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Abstract: In the presence of a thermal medium or an external electro-magnetic field, neutrinos can
interact with photon, mediated by the corresponding charged leptons (real or virtual). The effect of a
medium or an electromagnetic field is two-fold—to induce an effective νγ vertex and to modify the
dispersion relations of all the particles involved to render the processes kinematically viable. It has
already been noted that, in a medium, neutrinos acquire an effective charge, which in the standard
model of electroweak interaction comes from the vector type vertex of weak interaction. On the
other hand, in a magnetized plasma, the axial vector part also starts contributing to the effective
charge of a neutrino. This contribution corresponding to the axial vector part in the interaction
Lagrangian is denoted as the axial polarisation tensor. In this note, we outline the calculation of
the axial polarization tensor to odd and even powers in eB. We further show its gauge invariance
properties. Finally, we infer upon the zero external momentum limit of this axial polarisation tensor.

Keywords: neutrino; finite temperature field theory; magnetic field; Schwinger proper
time representation

1. Introduction

Neutrinos are of significant importance because of the observable imprints they leave
on astrophysical or cosmological observables through their interactions. These imprints are
related to their mass, charge, dipole moment, etc. These are generally unexplainable through
a standard model of particle physics. In a cosmological context, they play a significant role
in the synthesis of primordial light elements [1,2], modifying the power spectrum of cosmic
microwave background (CMB) anisotropies [3] and in the large scale clustering of matter
in the universe [4]. They contribute to many physical processes involving electromagnetic
interactions (many of them involve astrophysical situations [5–23]), a list of them and the
origin of the same can be found in [24–95]. In this note, we would rather consider the
astrophysical part of it.

To understand neutrino-astrophysics, we need to understand the physics of the models
that dictate neutrino behaviour. To have predictable power, such models should be re-
normalizable .To have a re-normalizable model of the physics of elementary particles,
the tree level γ− ν interactions are protected from being realised in nature. Thus, at the
tree level, neutrinos do not couple to photon in the standard model of particle physics,
and this coupling can only take place at a loop level, mediated by the fermions and
gauge bosons. This coupling can give birth to off-shell photons only, since, for on-shell
particles, the processes like ν→ νγ and γ→ νν̄ are restrained kinematically. Only in the
presence of a medium can all the particles be on shell as there the dispersion relation of
the photon changes, giving the much required phase space for the reactions. Intuitively,
when a neutrino moves inside a thermal medium composed of electrons and positrons,
they interact with these background particles. The background electrons and positrons
themselves have interaction with the electromagnetic fields, and this fact gives rise to
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an effective coupling of the neutrinos to the photons. Under these circumstances, the
neutrinos may acquire an “effective electric charge” through which they interact with the
ambient plasma.

Finite neutrino charge at the tree level is however possible with the introduction of
gauge bosons with an extra U’(1) symmetry [86–88]. As a result, neutrinos can acquire an
intrinsic charge and turn out to be a Dirac particle.

Whatever may be the source of electric charge of neutrino (induced or intrinsic),
neutrino–photon interactions have many far reaching consequences in this universe. To pro-
vide an example, because of in-medium neutrino–photon interaction, the supernova explo-
sions are realized in nature. It is highly possible that the neutrinos actually dump a fraction
of their energy inside an exploding star during its stellar evolution. For instance, during a
type II supernovae collapse [12], neutrinos are produced deep inside the proto-neutron star
surge out, carrying an effective energy whose order of magnitude estimate is ∼1052 erg/s.
It is conjectured that the neutrinos deposit some fraction (ranging between 1 to 10%) of
its total energy during the explosion through different kinds of neutrino electromagnetic
interactions, e.g, γν→ γν, ν→ νγ, νν̄→ e+e−, to name a few. It is important to note here
that all of these processes are of order G2

F (where GF is the four Fermi coupling constant).
However, the amount of energy dumped by these mechanisms to the mantle of the proto-
neutron star seems to be barely sufficient to blow the outer part of the same. The celebrated
paper of [15] could account for 1050 erg of energy release by hydrodynamic processes
taking place in a nuclear media. The supernova shock wave was found to get stalled in
respective computer simulations. Hence, neutrino-mediated processes were invoked so
as to revive the shock wave, so that there can be a delayed shock revival. However, this
attempt was not entirely successful [16].

However, inside a star, a nonzero magnetic field would be present owing to different
hydrodynamics induced dynamo mechanisms. It is usually conjectured that this magnetic
field of the supernova-progenitor—when compressed to the size of the neutron star—
during the Super Nova (SN) type II explosion, its strength can reach up to B ∼ m2

e or
more in most of the regions of the nascent proto-neutron star. This follows due to the
conservation of surface magnetic field of the SN precursor. The symbol m denotes the
mass of electron. In addition, in the rest of this paper, we would refer to field strengths
of this magnitude as critical field strength Bc = 4.41× 1013G. Given the possibility of
strong eB field generation in proto-neutron star, it is worth investigating their role of ν− γ
interaction in a magnetized media. This would help in understanding if the magnetic field
induced effects can account for the release of 1053 erg of energy in a super nova type II
explosion—that is, to find out if the strong magnetic field induced contributions can exceed
the same due to unmagnetized ones by the desired orders of magnitude. This happens to
be one of our objectives of this work.

Apart from this, there are several high energy processes in astrophysics that are in
need of some explanation for asymmetric energy transfer. This happens to be an extra
motivation to this investigation. To provide an example, during gamma ray burst, a prompt
gamma ray flash from the optically thick environment of the progenitor has been noticed in
many GRB events and are found to be anisotropic in their distribution in space and too fast
in their temporal appearance to point to the existence of a class of feebly charged weakly
interacting particles at the source [17].

Other examples where explanations using asymmetric γ− ν processes can be useful—
which are explosions in magnetars [18] accompanied by associated jets [20] and the presence
of unexplained anomalous drift- velocity that newly born pulsars are found to be accompa-
nied with [23]. Ideally, in a symmetric SN explosion, the associated newly born neutron
star should be stationary. However, they are seen to be born with some velocity—usually
referred to in the literature as pulsar kicks. Since the presence of a B field breaks the
rotational symmetry for a system, it thus makes a good choice to look for signatures of the
same while studying neutrino electromagnetic interactions in a magnetized media.



Galaxies 2021, 9, 22 3 of 24

1.1. Intrinsic Charge of Neutrino

We have introduced the origin of neutrino charge in the Introduction. They happen
to be (i) intrinsic (eν

int) in their origin and can be accounted for from studies beyond the
standard model of elementary particle physics, (ii) medium induced neutrino effective
charge (eνm

e f f ) owing its existence to in-medium effects upon standard model left-handed
neutrinos. The second one gets contributions to itself coming from the vector vertex
of neutrino- W±, Z interaction (denoted as eν

e f f ), and the axial vertex of ν interaction
(denoted as eνa

e f f ). The second one is realised in nature only in the presence of magnetized
matter (medium).

