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Abstract: We have shown that the Hubble constant H0 embodies the information about the
evolutionary nature of the cosmological constant Λ, gravitational constant G, and the speed of
light c. We have derived expressions for the time evolution of G/c2 (≡ K) and dark energy density εΛ

related to Λ by explicitly incorporating the nonadiabatic nature of the universe in the Friedmann

equation. We have found (dK/dt)/K = 1.8H0 and, for redshift z, εΛ,z/εΛ,0 =
[
0.4 + 0.6(1 + z)−1.5

]2
.

Since the two expressions are related, we believe that the time variation of K (and therefore that of
G and c) is manifested as dark energy in cosmological models. When we include the null finding
of the lunar laser ranging (LLR) for (dG/dt)/G and relax the constraint that c is constant in LLR
measurements, we get (dG/dt)/G = 5.4H0 and (dc/dt)/c = 1.8H0. Further, when we adapt
the standard ΛCDM model for the z dependency of εΛ rather than it being a constant, we obtain
surprisingly good results fitting the SNe Ia redshift z vs distance modulus µ data. An even more
significant finding is that the new ΛCDM model, when parameterized with low redshift data set
(z < 0.5), yields a significantly better fit to the data sets at high redshifts (z > 0.5) than the
standard ΛCDM model. Thus, the new model may be considered robust and reliable enough for
predicting distances of radiation emitting extragalactic redshift sources for which luminosity distance
measurement may be difficult, unreliable, or no longer possible.

Keywords: galaxies; supernovae; LLR; SNe 1a; distances and redshifts; variable physical constants;
distance scale; cosmology theory; cosmological constant; Hubble constant; general relativity; TMT;
nonadiabatic universe
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1. Introduction

The standard ΛCDM model has been seen as the most successful model for explaining cosmology,
including the extragalactic redshift, cosmic microwave background, nucleosynthesis in the early
universe, inflation in the very early universe, structure formation, and the rotational velocity of galaxies,
etc. Any new model that deals with only one or a few of these cosmological issues cannot be taken
seriously. Therefore, most cosmologists tend to explain observed phenomena using the standard model.

Nevertheless, dark energy and dark matter in ΛCDM models remain controversial and unobservable
in spite of major efforts spanning many decades. The most recent finding of the Cosine-100 Collaboration [1]
effectively negates the earlier positive reports on dark matter by DAMA experiments [2]. The question then
naturally arises: are the dark energy and dark matter real or manifestations of some phenomena of nature
that we are trying to capture in the standard model? The most controversial has been the cosmological
constant Λ that was introduced unhappily by Einstein in his field equations to prevent the universe from
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collapsing under its own gravity. Since the corresponding density parameter ΩΛ,0 also determines the
matter density parameter Ωm,0 through the constraint ΩΛ,0 + Ωm,0 = 1 at the current epoch assuming a flat
universe, any theory that can provide a viable alternative to the cosmological constant may simultaneously
dispense with the dark energy and dark matter.

The most current alternative has been suggested by Farnes [3] using the concept of continuously
created negative masses to replace Λ. According to Farnes, the new approach makes several testable
predictions and has the potential to be consistent with observational evidence from distant supernovae,
the cosmic microwave background, and galaxy clusters.

Dynamical constant theories can be traced back to Weyl [4] and Eddington [5], while Dirac [6] may
be considered the true proponent of the idea through his large number hypothesis. Dirac’s concept of
varying gravitation constant G through

.
G/G was quantitatively developed by Brans and Dicke [7].

The varying speed of light (VSL) theory was considered by none other than Einstein himself [8],
the proponent of the constant speed of light c, as well as by Dicke [9], Petit [10], and Moffat [11] among
others. Salzano and Dabrowski [12] have provided references to several other VSL theories in their
paper on the statistical hierarchy of various cosmological models dependent on the VSL concept.
There are debates about variable G and c on the ground that only variability of dimensionless constants
is worth considering [13,14], such as the fine structure constant α.

The subject of the variation of physical constants is marred with semantics and controversy.
The debate continues on what exactly is varying and how is it being measured? There are ongoing
arguments in favour of, and against the dimensionful and dimensionless constants (e.g., Uzan [15,16],
Duff [17], Chiba [18]). Our approach therefore has been to work with the dimensionless quantities
as much as possible, but to not shy away from easily comprehensible dimensionful constants when
necessary, while making sure that such consideration does not affect the findings presented in the
paper. The physical constants considered in this work are primarily the speed of light c and the
Newton’s gravitational constant G. There is abundant literature discussing the variation of these
physical constants, or lack thereof, and others, and there are excellent reviews on the subject [15–20].

It should be emphasized that the constancy of the dimensionless fine structure constant α does
not mean the constancy of the dimensionful constants it embodies, i.e., the speed of light c, the Planck
constant }, the electronic charge e and the permittivity of space ε—it only means that these dimensionful
constants vary in such a way that their variations exactly cancel each other [21].

