Γ(1)

µ,γβ, (5)

where Γ(1,2)γ
βν are first- and second-orders in expansions of Christoffel symbols in

hαβ, explicitly,

Γ(1)α
βγ =

1
2
(∂βhα

γ + ∂γhα
β − ∂αhβγ);

Γ(2)α
βγ = −1

2
hαδ(∂βhγδ + ∂γhβδ − ∂δhβγ). (6)

Our next example is the dimension-4 term (
^
k
(4)
R )µνρσRµνρσ. The importance of this

term relates to the fact that this is the simplest CPT-even LV term in gravity, which for

a special “aether-like” form of (
^
k
(4)
R )µνρσ given by (

^
k
(4)
R )µνρσ = uµuρηνσ − uµuσηνρ +

uνuσηµρ − uνuρηµσ is reduced to the gravitational aether term introduced in [12]. Some
studies of dispersion relations in this theory have been performed in [14], where causality
and unitarity are analyzed within the context of bumblebee gravity for space-like and
time-like backgrounds of the bumblebee field. Explicitly, it is demonstrated that there are
two graviton dispersion relations, p2 + ξ(b · p)2 = 0 and (b · p)2 − b2 p2 = 0, where bµ is
the LV constant vector (actually, it is the v.e.v. of the bumblebee field), and ξ is the known
bumblebee-gravity coupling (see [5]). We note that the first dispersion relation is a rather
standard one for massless CPT-even LV theories; it arises, for example, in aether-like CPT-
even models of scalar and gauge fields [12,13]. As for the second relation, it corresponds to
breaking the unitarity, and the energy strongly depends on the direction of propagation [14].
For the vector field, such a relation has been obtained in [15] for a non-canonical gauge
theory where the aether term is not suppressed in comparison with the Maxwell term. It

is natural to expect that for a generic form of (
^
k
(4)
R )µνρσRµνρσ dispersion relations do not

essentially differ.
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Therefore, it is especially interesting to study the higher-derivative LV extensions
of gravity. Higher derivatives reveal information about the whole theory and are one of
the ways to attain renormalizability [16]. It is well known [16] that in higher-derivative
Lorentz-invariant theories, ghost states arise. Their presence makes the theory unstable.
However, Lorentz-breaking higher-derivative terms in certain cases, for example when
higher derivatives are purely spatial, do not display ghost states [17]. Therefore, the
cases where the higher time derivatives are ruled out due to the appropriate choice of
Lorentz-breaking parameters are certainly of special interest. In addition, four derivative
terms are considered in cosmological models to explain cosmic acceleration [18]. The
most well-known example of the dimension-5 terms is the gravitational CS term, whose
dispersion relations have been discussed in [6] and proved to be usual ones E2 = ~p2,
although the CPT-breaking manifested itself through difference in intensities for two
circular polarizations (various issues related to the linearized gravitational CS term are also
discussed in [19–21]). One more CS-like term from table VI given in [9] is proportional to
two Levi–Civita symbols, but it vanishes within the metric formalism since contractions like
εabcdωab

µ , which are present within this term, are equal to zero for a Riemannian connection.
It remains to study the dimension-5 term proportional to Dκ Rρσµν. There are a number

of ways to decompose tensor (
^
k
(5)
D )ρσµνκ . If it is completely symmetric, this term is

evidently ruled out due to the antisymmetry of the Riemann tensor with respect to some
indices; thus, the equations of motion are reduced to the Einstein ones, hence the dispersion
relations again have the usual form E2 = ~p2. To obtain a nontrivial impact of this term
within the dispersion relations context, we can decompose the dimension-5 coefficient as

(
^
k
(5)
D )ρσµνκ = kρ(kσkνηµκ − kσkκηµν + kκkµησν − kµkνησκ), so it has an aether-like structure

completely characterized by one vector. After making the contraction, we find that the
following additional term comprises the linearized Einstein equations:

G(5)
αβ = 1

4

(
1
2 ηαβkκkρ(k · ∂)�hρκ + kαkβ∂κ∂ρ(k · ∂)hκρ + kµ∂α(k · ∂)2hβµ −

−kκkρ∂β∂α(k · ∂)hρκ − kβ∂ρ(k · ∂)2hαρ + (α↔ β)
)

. (7)

Considering the decomposition of the metric perturbation in Equations (1) and re-
placing it in Equation (7), we find the additional terms in the equation of motion derived
from the Lagrangian in Equation (2), which, in the sector of the physical components h̃ij,
assumes the form

�h̃ij +
1
2 ηijkakb(k · ∂)�h̃ab + kik j(k · ∂)∂a∂b h̃ab +

+ 1
2 ∂i(k · ∂)2ka h̃ja +

1
2 ∂j(k · ∂)2ka h̃ia − kakb∂i∂j(k · ∂)h̃ab −

− 1
2 k j∂

a(k · ∂)2h̃ia − 1
2 ki∂

a(k · ∂)2h̃ja + (. . .) = 0. (8)

Here, dots are for the terms that do not depend on h̃ik. For further study, it is important
to note that, first, all such terms are accompanied by Lorentz-breaking constant vectors
(tensors) known to be small, which can be treated effectively as small sources in the
corresponding wave equations for h̃ij, and thus affect only higher-order contributions
to the plane wave solutions; second, they do not influence the equations and dispersion
relations for relevant, transverse-traceless components of hij. Again, we consider the plane
wave solutions, hij = h̃ijeipx. As we already have done throughout this text, let us now
disregard the terms proportional to ∂a h̃ab and its derivatives, which vanish in our case.
We have

�h̃ij +
1
2 ηijkakb(k · ∂)�h̃ab +

+ 1
2 ∂i(k · ∂)2ka h̃ja +

1
2 ∂j(k · ∂)2ka h̃ia − kakb∂i∂j(k · ∂)h̃ab + (. . .) = 0. (9)
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Here, as well as in the following equations, the dots denote contributions to the
effective equations of motion, which do not depend on h̃ij and hence do not affect the
dispersion relations. Just as for consideration of the dimension-3 term (see the discussion
above and in [7]), we can assume h̃ij to have two polarization states, given by h̃11 = −h̃22 =

T and h̃12 = h̃21 = S. In this case, the dispersion relations are again the usual ones E2 = ~p2,
for~k either parallel or orthogonal to the wave vector. The same conclusion is valid for a
generic direction of~k, since our plane wave depends on t and z = x3 only, and the terms in
the second line of the equation above will not modify the dispersion relations for physical
components h11,12,22; here we are reminded that all other components of hµν do not describe
physical degrees of freedom and hence can be set to zero. We conclude that the presence of
higher-derivative LV terms implies the arising of the unique dispersion relation E2 = ~p2.

We can continue by studying the remaining terms from table VI in [9]. The next
operator to study is the dimension-6 one Dκ DλRρσµν, i.e., there is one more partial deriva-
tive compared with the previous term, and we can use the relation δ(Dκ DλRρ

σµν) =

δΓρ
κτ∂λRτ

σµν + Γρ
κτ∂λδRτ

σµν + O(h3). Similar to the above calculations, we can also decom-

pose the dimension-6 coefficient in the aether-like form (
^
k
(6)
D )ρσµνκλ = kµkλ(kρkκηνσ −

kσkαηκρ + kκkσηνρ − kκkρηνσ). In this case, as we would expect, the equation of motion
contains an additive term involving one more derivative and one more degree of the
momentum. Explicitly, this fourth-derivative term looks like:

G(6)
αβ = 1

4

(
1
2 ηαβkκkρ(k · ∂)2�hρκ + kαkβ∂κ∂ρ(k · ∂)2hκρ + kµ∂α(k · ∂)3hβµ −

−kκkρ∂β∂α(k · ∂)2hρκ − kβ∂ρ(k · ∂)3hαρ + (α↔ β)
)

