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Abstract: With the launch of JWST and the upcoming installation of extremely large telescopes,
the first galaxies in our Universe will finally be revealed. Their light will be dominated by massive
stars, which peak in in the ultra-violet (UV) part of the electromagnetic spectrum. Star formation is
the key driver of the evolution of our Universe. At young ages, within 10 Million years, both high
and low mass stars generate complex UV emission processes which are poorly understood yet are
vital for interpreting high red-shift line emission. For these reasons, the Hubble Space Telescope
(HST) will devote 1000 orbits to obtaining a UV Legacy Library of Young Stars as Essential Standards
(ULLYSES). The purpose of this Overview is to outline the basic physical principles driving UV
emission processes from local (within 100 parsecs of) star formation, ranging from huge star-forming
complexes containing hundreds of massive and very-massive stars (VMS), such as 30 Doradus (the
Tarantula Nebula) in the neighboring Magellanic Clouds (only 50 kpc away), to galaxies near and far,
out to the epoch of Cosmic Reionization.

Keywords: star formation; ultraviolet; pre-main sequence; T Tauri; massive stars; O-type stars;
Wolf-Rayet stars; population synthesis; high-redshift

1. Introduction

Star formation in the Universe has taken place over the vast majority of its existence. The First
Stars, some couple of hundred million years after the Big Bang are thought to be massive due to
their pristine chemistry, implying less efficient cooling during their formation (e.g., [1,2]). Stars in
today’s Universe mostly have masses like our Sun, which are thought to go through a so-called T Tauri
pre-main sequence (PMS) phase (see Figure 1).

In this Editorial overview, and the Special Volume in front of you, we show how the ultraviolet
(UV) part of the electromagnetic spectrum is arguably the most important wavelength range to obtain
key physical observables for both current PMSs, as well as earlier generations of more massive stars
at high redshift. In terms of Cosmic chronology it would make sense to start our discussion with the
First Stars at zero metallicity, before discussing current-day T Tauri and Herbig Ae/Be stars at solar
metallicities. However, from an observational perspective it is more pragmatic to start the discussion
with PMSs in our local neighborhood. We then gradually increase distances to parts of our Milky Way
that also contain intermediate mass Herbig Ae/Be stars (within a few hundred parsecs), before we
ultimately discuss the population of the most massive stars in the Local Universe at kilo-parsec scales.

Based on these considerations, this editorial overview has the following structure:

1. Overview: Star Formation in the Ultraviolet—Jorick S. Vink
2. The UV Perspective of Low-Mass Star Formation—Schneider, Günther & France
3. On the mass accretion rates of Herbig Ae/Be stars—Ignacio Mendigutia
4. UV Spectroscopy of massive stars—John Hillier
5. Massive Star Formation in the Ultraviolet observed with HST—Claus Leitherer
6. Applications of Stellar Population Synthesis in the Distant Universe—Elizabeth Stanway
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In chapter 2, Schneider et al. discuss the formation of solar-mass stars. Although the mass-
accretion rates of T Tauri stars are oftentimes determined from optical line emission, such as Hα,
all these diagnostics ultimately find their roots in the accretion shocks revealed by the UV part of
the spectrum. In Chapter 3, Ignacio Mendigutia discusses a possible extension of the successful
magneto-spheric accretion model applied to T Tauri stars to the higher mass regime of the 2–18 M�
Herbig Ae/Be stars. His conclusion is that the model may indeed be applicable to Herbig Ae stars
up to a few solar masses, but that alternatives like the boundary-layer (BL) model may need to be
considered for the more massive Herbig Be stars.

Figure 1. Schematic HRD including groups of objects discussed in this overview. Indicative masses
are shown to the left of the main sequence. The groups of PMS that we discuss are T Tauri and
Herbig Ae/Be stars. The He-rich stars are the classical WR stars and the potential stripped He stars.
Massive stars do not have a visible PMS phase, i.e., they are above the birthline. The boundary between
canonical massive O stars and VMS is around 100 M�.

Yet more massive stars remain above the birthline (see Figure 1) during their PMS phase, and the
most massive stars over 18 M� only become optically visible after hydrogen (H) burning has started.
The objects eventually appear either as either O-type stars (above 18 M�), or very massive, H-rich
Wolf-Rayet (WR) stars (over approx. 100 M�). Optically visible O and WR stars however have their key
diagnostics at UV wavelengths, and their spectra are extensively discussed in Chapter 4 by John Hillier.