1.2. Induced Charge of Neutrino

In this paper, we concentrate upon the effective neutrino photon interaction vertex
coming from the axial vector part of the interaction. From there, we estimate the effective
charge of the neutrino (in a magnetised medium). We name the axial contribution in the
effective neutrino photon Lagrangian as the axial polarisation tensor Π5

µν, which we will
define in the next section. We discuss the physical situations where the axial polarisation
tensor arises, then show how it affects the physical processes. The effective charge of the
neutrino has been calculated previously by many authors, the induced charge calculated
in the references [82–85] and the intrinsic charge in [86–93]. Any discussion about the
origin and magnitude of a very fundamental entity–intrinsic neutrino charge eν

int, both
experimental and theoretical, deserves special attention. Since that is not the main focus of
our work, we will refrain from any such attempt here, except attempts to compare their
magnitude obtained in various terrestrial laboratory conditions with that of eν

e f f obtained
for different background media. This particular attempt is made to keep eν

int free from
medium induced contributions. At the end, we would like to mention that any analysis
on the estimates of eνa

e f f from experimental and astrophysical observations is yet to be
performed to the best of our knowledge and understanding.

The plan of the paper is as follows. We start with Section 2 which deals with the
formalism through which the physical importance of Π5

µν is appreciated. In Section 3,
the general form factor analysis of “axial polarisation tensor” on the basis of symmetry
arguments is provided. In Section 4, we show the fermion propagator in a magnetised
medium, and, using the same, explicitly write down Π5

µν in the rest frame of the medium.
In the next section, i.e., Section 5, we show the formal proof of gauge invariance of Π5

µν.
In Section 6, we calculate the effective electric charge from the expression of the axial
polarisation tensor odd in eB even in µ as well as even in eB odd in µ. In Section 7,
we discuss our results and conclude by touching upon the physical relevance of our
work. Section 8 covers an outlook on future perspectives. In the Appendix A, we outline
the construction of the basis tensors for Π5

µν from 4-vectors, having appropriate CPT
transformation properties. We follow the natural system of units in which h̄ = c = kB = 1.

2. Formalism

In this work, we consider neutrino momenta that are small compared to the masses of
the W and Z bosons. We can, therefore, neglect the momentum dependence in the W and
Z propagators, which is justified if we are performing a calculation to the leading order
in the Fermi constant, GF. In this limit, four-fermion interaction is given by the following
effective Lagrangian:

Leff = −
1√
2

GFlνγµ(1− γ5)lν f γµ(gV + gAγ5) f (1)

where lν and f are the neutrino and the corresponding lepton fields, respectively. In
Equation (1), gV and gA are the weak vector and axial vector coupling strengths, respec-
tively. For electron Z boson vertex,
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gV = 1− (1− 4 sin2 θW)/2 (2)

gA = −1 + 1/2 (3)

where the first terms in gV and gA are the contributions from the W exchange diagram
and the second one from the Z exchange diagram. Here, θW is the Weinberg angle (where
θW = 28.7◦) and GF is the four Fermi coupling constant (GF = (1.026± 0.001)× 10−5m−2

p ,
where mp is the proton mass).

With this interaction Lagrangian, we can write down the matrix element for the
Cherenkov amplitude as

M = − GF√
2e

Zεν l̄νγµ(1− γ5)lν(gVΠµν + gAΠ5
µν) (4)

where εν is the photon polarisation tensor, and Z is the wave function renormalisation
factor inside a medium. The term Πµν is defined as

iΠµν = (−ie)2(−1)
∫ d4 p

(2π)4 Tr
[
γµiS(p)γνiS(p′)

]
(5)

which looks exactly like the photon polarisation tensor, but doesn’t have the same inter-
pretation here. The symbol e in Equation (5) represents the coupling constant for the U(1)
gauge field (e =

√
4π/137). The momentum labels of the propagators can be understood

from the corresponding Feynman diagram (Figure 1). Henceforth, we would call it the
polarisation tensor. Π5

µν is defined as

iΠ5
µν = e2

∫ d4 p
(2π)4 Tr

[
γµγ5iS(p)γνiS(p′)

]
(6)

which we call the axial polarisation tensor. Both the polarisation tensor and the axial
polarisation tensor are obtained by calculating the Feynman diagram given in Figure 1
drawn in a four-Fermi-limit.

µ

q
γ

ν

k̃ = k + q

k

p

f l
ν

l
ν

f

p+q

Loop Induced Neutrino Photon Vertex

Figure 1. One-loop diagram for the effective electromagnetic vertex of the neutrino in the limit of
infinitely heavy W and Z masses.

The off-shell electromagnetic vertex function Γν is defined in such a way that, for on-
shell neutrinos, the ννγ amplitude is given by:

M = −iū(q′)Γνu(q)Aν(k) (7)
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where k is the photon momentum. Here, u(q) is the the neutrino spinor and Aν stands for
the electromagnetic vector potential. In general, Γν would depend on k and the characteris-
tics of the medium. With our effective Lagrangian, the vertex Γν is given by

Γν = − 1√
2e

GFγµ(1− γ5) (gVΠµν + gAΠ5
µν) . (8)

Charge radius of a neutrino can be obtained from the vertex function given by
Equation (8). This observable in general should be gauge independent, UV finite and
a renormalisation group invariant.

On the other hand, the neutrino charge radius can also be estimated using an effective
field theory approach. It was performed in [95] from the coefficients of a four fermion
effective field theory that was constructed from the current–current co-relators involving
neutrinos and other standard model fermions, after integrating out the heavy degrees of
freedom. In this approach, the energy scale of the coefficients are extrapolated to the mass
of the electron to relate them to the charge radius of neutrino. The effective charge we are
evaluating is related to the charge radius. Given the expression for one, it is possible to
find the same for the other, from the expression of the previous one. The physical situation
considered in this work is substantially different from that of [95] because of the presence
of magnetic field and the medium. They belong to two different paradigms so we will not
deal with it here any further.

The effective charge of the neutrinos is defined in terms of the vertex function by the
following relation [82,83]:

eeff =
1

2q0
ū(q) Γ0(k0 = 0, k→ 0) u(q) . (9)

For massless Weyl spinors, this definition can be cast into the form:

eeff =
1

2q0
Tr
[
Γ0(k0 = 0, k→ 0) (1 + λγ5)/q

]
, (10)

where λ = ±1 is the helicity of the fermions in the external line. Since we do not con-
sider the right-handed neutrino, we therefore choose λ = +1. Before going to estimate
neutrino-charge in various situations, we would like to state that this induced neutrino
charge vanishes in vacuum. This statement is true in general for any number of physical
dimensions ’d’ and in any gauge parameter [96,97].

While discussing about Π5
µν, it should be remembered that it has two vertices, one is

axial vector vertex and the other one is a vector vertex; The current conservation relation
for the electromagnetic vertex is obeyed in the form,

kνΠ5
µν = 0 (11)

which also happens to be the current conservation condition.
In order to calculate the Cherenkov amplitude or the effective charge of the neutrinos

inside a medium, we have to calculate Π5
µν. The formalism thus discussed is a general one,

and we extend the calculations previously done based on this formalism to the case where
we have a constant background magnetic field in addition to a thermal medium. In doing
so, we give the full expression of Π5

µν in a magnetised medium and explicitly show its
gauge invariance. We also comment on the effective charge contribution from the axial
polarisation part.