In this paper we consider the variability of the constant G/c2 (≡ K) and dark energy density εΛ

related to the cosmological constant Λ. We show that the dimensionless constant
.
K/(KH0) = 1.8

where H0 is the Hubble constant, and εΛ,z/εΛ,0 =
[

2
5 + 3

5 (1 + z)−
3
2

]2
for redshift z where εΛ is the

energy density corresponding to Λ and subscript z and 0 have their usual meaning. This has been done
by explicitly including the nonadiabatic nature of the universe in the Friedmann equation through
the evolution of energy density [22] rather than by modifying the equation of state parameter w to be
dependent on the scale factor a as is done in the Chevallier-Polarski-Linder model [23,24].

We briefly review the nonadiabatic approach in Section 2 and then derive the expression for
the two dimensionless constants as well as for the distance modulus as a function of redshift for
the modified ΛCDM model. In Section 3 we explore the predictive capability of the new model in
comparison with the standard ΛCDM model and another model using the Pan-STARRS Pantheon
database for 1048 supernovae Ia [25]. The results are discussed in Section 4 and the conclusions
presented in Section 5.

2. Theory

2.1. Nonadiabatic Phenomenology

We will start by briefly reviewing the nonadiabatic formulation [22]. The first law of
thermodynamics may be written as:

dQ = dE + dW, (1)
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where dQ is the thermal energy transfer into the system, dE is the change in the internal energy of the
system, and dW = PdV is the work done on the system having pressure P to increase its volume by dV.
In cosmology, dQ is normally assumed as zero to preserve the classical homogeneity of the universe.
If we abandon this assumption and assume dQ

dt = −βE, Equation (1) may be written as

− βE =
dE
dt

+
PdV

dt
. (2)

By defining volume V(t) = 4π
3 r3

s a(t)3 for an expanding sphere of commoving radius rS and scale factor
a(t), and energy E(t) = ε(t)V(t) where ε is the energy density, we may write the new fluid equation
for the expanding universe as,

.
ε+

3
.
a

a
(ε+ P) + βε = 0. (3)

Introducing the equation of state relation P = wε, and rearranging Equation (3), we get:

dε
ε

+ 3(1 + w)
da
a
+ βdt = 0. (4)

If w is taken as constant in the equation of state, we can integrate Equation (4) and get:

ln(ε) + 3(1 + w) ln(a) + βt + C = 0, (5)

with C as the integration constant. Since t = t0 corresponds to the scale factor a = 1 and ε = ε0, we get
C = − ln(ε0) − βt0. Equation (5) may now be written as

ε(a) = ε0a−3(1+w)eβ(t0−t). (6)

The factor eβ(t0−t) on the right-hand side of this expression is due to the relaxation of the adiabatic
constraint on the universe, and in that sense may be considered as an alternative to the cosmological
constant Λ. As we will see later, this factor can also be associated with the equation of state parameter
w, which instead of being constant, becomes evolutionary [23,24].

Since we are taking care of the non-adiabatic component through the factor eβ(t0−t) rather than
through Λ, we may write the Friedmann equation in a flat universe as:( .

a
a

)2

=
(8πGε

3c2

)
, (7)

where G is the gravitational constant. Substituting ε from Equation (6), we get:

.
a2

=
(8πGε0

3c2

)
a−(1+3w)eβ(t0−t). (8)

This can be solved for a, and since a(to) ≡ ao = 1, we may write [22]

a = a/a0 =

 1− e−
βt
2

1− e−
βt0
2


2

3+3w

, (9)

H(t) ≡
.
a
a
=

(
β

3 + 3w

)(
e
βt
2 − 1

)−1
, (10)

..
a/a =

(
β

3 + 3w

)
[H(t)

(
e
βt
2 − 1

)−1
−

(
e
βt
2 − 1

)−2
e
βt
2

(
β

2

)
], and (11)
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q ≡ −
( ..

aa
.
a2

)
= −1 +

(
3(1 + w)

2

)
e
βt
2 . (12)

Here H(t) is the Hubble parameter and q is the deceleration parameter. At t = t0 these parameters
are H0 and q0, the Hubble constant and the deceleration constant, respectively. Since we know w = 0
for matter and w = 1/3 for radiation, knowing q0 and H0 will yield the nonadiabatic constant β.
Alternatively, if we know β, we know q0.

2.2. Cosmological Models

In the standard ΛCDM model, q0 is determined from N different density components of the
universe [26]:

q0 =
1
2

N∑
i=1

Ωi,0(1 + 3wi). (13)

Here Ωi,0 is the energy density of the ith component relative to the critical density εc,0 of the universe
defined as:

εc,0 =
3c2H2

0

8πG
. (14)

This means in order to know q0, one has to know the density of all the components in the universe.
The deceleration parameter q0 can be determined in a model independent way using modern

cosmography developed by Orlando Luongo and his associates in several papers [27–30]. These papers
also point out the degeneracy of q0 with other parameters, making it difficult to ascribe a single value
to any of the parameters. More recently, they convincingly demonstrated that the problem can be
greatly reduced by employing Chebyshev polynomials in order to parameterize cosmic distances [31]
instead of Taylor series or Padé approximation they had used earlier [29,32].