The further we look into the Universe, the more we look back in time. Therefore, the metallicity
(Z)—on average—is dropping. This has major consequences, not only on the driving of the winds of O
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and WR stars, but potentially also on their evolution and diagnostics. Moreover, it has become clear
that roughly half the massive stars are part of a close binary system (e.g., [3]), further complicating the
interpretation of integrated light in clusters and galaxies (discussed by Claus Leitherer in Chapter 5),
and into the more distant Universe (Elisabeth Stanway; Chapter 6).

Reflecting the order of the Review chapters in this Special Volume, this Editorial overview will
start with the role of the UV for mass-accretion studies of PMSs in the Local Universe. I then move on
to discussing the physics of O and WR stars in low Z environments, before providing an outlook of
how to detect the First Stars in the Universe.

2. T Tauri and Herbig Ae/Be Stars

For low-mass T Tauri stars there is a well established paradigm involving magneto-spheric
accretion (see Figure 2 in Chapter 2 by Schneider et al. and similar versions by e.g., [4]). The key
physics is that due to the presence of a strong kilo-Gauss (approximate) dipole field the inner accretion
disk is disrupted, and gaseous material is funnelled along magnetic loops, shocking onto the stellar
surface, producing UV radiation (see e.g., Figure 5 of Schneider et al. and [5]).
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Figure 2. Overview of how massive stars, and in particular the mass-loss rates and ionising fluxes,
determined in the UV, impact many adjacent areas of Astrophysics. Image credit: Andreas Sander.

Half of the HST orbits of ULLYSES (Ultraviolet Legacy Library of Young Stars as Essential
Standards) are dedicated to better understanding the physics of mass-accretion in the UV. Some HST
orbits are dedicated to spectroscopic monitoring, as rotational modulation has a key effect on
mass-accretion rate diagnostics, such as Hα. The low-mass component of ULLYSES should thus
help to unravel the rotationally modulated complex spectral diagnostics.

Time variability studies of line emission of PMS Herbig Ae stars have also shown rotational
modulation to be a decisive factor. In Chapter 3, Ignacio Mendigutia highlights a range of additional
evidence in favour of the T Tauri model of magnetospheric accretion to be applicable in the Herbig
Ae range. Furthermore, it is argued that the more massive Herbig Be stars are subjected to a different
mode of accretion, possibly involving a boundary layer.

Independent of the specific mode of accretion along the stellar mass sequence, it is clear that the
UV will play a vital role in deciding the modes of accretion, and for deriving accurate mass-accretion
rates as a function of stellar mass. A relatively unexplored physical dimension in the PMS range is
that of Z. This is mostly due to the fact that PMS stars are faint and spectroscopy of PMSs in low-Z
environments is only slowly starting to take off, sometimes in the form of “extremely low resolution
spectroscopic” i.e., narrow-band photometric methods. At the moment it is still under debate whether
the mass-accretion rates of PMS stars depend on Z, or not ([6] vs. [7]).
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3. Massive and Very Massive Stars

Massive stars dominate the light of star-forming galaxies and are also thought to dominate the
light from the First Galaxies. In certain circumstances it might even be the case that most of the stellar
mass is locked up in massive stars, leading to a top-heavy initial mass function (IMF; [8]). whether the
IMF of the First Stars was top-heavy is still under debate, but it is considered likely on theoretical
grounds [1,2,9].

Even in Today’s Universe massive stars are key cornerstones to many aspects of Astrophysics
(see Figure 2 for an overview). In order to understand gravitational wave (GW) events as a function of
cosmic time and Z, we need to understand the evolution & winds of massive stars at low Z. For our
understanding of stellar feedback and He II emission at high redshift we need to be able to predict
the ionising and UV radiation of massive stars which is determined by their effective temperatures
and mass-loss rates. In order to properly predict the spectrum of a massive star it is pivotal to
apply non-LTE (local thermodynamic equilibrium) radiative transfer models of spherical expanding
atmospheres, as described in Chapter 4 by John Hillier, and compare these models to large samples of
spectra at UV (ULLYSES contains 500 HST orbits on massive OB and WR stars) and optical wavelength
ranges. This is needed given the extreme observational uncertainties associated with mass-loss rates
of massive stars below LMC metallicity [10–15], and the discovery-space available to diagnose the
wind—and in the case of O-stars also the photospheric—conditions of low-Z stars.

The expanding non-LTE wind models are generally able to successfully predict the observed UV
and optical spectra of the Galactic massive O and WR stars. However, radiation is not only a probe for
the conditions in the atmospheres, but also a key constituent itself! It is the radiation pressure gradient
that provides an outward acceleration kick-starting an intense radiation-driven wind. Such winds
leave very specific line diagnostics in the electromagnetic (EM) spectrum, including P Cygni scattering
lines in the UV as well as (usually broad, but see Section 5 and Figure 4) recombination emission lines
in the UV (e.g.; He II 1640Å), optical and infrared regime.