Discussing about the effective charge of the neutrinos in a medium, the way we
have done, it should be mentioned that, although it is interesting to find it theoretically,
it is not the “charge” with which the neutrinos couple with a magnetic field. From the
definition of the electromagnetic vertex as given in Equation (7) and the definition of charge
in Equation (9), it is clear that we are interested to find the coupling of the photon field
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with ūΓ0u and not ūΓiu. The magnetic interaction will come from the term ū(q)Γiu(q)Ai,
but we will see at the end of the calculation that no Γi exists in the limit k0 → 0,~k → 0,
whereby we cannot speak of any possible interaction of the neutrinos with the external
static uniform magnetic field.

3. General Analysis

We start this section with a discussion on the possible tensor structure and form factor
analysis of Π5

µν(k), based on the symmetry of the interaction. To begin with, we note
that Π5

µν(k) in the vacuum should vanish. This follows from the following arguments. In
vacuum, the available vectors and tensors at hand are the following:

kµ, gµν and εµνλσ. (12)

The two point axial-vector correlation function Π5
µν can be expanded in a basis, con-

structed out of tensors gµν, εµνλσ, and vector kλ. Given the parity structure of the theory, it
is impossible to construct a tensor of rank two using gµν and kµ. Thus, the only available
tensor (with the right parity structure) we have at hand is εµνλσ. The other vector needed to
make it a tensor of rank two is kλ. As we contract εµνλσ with kλ, kσ, since εµνλσ is completely
antisymmetric tensor of rank four, the corresponding term vanishes.

On the other hand, in a medium, we have an additional vector uµ, i.e., the velocity of
the centre of mass of the medium. Therefore, the polarisation tensor can be expanded in
terms of form factors along with the new tensors constructed out of uµ and the ones we
already had in the absence of a medium as

Πµν(k) = ΠT Tµν + ΠL Lµν . (13)

Here,

Tµν = g̃µν − Lµν (14)

Lµν =
ũµũν

ũ2 (15)

with

g̃µν = gµν −
kµkν

k2 (16)

ũµ = g̃µρuρ . (17)

In the rest frame of the medium, the four velocity is given by uµ = (1, 0, 0, 0). It is
easy to see that the longitudinal projector Lµν is not zero in the limit k0 = 0,~k→ 0 and ΠL
is also not zero in the above-mentioned limit. This fact is responsible for giving nonzero
contribution to the effective charge of neutrinos.

It has already been mentioned that, in a medium, we have another extra four vector
uµ and hence it is possible to construct the axial polarisation tensor of rank two, out of
εµναβ, uµ, kµ, i.e, εµναβuαkβ that would verify the Ward identity for the two point function.
An explicit calculation of Π5

µν(k) verifies the tensor structure of it as predicted here. It is
worth noting that this contributes to the Cherenkov amplitude, but not to the effective
electric charge of the neutrinos since, for charge calculation, we have to put the index ν = 0.
In the rest frame, only u0 exists that forces the totally antisymmetric tensor to vanish.

In a constant background magnetic field in addition to the ones mentioned in Equation (12),
one has the freedom of having other extra vectors and tensors (to first order in field
strength), such as

Fµν, F̃µν (18)
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along with

Ē(1)
µ = kλFλµ, Ē(2)

µ = kλ F̃λµ. (19)

Explicit evaluation of the axial polarisation tensor, in a constant background magnetic
field, is (however, the metric used by the authors in references mentioned is different from
that of us) [98,99],

Π5
µν(k) =

e3

(4π)2m2

[
− C‖kν‖(F̃k)µ + C⊥

{
kν⊥(kF̃)µ + kµ⊥(kF̃)ν − k2

⊥ F̃µν

}]
, (20)

where F̃µν = 1
2 εµνρσFρσ, F12 = −F21 = B and (kF̃)ν = F̃µνkµ. According to the notation

used in Equation (20), k‖ = (k0, 0, 0, k3) and k⊥ = (0, kx, ky, 0). Lastly, C‖ and C⊥ are
functions of B, k2

‖, k2
⊥. It is easy to note that, in consonance with the general parity structure

of the theory, the basis tensors for this case are F̃µν, Ē(2)
µ kν⊥ and Ē(2)

ν kµ⊥ . The most general
tensorial structure including medium and field effects can be obtained using the four-
vectors provided in the Appendix A of this text.

We would like to digress a little and point out that the polarization operator Π5
µν given

in Equation (20) can be obtained from a fermion triangle diagram having one axial current
and two vector currents when one of the vector current carries the momentum that is ultra
soft. It has been shown in Ref. [100] that this diagram won’t admit any radiative corrections
due to various non-renormalisation theorems.

4. One Loop Calculation of the Axial Polarisation Tensor

Since we investigate the case with a background magnetic field, without any loss of
generality, it can be taken to be in the z-direction. We denote the magnitude of this field by
B. Ignoring first the presence of the medium, the electron propagator in such a field can be
written down following Schwinger’s approach [101–103]:

iSV
B (p) =

∫ ∞

0
ds eΦ(p,s) G(p, s) (21)

where Φ and G are as given below:

Φ(p, s) ≡ is
(

p2
‖ −

tan(eBs)
eBs

p2
⊥ −m2

)
− ε|s| (22)

G(p, s) ≡ eieBsσz

cos(eBs)

(
/p‖ +

e−ieBsσz

cos(eBs)
/p⊥ + m

)
=
[(

1 + iσz tan(eBs)
)
(/p‖ + m) + sec2(eBs)/p⊥

]
, (23)

where

σz = iγ1γ2 = −γ0γ3γ5 (24)

and we have used

eieBsσz = cos(eBs) + iσz sin(eBs) (25)
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and m is electron mass. To make the expressions transparent, we specify our convention in
the following way:

/p‖ = γ0 p0 + γ3 p3

/p⊥ = γ1 p1 + γ2 p2

p2
‖ = p2

0 − p2
3

p2
⊥ = p2

1 + p2
2 .

Of course, in the range of integration indicated in Equation (21), s is never negative
and hence |s| equals s. In the presence of a background medium, the above propagator is
now modified to [104]:

iS(p) = iSV
B (p) + Sη

B(p) (26)

where

Sη
B(p) ≡ −ηF(p)

[
iSV

B (p)− iSV
B (p)

]
(27)

and

SV
B (p) ≡ γ0SV†

B (p)γ0 (28)

for a fermion propagator, such that

Sη
B(p) = −ηF(p)

∫ ∞

−∞
ds eΦ(p,s)G(p, s) . (29)

Here, ηF(p) contains the distribution function for the fermions and the anti-fermions:

ηF(p) = Θ(p · u) fF(p, µ, β) + Θ(−p · u) fF(−p,−µ, β) , (30)

fF denotes the Fermi–Dirac distribution function:

fF(p, µ, β) =
1

eβ(p·u−µ) + 1
(31)

and Θ is the step function given by:

Θ(x) =

{
1, for x > 0
0, for x < 0 .

Here, the centre of mass four velocity of the medium is u, in the rest frame, it looks
like (in units h̄ = c = kB = 1.) uµ = (1, 0, 0, 0), β = 1

T , when T is the temperature and µ is
the chemical potential.