. (10)

Equation (10) demonstrates the arising of additional terms in the equation of motion
derived from the Lagrangian in Equation (2), and in the sector of the physical components
it takes the form:

�h̃ij +
1
2 ηijkakb(k · ∂)2�h̃ab +

+ 1
2 ka∂i(k · ∂)3h̃ja − kakb∂i∂j(k · ∂)2h̃ab +

1
2 ka∂j(k · ∂)3h̃ia + (. . .) = 0. (11)

In the same way as above, we substitute plane wave solutions into the above equation.
As in the dimension-5 term, if h̃ij has two polarization states, we do not find any additional
term in the dispersion relation and again have E2 = ~p2. So, either for ~k parallel or
orthogonal to the wave vector ~p, we arrive at the usual dispersion relation.

It remains for us to study the last dimension-6 term (
^
k
(6)
R )αβγδµνζλRαβγδRµνζλ from

table VI of [9]. It is also possible to decompose this coefficient in the aether-like form

(
^
k
(6)
R )αβγδµνζλ = kαkβkγ(kλkνkσηζµ− kλkµkσηζν + kζkµkσηλν− kζ kνkσηλµ). This term leads

to the following additive term to the modified Einstein tensor:

G(6)
αβ = (k · ∂)3kλk2(∂αhλβ)− (k · ∂)2kλkζ k2∂α∂βhλζ − (k · ∂)2kλkαk2�hλβ +

+(k · ∂)k2kλkζkα∂β�hλζ + (α↔ β) (12)

Now the equation of motion is given by

�h̃ij − 2(k · ∂)2k2klki�h̃l j + 2(k · ∂)k2klkmki∂j�h̃lm −
−2(k · ∂)2k2klkm∂j∂i h̃lm + 2(k · ∂)3k2kl∂i h̃l j + (i↔ j) + (. . .) = 0 (13)

In this case, if k is a space-like vector, parallel or orthogonal to the wave vector, the
dispersion relations are again the usual ones E2 = ~p2.
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3. Dispersion Relations for Linearized Gauge-Invariant LV Terms

Now, let us present another approach to the study of dispersion relations in linearized
gravity. In this case we start with the quadratic action instead of the full-fledged one, but
assume its invariance under the gauge transformations of the metric fluctuation hµν of the
usual form

δhµν = ∂µξν + ∂νξµ, (14)

where ξm is a parameter of transformations.
Let us find fourth-order linearized gauge-invariant terms that are, at the same time,

being constructed on the base of the Einstein tensors in order to guarantee the gauge
invariance, and can be expressed in terms of the Ricci tensor and the scalar curvature.

To do this, we note that the linearized Einstein equations look like

Qµν =
δSFP
δhµν

= −1
2
(∂λ∂µhλν + ∂λ∂νhλµ) +

1
2

ηµν∂λ∂ρhλρ +
1
2

∂µ∂νh +
1
2
�hµν −

− 1
2

ηµν�h = 0. (15)

It is evident, and easy to check, that these equations are gauge invariant, δQµν = 0,
under (14). Hence, we can define the CPT-even gauge-invariant action with only fourth
derivatives:

L f our =
1
2

bµQµνbλQλν, (16)

where Qµν = −(Rµν − 1
2 Rgµν) and this implies

L f our =
1
2

bµ(Rµν − 1
2

Rgµν)bλ(Rλν −
1
2

Rgλν), (17)

where we take only linear terms in h as in Equation (15).
We note that this action differs from the one considered in [22], which involved

contraction of Riemann tensors rather than Ricci tensors used in our case. A four-derivative
Lorentz-breaking term like this was considered in [23] in the context of electrodynamics.