4. WR Stars

In the range of massive stars there are basically 2 types of WR stars: (i) H-rich VMS, which are
VMS that still burn H in their cores, and (ii) classical WR stars (cWRs) that are evolved helium (He)
burning stars (see Figure 1). The latter group normally dominates the population, but note that the
WR phenomenon is a spectroscopic classification and in principle independent of evolutionary phase
(cf. [16,17] for a more recent discussion). The reason for the occurrence of emission lines is that
the winds have become optically thick (τ > 1) and this means also means that multiple scattering
(wind efficiently η > 1) is a dominant physical process in their winds [18]. While, the fundamental
difference between optically thin O star and optically thick cWR star winds has been recognized more
than two decades ago, the detailed understanding of cWR winds is still in its early stages with the
differences between the cWR and O star regimes just starting to become more clear. In particular the
traditional Castor et al. (CAK, [19]) radiation-driven wind parametrization in terms of force multipliers
completely breaks-down in the regime of the cWRs [20].

For H-rich VMS, the transition between normal O stars and H-rich VMS (WNh stars) has already
been better mapped in the last decade, both theoretically [21] and empirically [22]. Due to the
proximity to the Eddington limit, these VMS have wind mass-loss rates that are significantly enhanced
in comparison to normal O-star winds, an effect typically not yet accounted for in stellar evolution &
population synthesis models. Yet, we know that it is these VMS that are dominant in terms of their
ionising radiation and kinetic wind input over the canonical O-star population [23–25]. Even when the
upper-mass limit was still considered to be in the range 120–150 M� [26–28] the most massive stars
dominated these quantities [29]. With an increase in the upper-mass limit to 200–300 M� [30–32] this
dominance is only expected to grow.

For the ionising radiation budget and in particular also the expected total He II emission it is
relevant to realize that locally, such as in the Tarantula Nebula, it is the very massive stars that are



Galaxies 2020, 8, 43 5 of 10

the dominant contributors (see Figure 3 and [24,25]). This therefore suggests that VMS also need to
be appropriately accounted for in the predictions of the ionizing radiation and additional physical
properties of the stellar populations of the Early Universe.

Figure 3. Integrated HST spectrum of all sources within 0.5 parsec of R136a1 (solid, all stars),
the composite spectrum of all 70 bright stars with F1500 ≥ 5× 10−15 erg s−1 cm−2 Å−1 (dot-dash),
comprising 7 very massive stars (VMS, dotted), and the remaining 63 far-UV bright stars (dashed).
He II λ1640 emission in R136 is totally dominated by VMS. The difference between the ‘stars’ and ‘all’
arises from the contribution from UV-faint, late-type O stars and unresolved early B stars. From [23].

5. He II Emission at High Redshift

A fundamental question concerns the origin of the sources of the First Light ending the Cosmic
Dark Ages and beginning the process of re-ionization. In particular the James Webb Space Telescope
(JWST) and ground-based extremely large telescopes (ELTs) are expected to provide direct access to
this critical period via observations of the first star-forming galaxies at high redshifts (z ≥ 10).

Lyα λ1216 and He II λ1640 emission are seen as the main indications for stars formed out of
pristine gas (the so-called “Pop III stars”). The reason is that only at extremely low Z, massive stars are
believed to be hot enough to excite He II in their surrounding H II regions [33]. The investigation of
star-forming galaxies with redshifted He II emission at moderate & high redshifts, which have become
increasingly accessible with current ground-based instrumentation [34–36], is thus an important
preparation for future studies of the first star-forming galaxies.

In relatively recent studies of moderate redshift (z = 2 − 5) star-forming galaxies He II λ1640
emission was found to occur in two modes distinguished by the width of their emission lines [37].
Broad emission has been attributed to stellar emission from cWR stars, but the origin of narrow He II

emission is less obvious. In extra-galactic studies it has generally been attributed to nebular emission
excited by a population of hot Pop III stars formed in pockets of pristine gas at moderate redshifts
(see also [38] for even higher redshift data).

There are however plausible alternatives to these Pop III postulations. One of them involves the
suggestion of stellar emission from VMS at low Z due to a strong but slow wind (see Figure 4). Gräfener
& Vink [39] estimated the expected He II line flux and equivalent widths (EWs) based on their VMS
wind models and Starburst99 [40,41] population synthesis models, and compared their results with
observed star-forming galaxy spectra, finding that the measured He II line strengths and EWs are
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in line with what is expected for a VMS population in one or more young clusters located in these
galaxies.