4.1. The Expression for Π5
µν in Thermal Medium and in the Presence of a Background Uniform

Magnetic Field

The axial polarisation tensor Π5
µν is expressed as

iΠ5
µν = (−ie)2(−1)

∫ d4 p
(2π)4 Tr

[
γµγ5iS(p)γνiS(p′)

]
. (32)
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Leaving out the vacuum contribution (the contribution devoid of any thermal effects)
and the contributions with two thermal factors, we are left with

iΠ5
µν(k) = (−ie)2(−1)

∫ d4 p
(2π)4 Tr

[
γµγ5Sη

B(p)γνiSV
B (p′) + γµγ5iSV

B (p)γνSη
B(p′)

]
. (33)

The vacuum part has already been done in [98] and the thermal part is related with
pure absorption effects in the medium, which we are leaving out for the time being.

Using the form of the fermion propagator in a magnetic field in the presence of a
thermal medium, as given by expressions (21) and (29), we get

iΠ5
µν(k) = −(−ie)2(−1)

∫ d4 p
(2π)4

∫ ∞

−∞
ds eΦ(p,s)

×
∫ ∞

0
ds′eΦ(p′ ,s′)[Tr

[
γµγ5G(p, s)γνG(p′, s′)

]
ηF(p)

+ Tr
[
γµγ5G(−p′, s′)γνG(−p, s)

]
ηF(−p)

]
= −(−ie)2(−1)

∫ d4 p
(2π)4

∫ ∞

−∞
ds eΦ(p,s)

∫ ∞

0
ds′ eΦ(p′ ,s′)Rµν(p, p′, s, s′), (34)

where Rµν(p, p′, s, s′) contains the trace part.

4.2. Rµν to Even and Odd Orders in the Magnetic Field

We calculate Rµν(p, p′, s, s′) to even and odd orders in the external magnetic field

and call them R(e)
µν and R(o)

µν . The reason for doing this is that the two contributions have
different properties as far as their dependence on medium is concerned, a topic which will
be discussed in the concluding section. Calculating the traces, we obtain

R(e)
µν = 4iη−(p)

[
εµνα‖β‖ pα‖ p′β‖(1 + tan(eBs) tan(eBs′))

+ εµνα‖β⊥ pα‖ p′β⊥ sec2(eBs′) + εµνα⊥β‖ pα⊥ p′β‖ sec2(eBs)

+ εµνα⊥β⊥ pα⊥ p′β⊥ sec2(eBs) sec2(eBs′)
]

(35)

and

R(o)
µν = 4iη+(p)

[
m2εµν12(tan(eBs) + tan(eBs′))

+
{
(gµα‖ pα̃‖ p′ν‖ − gµν p′α‖ pα̃‖ + gνα‖ pα̃‖ p′µ‖)

+ (gµα‖ pα̃‖ p′ν⊥ + gνα‖ pα̃‖ p′µ⊥) sec2(eBs′)
}

tan(eBs)

+
{
(gµα‖ p′α̃‖ pν‖ − gµν pα‖ p′α̃‖ + gνα‖ p′α̃‖ pµ‖)

+ (gµα‖ p′α̃‖ pν⊥ + gνα‖ p′α̃‖ pµ⊥) sec2(eBs)
}

tan(eBs′)
]
. (36)

Here,

η+(p) = ηF(p) + ηF(−p) (37)

η−(p) = ηF(p)− ηF(−p) (38)

which contain the information about the distribution functions. In addition, it should be
noted that, in our convention,

aµbµ̃‖ = a0b3 + a3b0 .
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If we concentrate on the rest frame of the medium, then p · u = p0. Thus, the distribu-
tion function does not depend on the spatial components of p. In this case, we can write
the expressions of R(e)

µν and R(o)
µν using the relations derived earlier [105] inside the integral

sign, as

pβ⊥ ◦= − tan(eBs′)
tan(eBs) + tan(eBs′)

kβ⊥ (39)

p′β⊥ ◦=
tan(eBs)

tan(eBs) + tan(eBs′)
kβ⊥ (40)

p2
⊥
◦
=

1
tan(eBs) + tan(eBs′)

[
−ieB +

tan(eBs′)2

tan(eBs) + tan(eBs′)
k2
⊥

]
, (41)

p′2⊥
◦
=

1
tan(eBs) + tan(eBs′)

[
−ieB +

tan(eBs′)2

tan(eBs) + tan(eBs)
k2
⊥

]
, (42)

m2 ◦=

(
i

d
ds

+ (p2
‖ − sec2(eBs)p2

⊥)

)
(43)

and get

R(e)
µν
◦
= 4iη−(p0)

[
εµνα‖β‖ pα‖ p′β‖(1 + tan(eBs) tan(eBs′))

+ εµνα‖β⊥ pα‖ p′β⊥ sec2(eBs′) + εµνα⊥β‖ pα⊥ p′β‖ sec2(eBs)
]

(44)

and

R(o)
µν
◦
= 4iη+(p0)

[
−εµν12

{
sec2(eBs) tan2(eBs′)
tan(eBs) + tan(eBs′)

k2
⊥ + (k · p)‖(tan(eBs) + tan(eBs′))

}
+ 2εµ12α‖(p′ν‖ pα‖ tan(eBs) + pν‖ p′α‖ tan(eBs′))

+ gµα‖kν⊥

{
pα̃‖(tan(eBs)− tan(eBs′))− kα̃‖ sec2(eBs) tan2(eBs′)

tan(eBs) + tan(eBs′)

}
+ {gµν(p · k̃)‖ + gνα‖ pα̃‖kµ⊥}(tan(eBs)− tan(eBs′))

+ gνα‖k
α̃‖ pµ⊥ sec2(eBs) tan(eBs′)

]
. (45)

The ◦= symbol signifies that the above relations are not proper equations, and the equal-
ity holds only inside the momentum integrals in Equation (34).

5. Gauge Invariance

5.1. Gauge Invariance for Π5
µν to Even Orders in the External Field

The axial polarisation tensor even in the external field is given by

Π5(e)
µν = −(−ie)2(−1)

∫ d4 p
(2π)4

∫ ∞

−∞
ds eΦ(p,s)

∫ ∞

0
ds′ eΦ(p′ ,s′)R(e)

µν (p, p′, s, s′). (46)

Using Equation (44) in the rest frame of the medium, we have

R(e)
µν
◦
= 4iη−(p0)

[
εµνα‖β‖ pα‖ p′β‖(1 + tan(eBs) tan(eBs′))

+ εµνα‖β⊥ pα‖ p′β⊥ sec2(eBs′) + εµνα⊥β‖ pα⊥ p′β‖ sec2(eBs)
]
. (47)

Noting that it is possible to write

qα pα = qα‖ pα‖ + qα⊥ pα⊥ .
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Equation (47) can be written as

R(e)
µν
◦
= 4iη−(p0)

[
(εµναβ pα p′β − εµναβ⊥ pα p′β⊥ − εµνα⊥β pα⊥ p′β)(1 + tan(eBs) tan(eBs′))

+ εµναβ⊥ pα p′β⊥ sec2(eBs′) + εµνα⊥β pα⊥ p′β sec2(eBs)
]
. (48)

Here, throughout, we have omitted terms such as εµνα⊥β⊥ pα⊥ p′β⊥ , since, by the appli-
cation of Equation (39), we have

εµνα⊥β⊥ pα⊥ p′β⊥ = εµνα⊥β⊥ pα⊥ pβ⊥ + εµνα⊥β⊥ pα⊥kβ⊥

◦
= − tan(eBs′)

tan(eBs′) + tan(eBs′)
εµνα⊥β⊥kα⊥kβ⊥

which is zero. After rearranging the terms appearing in Equation (48), and by the applica-
tion of Equations (39) and (40), we arrive at the expression

R(e)
µν
◦
= 4iη−(p0)

[
εµναβ pαkβ(1 + tan(eBs) tan(eBs′))

+ εµναβ⊥kαkβ⊥ tan(eBs) tan(eBs′)
tan(eBs)− tan(eBs′)
tan(eBs) + tan(eBs′)

]
. (49)

Because of the presence of terms like εµναβkβ and εµναβ⊥kα if we contract R(e)
µν by kν,

it vanishes.