Similarly, in the CPT-odd case, we have

Lodd =
1
2

εαβγδbαbµQµβ∂γbνQνδ. (18)

These modified terms should be added to the usual Lagrangian in Equation (2) for the
linearized gravity (2).

As in the previous section, our aim consists of searching for unusual dispersion
relations. Let us first calculate the ingredients of Qµν with the use of the decomposition
(1). We have h = h00 − hijδij = n− 2φ− χ and ∂λ∂ρhλρ = −2∇2ṅL +∇2χ + n̈. Then, we
define ∂λ∂µhλν + ∂λ∂νhλµ ≡ Pµν. We have

P00 = 2h00 − 2∂i ḣi0 = 2(n̈−∇2ṅL); (19)

P0i = ḧ0i − ∂j ḣji + ∂i ḣ00 − ∂i∂jhj0 =

= n̈iT + ∂in̈L − ∂iχ̇ + ∂iṅ− ∂i∇2nL;

Pij = ∂i ḣ0j + ∂j ḣ0i − ∂i∂khkj − ∂j∂khki =

= ∂iṅjT + ∂jṅiT + 2∂i∂jnL − 2∂i∂jχ +∇2(∂iξ jT + ∂jξiT).
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We see that none of these terms involve the physical h̃ij components, they only enter
the 1

2�hµν term of Qµν. Hence we see that one has

bµQµν =
1
2

bi�h̃ijδν
j + (. . .), (20)

where the dots denote the physically irrelevant components; that is, those other than h̃ij.
In this case some of them can acquire dynamics but it is common for higher-derivative
theories, see, e.g., [24]. It is important to emphasize that, to have a nontrivial impact, the
Lorentz-breaking vector bµ should have an essential space-like part that is only contracted
to h̃ij. As a result, the Lorentz-breaking term (16) after integration by parts takes the form

L f our =
1
2

bibk h̃ij�2h̃kj + (. . .). (21)

It remains for us to study the dispersion relation for the Lagrangian given by the sum
of (3) and (21), which, in the relevant sector, yields

L f ree = −
1
4

h̃ij�h̃ij +
1
2

bibk h̃ij�2h̃kj + (. . .). (22)

The corresponding equation of motion is

−1
2
�h̃ij + bibk�2h̃kj = (−1

2
�δk

i +�2bkbi)h̃kj + (. . .) = 0. (23)

As done previously, we can consider that there are only two polarization states. We
see that here there are two situations: (i) one has simply �h̃ij = 0, which is the usual
Lorentz-invariant situation, where the dispersion relations are the usual ones E2 = ~p2;
(ii) (δk

i − 2�bkbi)h̃kj = 0, which either requires the bi vector to be directed along the wave
propagation direction or, in the Fourier representation, requires det(δa

i + 2p2babi) = 0,
which enforces ba to be related with the wave vector p, which is clearly senseless except for
degenerated cases.

It is interesting to compare this situation with the explicitly CPT-breaking case where
the quadratic Lagrangian is a sum of the usual Lorentz-invariant expression (2) and the
CPT-odd term (18), which involves five derivatives. In the same way, we concentrate on
studying the dynamics of h̃ij. Therefore, we have a sum of the second-order term (3) and
the fifth-order term

L5 =
1
8

εαβγδbαbi�h̃ijδ
β
j ∂γbk�h̃klδδ

l =
1
8

εαjγlbαbi�h̃ij∂γbk�h̃kl + (. . .), (24)

arising from (18). We see that the Lorentz-breaking vector should have a nontrivial space-
like part. If it is purely space-like, we have after integration by parts

L5 = −1
8

εmjlbmbibk h̃ij�2 ˙̃hkl + (. . .), (25)

whose corresponding equation of motion is

−1
2
�h̃ij −

1
4

εmjlbmbibk�
2 ˙̃hkl + (. . .) = 0. (26)