Figure 4. Synthetic UV spectra for different metallicities Z from wind models for VMS from Gräfener&
Vink (2015). The presented models are computed for luminosities of log(L/L�) = 6.3, a stellar
temperature T? = 45 kK, and have very similar mass-loss rates (∼1.8× 10−5 M�/year).

Future high spectral resolution studies could help distinguish between nebular and stellar
emission from VMS, taking into account that slower VMS winds yield narrower lines, possibly even
below the slow-wind predictions from Gräfener & Vink [39]. Moreover, it is pertinent that new
population models are tested on local He II emitting galaxies as well. For instance, for the local very
low metallicity analog IZw 18 (with Z below 1/20 Z�) Kehrig et al. [42] found the spatial extent of
the He II emission to be at odds from the location of the massive stellar population, challenging the
contribution from stellar He II emission from VMS. It seems clear that in order to explain the full
observed range of complex He II line morphologies, both in local He II emitting galaxies [43–46] and
further afield [36] will require a combined model of stellar and nebular contributions from a range of
sources, involving stellar population and photoionisation modelling.

6. Stripped Stars Due to Potential Binary Interaction

Another potential source of ionising radiation at high redshift, and possibly contributing to cosmic
re-ionisation, has recently been put forward: binary-stripped helium stars [47,48], which should be
located at luminosities just below the classical WR stars (see Figure 1). Sander et al. [20] demonstrated
that He star mass-loss rates drop significantly below a certain luminosity and luminosity-to-mass
(L/M) ratio. This implies that extrapolations from empirical mass-loss recipes applicable to cWR stars
(such as [49]) are inaccurate for stripped He stars, confirming the earlier pilot study results of Vink [50].

Figure 5 showcases state-of-the-art hydro-dynamical PoWR computations—for L/M ratios from
stellar models—that straddle both the optically thick cWR part as well as the optically thin “stripped
star” regime due to Vink [50]. The figure shows the ionising photon flux for H and He over a wide



Galaxies 2020, 8, 43 7 of 10

range of L/M ratios. The most notable aspect is probably that the He II ionisation flux changes abruptly
by a factor > 1000 at a critical L/M ratio.

Figure 5. Ionising flux and mass-loss predictions from PoWR hydro-dynamical simulations. The red
line indicates mass-loss rates (right-hand y-axis) vs. stellar M (top x-axis) and L/M ratio (bottom
x-axis) for the He main sequence. Ionising fluxes (left-hand y-axis) are indicated with blue/green Boxes.
Whilst the H ionising flux (blue box) varies gradually with M and mass-loss rate, the He II ionisation
flux (green box) changes abruptly by a factor >1000 at a critical L/M ' 4.2 (from Sander et al. 2020b).

A similar transition between optically thin and thick winds in the H-rich part of the HRD was
studied in Vink et al. [21], but the transition in the He-rich part of the HRD is only recently being
investigated. The results from Figure 5 show that any existing study of stripped stars contributing to
the He ionisation of the Universe will necessarily suffer from enormous uncertainties, until we develop
a proper understanding of stripped stars via hydro-dynamical stellar atmospheres.

7. Summary and Outlook

In order to predict the feedback from massive stars in star-forming galaxies at low Z, we need to
better understand the mass-loss rates and associated ionising fluxes from (very) massive stars (VMS),
as well as binary-stripped He stars.

In Section 5, the possibility for the existence of VMS with slow winds at extremely low Z was
discussed. Stellar He II emission from such very early VMS generations may become detectable in
studies of star-forming galaxies at high redshifts with JWST and ELTs. The fact that both the stellar and
the nebular He II emission of VMS are still largely neglected in current population synthesis models
of massive (single and binary) stars implies that massive progress is urgently required in order to
properly interpret the integrated spectra of young stellar populations, both nearby & far-away [51].

Furthermore, we require an improved understanding of the more canonical massive O and WR
stars, especially in low Z galaxies. For these reasons HST has dedicated hundreds of its orbits to build
the spectroscopic Legacy survey ULLYSES. This Hubble Atlas will not only provide a fundamental
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reference data set for UV spectroscopy at low Z, but will also be a treasury chest for gaining a greater
understanding of the winds, evolution, atmospheres, and ionising feedback parameters of massive
stars that are urgently required to advance population synthesis modelling in the 21st century.
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