5.2. Gauge Invariance for Π5
µν to Odd Orders in the External Field

The axial polarisation tensor odd in the external field is given by

Π5(o)
µν = −(−ie)2(−1)

∫ d4 p
(2π)4

∫ ∞

−∞
ds eΦ(p,s)

∫ ∞

0
ds′ eΦ(p′ ,s′)R(o)

µν (p, p′, s, s′), (50)

where R(o)
µν (p, p′, s, s′) is given by Equation (45). The general gauge invariance condition in

this case

kνΠ5(o)
µν = 0 (51)

can always be written down in terms of the following two equations:

kνΠ5(o)
µ‖ν = 0 (52)

kνΠ5(o)
µ⊥ν = 0 (53)

where Π5(o)
µ‖ν is that part of Π5(o)

µν where the index µ can take the values 0 and 3 only. Similarly,

Π5(o)
µ⊥ν stands for the part of Π5(o)

µν , where µ can take the values 1 and 2 only. Π5(o)
µ‖ν contains

R(o)
µ‖ν(p, p′, s, s′), which, from Equation (45), is as follows:

R(o)
µ‖ν

◦
= 4iη+(p0)

[
−εµ‖ν12

{
sec2(eBs) tan2(eBs′)
tan(eBs) + tan(eBs′)

k2
⊥ + (k · p)‖(tan(eBs) + tan(eBs′))

}
+ 2εµ‖12α‖ (p′ν‖ pα‖ tan(eBs) + pν‖ p′α‖ tan(eBs′))

+ gµ‖α‖kν⊥

{
pα̃‖(tan(eBs)− tan(eBs′))− kα̃‖ sec2(eBs) tan2(eBs′)

tan(eBs) + tan(eBs′)

}
+ gµ‖ν(p · k̃)‖(tan(eBs)− tan(eBs′))

]
(54)
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and Π5(o)
µ⊥ν contains R(o)

µ⊥ν(p, p′, s, s′), which is

R(o)
µ⊥ν

◦
= 4iη+(p0)

[
{gµ⊥ν(p · k̃)‖ + gνα‖ pα̃‖kµ⊥}(tan(eBs)− tan(eBs′))

+ gνα‖k
α̃‖ pµ⊥ sec2(eBs) tan(eBs′)

]
. (55)

Equations (52) and (53) implt that one should have the following relations satisfied,

kν
∫ d4 p

(2π)4

∫ ∞

−∞
ds eΦ(p,s)

∫ ∞

0
ds′ eΦ(p′ ,s′) R(o)

µ⊥ν = 0 (56)

and

kν ·
∫ d4 p

(2π)4

∫ ∞

−∞
ds eΦ(p,s)

∫ ∞

0
ds′ eΦ(p′ ,s′) R(o)

µ‖ν = 0. (57)

Out of the two above equations, Equation (56) can be verified easily since

kνRµ⊥ν = 0. (58)

Now, we look at Equation (57). We explicitly consider the case µ‖ = 3 (the µ‖ = 0 case
leads to similar results). For µ‖ = 3,

kνR(o)
3ν
◦
= −p0

[
(p′ 2‖ −p2

‖)(tan(eBs)+tan(eBs′))−k2
⊥(tan(eBs)−tan(eBs′))

]
(4iη+(p0)). (59)

Apart from the small convergence factors,

i
eB
(
Φ(p, s) + Φ(p′, s′)

)
=
(

p′2‖ + p2
‖ − 2m2)ξ − (p′2‖ − p2

‖
)
ζ

− p′2⊥ tan(ξ − ζ)− p2
⊥ tan(ξ + ζ) (60)

where we have defined the parameters

ξ =
1
2

eB(s + s′)

ζ =
1
2

eB(s− s′) . (61)

From the last two equations, we can write

ieB d
dζ

eΦ(p,s)+Φ(p′ ,s′) = eΦ(p,s)+Φ(p′ ,s′)(p′2‖ − p2
‖ − p′2⊥ sec2(ξ − ζ) + p2

⊥ sec2(ξ + ζ)
)

(62)

which implies

p′ 2‖ − p2
‖ = ieB d

dξ
+
[

p′ 2⊥ sec2(eBs′)− p2
⊥ sec2(eBs)

]
. (63)

The equation above is valid in the sense that both sides of it actually act upon
eΦ̃(p,s,p′ ,s′), where

Φ̃(p, p′, s, s′) = Φ(p, s) + Φ(p′, s′). (64)
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From Equations (59) and (63), we have

kν R3 ν eΦ̃ ◦
= −4iη+(p0)p0

[
(p′ 2⊥ sec2(eBs)− p2

⊥ sec2(eBs))(tan(eBs) + tan(eBs′))

− k2
⊥(tan(eBs)− tan(eBs′)) + ieBp0(tan(eBs) + tan(eBs′))

d
dξ

]
eΦ̃. (65)

Now, using the the expressions for p2
⊥ and p′2⊥ from Equations (41) and (42), we

can write

kν R3 ν eΦ̃ ◦
= 4eBη+(p0)p0

[
(sec2(eBs)− sec2(eBs′)) + (tan(eBs) + tan(eBs′))

d
dξ

]
eΦ̃.

(66)

The above equation can also be written as

kν × R3 ν eΦ̃ ◦
= 4eBη+(p0)p0

d
dξ

[
eΦ̃(tan(eBs) + tan(eBs′))

]
. (67)

Transforming to ξ, ζ variables and, using the above equation, we can write the para-
metric integrations (integrations over s and s′) on the left-hand side of Equation (57) as∫ ∞

−∞
ds
∫ ∞

0
ds′kν R3 ν eΦ̃ =

8η+(p0)p0

eB

∫ ∞

−∞
dξ
∫ ∞

−∞
dζΘ(ξ − ζ)

d
dξ
F (ξ, ζ) (68)

where

F (ξ, ζ) = eΦ̃(tan(eBs) + tan(eBs′)).

The integration over the ξ and ζ variables in Equation (68) can be represented as∫ ∞

−∞
dξ
∫ ∞

−∞
dζΘ(ξ − ζ)

d
dξ
F (ξ, ζ)

=
∫ ∞

−∞
dξ
∫ ∞

−∞
dζ

[
d

dξ
{Θ(ξ − ζ)F (ξ, ζ)} − δ(ξ − ζ)F (ξ, ζ)

]
= −

∫ ∞

−∞
dξF (ξ, ξ) (69)

Here, the second step follows from the first one as the first integrand containing the Θ
function vanishes at both limits of the integration. The remaining integral is now only a
function of ξ and is even in p0. However, in Equation (68), we have η+(p0)p0 sitting, which
makes the the integrand odd under p0 integration in the left-hand side of Equation (57),
as η+(p0) is an even function in p0. Thus, the p0 integral as it occurs in the left-hand side
of Equation (57) vanishes as expected, yielding the required result shown in Equation (52).