It is clear that this equation can be rewritten in the form �Πkl
ij h̃kl = 0, hence it is

compatible with the usual Lorentz-invariant plane wave solutions satisfying the usual
equation �h̃ij = 0. As in the previous case, one can have only b3 6= 0 due to there being
only two polarization states. In this case, the equation above will be identically satisfied.
Therefore, we see that due to the higher-derivative modes, there is no essential difference
between the propagation of waves in CPT-even and CPT-odd cases.
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We can introduce more gauge-invariant terms considering the projection-like operator

Πµν = ηµν�− ∂µ∂ν, (27)

so that ΠµνΠνλ = �Πµ
α . Then, we consider Πµνhνα. Its gauge transformation is

δΠµνhνα = ∂α�ξµ − ∂α∂µ(∂ · ξ). (28)

Afterwards, we construct the vector

Kα = bµΠµνhνα, (29)

whose gauge transformation is

δKα = ∂α[�(b · ξ)− (b · ∂)(∂ · ξ)] = ∂αΣ[ξ]. (30)

Therefore, the Lagrangian

Leven =
1
2

KαΠαβKβ, (31)

will be gauge-invariant since its variation is proportional to ΠαβδKβ = 0. So, we proceed
to constructing the higher-derivative aether-like Lorentz-breaking gauge-invariant action
for linearized gravity.

We note that one can construct a CPT-odd gauge-invariant contribution within this
prescription as well; this looks like

L′odd = εαβγδbαKβ∂γKδ. (32)

We note that Leven is of the sixth-order in derivatives and Lodd,L′odd is of the fifth-order.
Actually, Lodd (18) and L′odd (32) differ only by irrelevant additive terms that vanish if we set
all non-physical fields (i.e., all fields other than the transverse-traceless h̃ij) equal to zero. In
principle, this is possible due to the gauge symmetry of these Lagrangians, which restricts
physical degrees of freedom to h̃ij. Therefore, (32) and (18) are physically equivalent. We
note that these orders in derivatives are very high, corresponding to dimension-7 and -8
operators (to the best of our knowledge, such orders, except of essentially nonlocal models,
have been studied only within the very specific context of Rashba coupling [25,26]; we
note that in [9], the table includes only operators with dimensions up to 6) and, moreover,
they cannot be decreased without introduction of undesired nonlocal terms involving
negative degrees of �, which are rather dangerous from the unitarity/causality viewpoint.
However, the corresponding full-fledged contributions to the action expressed in terms of
the Riemann curvature tensor and its covariant derivatives are not known, and searching
for them is a nontrivial problem.

4. Summary

We have discussed the modification of dispersion relations for various LV extensions
of gravity and corresponding changes in the plane wave solutions. We demonstrated
explicitly that only in certain cases do the dispersion relations turn out to be essentially
different from Lorentz invariant ones. We showed that the dispersion relations continue to
be the usual ones for a specific class of Lorentz-breaking extensions of the gravity; namely,
the aether-like ones characterized by one constant vector. Clearly, this establishes questions
about the form of dispersion relations in more involved cases. Certainly, gauge-breaking
LV extensions of gravity, as discussed in [8], require more detailed studies. In particular,
it is interesting to construct more involved LV extensions of gravity, which could display
unusual dispersion relations whose possibility has been demonstrated in [27].

Another result of our study is the formulation of a prescription allowing for generating
gauge-invariant LV extensions of the Einstein–Hilbert Lagrangian for a weak field with any
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arbitrary number of derivatives. We expect that such extensions will be useful for studying
certain physical phenomena.

A possible extension of this paper could involve studies of plane wave solutions
on a nontrivial curved background. Another possible development of this study could
involve detailed consideration of massive LV gravity, while up to now most studies of
massive gravity have been devoted to the Lorentz-invariant case, see [28] and references
therein. In addition, it is natural to expect that nontrivial phenomena taking place within
wave propagation as discussed in this paper can be used in future gravitational wave
observations in order to find LV extensions of gravity, which could be more appropriate
from the experimental viewpoint.
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