6. Effective Charge

Now, we concentrate on the neutrino effective charge. From the outset, it is to be
made clear that we are only calculating the axial contribution to the effective charge (in a
forthcoming publication, we will comment on the vector contribution to the effective charge
of the neutrino [106,107]). We can now write the full expression of the axial polarisation
tensor as

iΠ5
µν(k) = −(−ie)2(−1)

∫ d4 p
(2π)4

∫ ∞

−∞
ds eΦ(p,s)

∫ ∞

0
ds′ eΦ(p′ ,s′)

[
R(o)

µν + R(e)
µν

]
, (70)

where R(o)
µν and R(e)

µν are given by Equations (45) and (44) in the rest frame of the medium.
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6.1. Effective Charge to Odd Orders in External Field

In the limit when the external momentum tends to zero, only two terms survive from
Π5

µν(k). Denoting Π5
µν(k0 = 0,~k→ 0) = Π5

µν, we obtain

Π5
µ0 = lim

k0=0~k→0
4e2

∫ d4 p
(2π)4

∫ ∞

−∞
ds eΦ(p,s)

∫ ∞

0
ds′eΦ(p′ ,s′)(tan(eBs) + tan(eBs′))

× η+(p0)
[
2p2

0 − (k · p)‖
]
εµ012 (71)

The other terms turn out to be zero in this limit. The above equation shows that, except the
exponential functions, the integrand is free of the perpendicular components of momenta.
This implies that we can integrate out the perpendicular component of the loop momentum.
Upon performing the Gaussian integration over the perpendicular components and taking
the limit k⊥ → 0, we obtain

Π5
µ0 = lim

k0=0,~k→0

(−4ie3B)
4π

∫ d2 p‖
(2π)2

∫ ∞

−∞
ds eis(p2

‖−m2)−ε|s|
∫ ∞

0
ds′eis′(p′ 2‖ −m2)−ε|s′ |

× η+(p0)
[
2p2

0 − (k · p)‖
]
εµ012 . (72)

It is worth noting that the s integral gives∫ ∞

∞
ds eis(p2

‖−m2)−ε|s|
= 2πδ(p2

‖ −m2) (73)

and the s′ integral gives∫ ∞

0
ds′ eis′(p′ 2‖ −m2)−ε|s′ |

=
i

(p′ 2‖ −m2) + iε
. (74)

Using the above results in Equation (72) and using the delta function constraint, we
arrive at

Π5
µ0 = lim

k0=0,~k→0
2(e3B)

∫ d2 p‖
(2π)2 δ(p2

‖ −m2)η+(p0)

[
2p2

0
(k 2
‖ + 2(p.k)‖)

− 1
2

]
εµ012 . (75)

In deriving Equation (75), pieces proportional to k2
‖ in the numerator were neglected.

Now, if one makes the substitution, p′‖ → (p‖ + k‖/2) and sets k0 = 0, one arrives at

Π5
µ0 = − lim

k0=0,~k→0
2(e3B)

∫ dp3

(2π)2

(
n+(E′p) + n−(E′p)

)[ E′p
p3k3

+
1

2E′p

]
εµ012. (76)

Here, n±(E′p) are the functions fF(E′p,−µ, β), and fF(E′p, µ, β), as given in Equation (31),
which are nothing but the Fermi–Dirac distribution functions of the particles and the an-
tiparticles in the medium. The new term E′p is defined as follows:

E′2p = [(p3 − k3/2)]2 + m2

and it can be expanded for small external momenta in the following way:

E′2p ' p2
3 + m2 − p3k3 = E2

p − p3k3
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where E2
p = p2

3 + m2. Noting that

E′p = Ep −
p3k3

2Ep
+ O(k2

3) (77)

one can use this expansion in Equation (76), to arrive at:

Π5
µ0 = − lim

k0=0,~k→0
2(e3B)

∫ dp3

(2π)2

(
n+(E′p) + n−(E′p)

)[ Ep

p3k3

]
εµ012 . (78)

The expression for η+(E′p) = n+(E′p) + n−(E′p) when expanded in the powers of the
external momentum k3 is given by

η+(E′p) =
(

1 +
1
2

βp3k3

Ep

)
η+(Ep) (79)

up to first order terms in the external momentum k3. In the expression above, β = 1
T in

units where h̄ = c = kB = 1.

6.1.1. Effective Charge for µ� m

In the limit, when µ� m, one can use the following expansion,

η+(E′p) =
[
n+(E′p) + n−(E′P)

]
= 2

∞

∑
n=0

(−1)n cosh([n + 1]βµ)e−(n+1)βEp

(
1 +

βp3k3

2Ep
+ O(k2

3) + . . .
)

. (80)

Now, using Equation (80) in Equation (78), we get

Π5
µ0 = −εµ012 lim

k0=0,~k→0
(4e3B)

∞

∑
n=0

(−1)n cosh([n + 1]βµ)

×
∫ dp3

(2π)2 e−(n+1)βEp

[
Ep

(p3k3)
+

β

2

]
. (81)

The first term vanishes by symmetry of the integral, but the second term is finite and
thus we get:

Π5
µ0 = −βεµ012 lim

k0=0~k→0

(e3B)
2π2

∞

∑
n=0

(−1)n cosh([n + 1]βµ)
∫

dp3e−(n+1)βEp . (82)

To perform the momentum integration, use of the following integral transform turns
out to be extremely convenient

e−α
√

s =
α

2
√

π

∫ ∞

0
due−us− α2

4u u−3/2. (83)

Identifying
√

s with Ep and [(n + 1)β] as α (since the square root opens up), one can
easily perform the Gaussian p3 integration without any difficulty. The result is:

Π5
µ0 = −βεµ012

(e3B)
2π2

∞

∑
n=0

(−1)n cosh([n + 1]βµ)

× (β(n + 1)/2)
∫

due−m2u− ((n+1)β/2)2
u u−2. (84)
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Performing the u integration, the axial part of the effective charge of neutrino, being
called eνa

e f f (the subscript a in νa is to denote the axial vector vertex origin of the same)—in
the limit of m > µ—turns out to be

eνa
eff = −

√
2gAmβGF

e2B
π2 (1−λ) cos(θ)

∞

∑
n=0

(−1)n cosh((n+1)βµ)K−1(mβ(n+1)). (85)

Here, θ is the angle between the neutrino three momentum and the background
magnetic field eB. The superscript νa on eνa

eff denotes that we are calculating the axial
contribution of the effective charge. K−1(mβ(n + 1)) is the modified Bessel function (of the
second kind) of order one (for this function, K−1(x) = K1(x)), which sharply falls off as we
move away from the origin in the positive direction. Recall that gA is the axial coupling
constant of the electron in the loop as already mentioned in Section 2. However, as the
temperature tends to zero, Equation (85) seems to blow up because of the presence of mβ,
but K−1(mβ(n + 1)) would damp its growth as e−mβ, hence the result remains finite.

The factor of e2B is the contribution of the magnetic field and mβ along with
cosh((n+1)βµ)K−1(mβ(n+1) are the contributions from the medium effects of the back-

ground magnetized media. The constant GF =
√

2
8

(
e

sin θW
1

MW

)2
is related to the mass of W

and Z bosons and λ = ±1 is the helicity of the neutrino spinors.

6.1.2. Effective Charge for µ� m

Here, we would try to estimate neutrino effective charge when µ� m and β 6= ∞. We
would like to emphasise that the last condition should be strictly followed, i.e., temperature
T 6= 0. Using Equations (78) and (79), we would obtain

Π5
30 =

e3B
2π

β
∫ dp

2π
η+(Ep). (86)

Neglecting m in the expression in Ep, we would obtain

Π5
30 =

e3B
2π2 ln[(1 + eβµ)(1 + e−βµ)]. (87)

The same can also be written as

Π5
30 =

e3B
π2 ln

(
2 cosh

(
βµ

2

))
. (88)

The expression for the effective charge then turns out to be

eνa
eff = −

√
2gAGF

e2B
π2 (1− λ) cos(θ) ln

(
2 cosh

(
βµ

2

))
. (89)

It can be seen from the expression above that only left-handed Weyl neutrinos acquire
induced charge. The expressions for eνa

eff in the limit of µ << m and µ >> m can further be
cast, after expressing e2B = eB

m2/e .m2 = eB
Bc

m2 and substituting the values of the physical
constant GF, in the following forms, for µ << m:

eνa
eff = −(3.036× 10−12)e

[
gA

(
B
Bc

)](√
2

π2

)
(1−λ) cos(θ)

×
∞

∑
n=0

(−1)n cosh((n+1)βµ)[(mβ)K−1(mβ(n+1))] (90)
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and the same for µ >> m:

eνa
eff = −(3.036× 10−12)e

[
gA

(
B
Bc

)](√
2

π2

)
(1−λ) cos(θ) ln

(
2 cosh

(
βµ

2

))
. (91)

It should be noted that Equation (91) goes to zero as µ→ 0. For a sufficiently dense
medium, when µ >> m and low temperature, eνa

eff can be as close to unity. For example,
when µ ∼ 10 MeV, T ∼ 10−4 and B/Bc ∼ 102 and θ = π/3, the eνa

eff may turn out to be the
order of electric charge e.

6.2. νe Effective Charge at Even Order in the External Field and Their Coupling with the
Magnetic Fields

From the part of Πµν, which is even in the external fields, we see from Equation (49) that

R(e)
µ0 = 4iη−(p0)

[
εµ0αβ pαkβ(1 + tan(eBs) tan(eBs′))

+ εµ0αβ⊥kαkβ⊥ tan(eBs) tan(eBs′)
tan(eBs)− tan(eBs′)
tan(eBs) + tan(eBs′)

]
. (92)

which shows that Π5
µν(k) to even orders in the external field will vanish when k0 → 0,

~k→ 0. This implies that there will be no contribution to the effective neutrino charge from
the sector which is even in the powers of B. Can the neutrinos that are propagating in a
magnetised plasma couple with the classical magnetic field? The situation is a little bit
subtle here, as the vertex of the neutrinos with the dynamical photons do get changed here
due to the presence of the magnetic field, but this change cannot induce any electromagnetic
form factor responsible for coupling of the neutrinos with any magnetic field. In order
to find the effective charge of the neutrinos which couples them with time independent
magnetic field, one should look for (as given in Equation (7)) the Γi’s, where i = 1, 2. A
magnetic field in the z-direction is given by a gauge where A1, A2 are both non zero, or one
of them is nonzero. Thus, to calculate the charge that is essential for the neutrino current to
couple with a magnetic field, one has to put the index ν = 1, 2 in Equation (70) and take
the limit k0 → 0,~k → 0 and see which component of Π5

µ1(k) exists in the pre-mentioned
momentum limit. For the odd B part, we see from Equation (45) that

R(o)
µ1 = 4iη+(p0)

[
gµα‖k1

{
pα̃‖(tan(eBs)− tan(eBs′))− kα̃‖ sec2(eBs) tan2(eBs′)

tan(eBs) + tan(eBs′)

}

+ gµ1(p · k̃)(tan(eBs)− tan(eBs′))

]
(93)

which goes to zero as the photon momentum tends to zero. By the same argument, it
follows that, for ν = 2, there is vanishing contribution. Thus, it shows that there is no
effective magnetic coupling from the B odd part. For the B even part, it is seen from
Equation (44) that only R(e)

12 survives, and is given by

R(e)
12 = 4iη−(p0)

[
(p · k̃)

(
1 + tan(eBs) tan(eBs′)

)]
, (94)

which vanishes in the limit when the external momentum goes to zero. Thus, from this,
we can say that Π5

µν has no contribution for any charge of the neutrinos which can couple
them with the magnetic field.



Galaxies 2021, 9, 22 18 of 24

7. Conclusions

In our analysis, we have calculated the contributions to Π5(o)
µν (k) to odd and even

orders in the external constant magnetic field. The main reason for doing so is the fact that
Π5(o)

µν (k) and Π5(e)
µν (k), the axial polarisation tensors to odd and even powers in eB, have

different dependence on the background matter. Pieces proportional to even powers in B
are proportional to η−(p0), an odd function of the chemical potential. On the other hand,
pieces proportional to odd powers in B depend on η+(p0), and are even in µ and, as a
result, it survives in the limit µ→ 0. Equations (90) and (91) corroborate this observation.
The underlying theory, being a theory of weak interaction, violates parity but preserves
CP and CPT. The same can be verified from the C, P and T transformation properties
of Equations (35) and (36). We have estimated the field dependent part of the induced
neutrino effective charge eνa

e f f from odd B and even µ contribution of Π5
µν.

The leading order estimate of eνa
e f f that follows from our work can be grouped into two

categories: (i) non degenerate µ < m and (ii) highly degenerate µ >> m. The complete
estimate of eνa

e f f belonging to the first class can be approximated by keeping the leading
order effects in (m/T) for T << m, and it turns out to be

eνa
e f f ∼ −(3.036× 10−12)

[
gA

(
B
Bc

)
1

π3/2

](√
m
T

)
e−m/T cosh(µ/T)(1− λ) cos θe. (95)

The same belonging to the second class can similarly be estimated for µ >> m >>
T as

eνa
e f f ∼ −(3.036× 10−12)

[
gA

(
B
Bc

)√
2

π2

](
βµ

2

)
(1− λ) cos θe. (96)

For Weyl neutrinos, one can notice that only left-handed neutrinos contribute to the
effective charge provided the angle between neutrino momentum and the magnetic field B
is less than π/2. We would like to point out that the neutrino charge for B dependent part
has turned out to be direction-dependent—a result that is expected because of the presence
of magnetic field B that breaks the isotropy of the system.

For the sake of completeness, we next provide the estimate of the same originating
from the unmagnetized medium; the same is

eν
e f f = −0.68× 10−31e

(
1cm
rD

)2
, (97)

where r2
D = T

nee2 is the Debye radius. This result was originally obtained in [82,83,85].
A magnitude wise comparison of neutrino charge owing to the vector vertex contribu-

tion from unmagnetized medium and that owing to axial vector vertex contribution from
magnetized medium would reveal why, in some environments, energy transfer mechanism
is isotropic and in some of the same is anisotropic. For instance, if we make a comparison
of the induced charge that neutrinos acquire in SNII, white dwarves and red-giants with
the same that neutrinos acquire in the environment of GRB, Magnetar or astrophysical
objects having jets associated with strong magnetic fields, we shall see that the size of eνa

e f f
in the latter dominates over eν

e f f of the former.
Having the limiting expressions of neutrino charge for different physical situations,

it makes sense to compare the contributions and determine the dominant one. Using the
limiting expressions, the ratio of the neutrino axial charge in magnetized medium to that
in unmagnetized medium for T << m and µ << T turns out to be

eνa
e f f

eν
e f f
∼
√

2
gAπ2

(1 + 2sin2θW)

(
B
Bc

)(m
T

)
cos θ, (98)
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and, in the degenerate limit, it is

eνa
e f f

eν
e f f
∼ 3π2

2
gA

(1 + 2sin2θW)

(
B
Bc

)(m
T

)
cos θ. (99)

Notable points in these two expressions are the appearance of gA in the ratio and
the appearance of the factor

(
B
Bc

)(m
T
)

cos θ. Thus, for cos θ ∼ 1 and
(
B
Bc

)(m
T
)
>> 1,

the axial induced neutrino charge eνa
e f f can dominate over that due to unmagnetized or

weakly magnetized media. Thus, in a strongly magnetized media, neutrino induced high
energy processes are likely to introduce anisotropy in the physical processes taking place
in astrophysical situations e.g., GRB, magnetar and anisotropic distribution of isolated
moving pulsars with initial kick. This is what was one of the motivating issues behind this
investigation, laid out in the Introduction section of this work.

In view of the investigations being carried out to find the intrinsic charge of neu-
trino, the induced charge of the same due to an unmagnetised medium acquires some
importance—the reason being the presence of an ambient plasma of varying density all
over the universe that can contribute to the intrinsic charge as the terrestrial and celestial
experiments are being performed. For that purpose, we have considered three astrophysi-
cal objects (i) type-II supernovae (µ = 350 MeV, T = 30− 60 MeV), red giant (µ ∼400 keV
and T ∼10 keV) and white dwarf (µ ∼500 keV and T ∼ 0.1− 1 keV) [108]. The estimates
of the induced charges are:

eν
e f f |SN−I I = −2.1× 10−7e, (100)

eν
e f f |RG = −9.6× 10−13e, (101)

eν
e f f |WD = −1.8× 10−10e. (102)

To complete the comparison of the induced charges, we provide the estimate of
induced neutrino electric charge coming from axial vertex contribution next. The limiting
expression of the same is found in Equation (96). Assuming an old pulsar (age ∼ 109 years,
T ∼ 100◦ K and fermi momentum (PF) ∼100 MeV) [109], the eνa

e f f for this case for left
handed neutrinos turns out to be

eνa
e f f ∼ 0.21× 10−2

(
B
Bc

)
e, (103)

when the angle (θ) between the neutrino momentum and the ambient magnetic field tends
to zero. For a very conservative estimate of

(
B
Bc

)
∼ 10−6, the induced charge would be of

the order of ∼ 10−8e.
There are several laboratory based studies available in the literature that tried to put a

bound on neutrino effective charge. This charge can be intrinsic (eν
int) or induced (eν

ind).
Out of these, eν

int < 2× 10−15e for an intergalactic field B ∼ 1nG and eν
int < −2× 10−17e

for B ∼ 1 µG were obtained from ν time of flight estimate from SN-1987A in [110],
eν

int < 3× 10−4e was obtained in [111] from a SLAC electron beam dump experiment,
and eν

int < 10−35e was obtained in [112] demanding charge neutrality of the universe.
The limits in terrestrial laboratory based experiments were found to be significantly larger
in size—for instance, estimates of the same in ν̄ − e scattering experiments performed
in reactor based experiments dedicated for measuring neutrino effective charge as was
explored in [38,81] and in the TEXONO reactor based experiment [113–115]. The reactor
limit on neutrino charge as was reported in [113] happened to be 1.0× 10−12 with 90 %
C.L. (considering the Debye length for Ge detector to be 0.68 µm).

On the other hand, the induced charge eν
int < 10−14e reported in [85,116] is due to

medium effects in astrophysical situations. This induced charge is not due to any intrinsic
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property of neutrinos and hence can vary from situation to situation. Their estimates can
be best verified through consistency checks of various medium dependent processes.

However, the medium induced charge has an important role in establishing the
intrinsic charge of neutrino. Because the terrestrial experiments aiming to find eν

int are
contaminated with medium effects, the induced charge would add on to the intrinsic
charge, thus affecting the conclusions. For instance, many body effects of Ge used in
determining eν

int in TEXONO experiments [113–115] enter in the estimates of eν
int through

the Debye radius. On the other hand, even in the absence of eν
int, there will be a contributing

factor due to loop and medium effects (entering through Debye length). This factor should
be sub-dominant. Our estimates show that, for charge-neutral neutrinos, the contribution
to the effective neutrino charge is of the order of 10−24e, which is twelve orders less than
reported in [113–115] from these experiments. If we consider the effect of atmospheric
plasma at standard temperature and pressure, it turns out to be 10−20e, which is also way
beyond the recognisable contribution compared to the results reported in [113–115].

8. Outlook

In this work, we have explored the physical implication of medium induced neutrino
effective charge for celestial as well as terrestrial events. We have found many situations
where their effect can be substantial. However, in addition to what we have discussed,
there are other issues of beyond the standard model physics that can be connected to the
same. For example, existence of non-zero mass for neutrino [117,118] indicates a beyond
the standard model issue involved in the neutrino sector. Similarly, the existence of various
electromagnetic properties of neutrinos like charge, etc., if confirmed, can be considered as
a consequence of the physics beyond the standard model. However, in order to indicate
the corrections appearing from beyond the standard model physics, one needs to quantify
the same appearing from medium induced effects. In this paper, a small step was taken in
that direction. More about it will be communicated elsewhere.
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Appendix A. Structure of Axial Polarization Tensor

The axial polarization tensor Π5
µν given by Equation (70) can be expressed in terms of

the form factors and basis tensors constructed out of:

b̂(1)ν = N1kµ F̄µν, Îν = N2

b(2)ν −
(ũµb(2)µ )

ũ2 ũν

, ˆ̃uν = NL

(
gµν − kµkν

k2

)
uµ,

b(2)ν = kµ
˜̄Fµν, ˜̄Fµν =

1
2

εµνλρ F̄λρ. (A1)
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following [119,120], where N1, N2, NL and Nk are normalization constants given by

N1 =
1√

−b(1)µ b(1)µ
=

1
K⊥B

, N2 =
1√
−Iµ Iµ

=
K

ωK⊥B
,

NL =
1√
−ũµũµ

=
k2

|K| , and Nk =
1√
−k2

. (A2)

Here, the variable, K⊥ = (k2
1 + k2

2)
1
2 . The same for vacuum part of Π5

µν was done
in [106]. The medium induced part can be constructed keeping the CP symmetry of Π5

µν

and the ward identity of Π5
µν at the electromagnetic vertex kνΠ5

νµ = 0. More about it will
be conveyed in a separate communication.
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