The deceleration parameter q0 can be analytically determined on the premise that expansion of the
universe and the tired light phenomena are jointly responsible for the observed redshift at least in the
limit of very low redshift. One could see it as if the tired light effect is superimposed on the Einstein de
Sitter universe instead of the cosmological constant in this limit. By equating the expressions for the
proper distance of the source for the two, one gets q0 = −0.4 [33]. This value is within the limits of q0

determined by cosmography [27–32]. Whether or not this approach of analytically determining q0 is
acceptable will be established by goodness of the model fit to SNe Ia data. The same is true also for our
assumption dQ

dt = −βE. Moreover, the tired light energy loss is basically a non-adiabatic process and
thus could be considered included in our nonadiabatic formulation.

Now that q0 = −0.4, Equation (12) yields e
βt0
2 = 0.4 or β = −1.833/t0 when the equation of state

parameter w is set to 0 (for matter only universe). Substituting these values in Equation (10) at t = t0

we get β = −1.8H0 and the age of the universe t0 = 1.02H−1
0 . The only constant that needs to be

determined from observational data is the Hubble constant H0. It can be shown [22] (Equation (37))
that the distance modulus µ for redshift z under this approach may be written as,

µ = 5 log[
R0

0.6
(1 + z)

∫ z

0
du

(
1 +

(2
3

)
(1 + u)

3
2

)−1
] + 25. (15)

Here R0 ≡ c/H0 is the Hubble distance. We may call it the nonadiabatic Einstein de Sitter model,
or EdeS-NA for short, to identify it from other models.

An alternative way to look at the nonadiabatic density Equation (6) is that it is a composite of the
density of several components of the universe, and that eβ(t0−t) is associated with the Λ term only, i.e.,
β , 0 only for Λ component. Then Equation (6) for matter, radiation, and Λ components, respectively
is as follows:

εm(a) = εm,0a−3, εr(a) = εr,0a−4, εΛ(a) = εΛ,0eβ(t0−t).
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The total energy density may now be written as:

ε(a) = εm(a) + εr(a) + εΛ(a) = εm,0a−3 + εr,0a−4 + εΛ,0eβ(t0−t).

Further, since the radiation component is negligible at the current epoch, the above equation reduces to:

ε(a) = εm(a) + εΛ(a) = εm,0a−3 + εΛ,0eβ(t0−t) (16)

This would mean that in the standard expression for the ΛCDM model containing matter and
cosmological constant only [22]:

µ = 5 log[R0(1 + z)
∫ z

0
du/

√
Ωm,0(1 + u)3 + 1−Ωm,0] + 25, (17)

where Ωm,0 ≡ εm,0/εc,0, ΩΛ,0 ≡ εΛ,0/εc,0 and Ωm,0 + ΩΛ,0 = 1, we may replace εΛ,0 with εΛ,t ≡

εΛ,0eβ(t0−t), i.e., 1−Ωm,0 with (1−Ωm,0)eβ(t0−t). Assuming that eβ(t0−t) functionality is the same for all

components, we may take e
βt0
2 = 0.4, and since 1 + z = 1/a, we can easily derive using Equation (9):

eβ(t0−t) =
(2

5
+

3
5
(1 + z)−

3
2

)2
,

and therefore:

ΩΛ,z = ΩΛ,0

(2
5
+

3
5
(1 + z)−

3
2

)2
. (18)

Equation (17) now becomes:

µ = 5 log[R0(1 + z)
∫ z

0
du/

√
Ωm,0(1 + u)3 + (1−Ωm,0)

(2
5
+

3
5
(1 + u)−

3
2

)2
] + 25. (19)

This is the equation for the new ΛCDM model which we have labeled N-ΛCDM in this work.
The standard model corresponding to Equation (17) is labeled S-ΛCDM.

2.3. Evolutionary Equation of State

Another way to examine Equation (6), i.e., ε(a) = ε0a−3(1+w)eβ(t0−t), is that the factor eβ(t0−t) makes
w, the constant equation of state parameter, dependent on redshift z, i.e., evolutionary wz. For matter
only universe we may write:

ε(a) = ε0a−3eβ(t0−t)
≡ ε0a−3(1+wm,z). (20)

Entering the same expression for eβ(t0−t) in terms of z as used in Equation (18), this becomes:(2
5
+

3
5
(1 + z)−

3
2

)2
= a−3wm,z , or (21)

2 ln
(2

5
+

3
5
(1 + z)−

3
2

)
= 3wm,z ln(1 + z), or (22)

wm,z =
2
3

ln
(2

5
+

3
5
(1 + z)−

3
2

)
/ ln(1 + z). (23)

Some numbers we get from Equation (23) are: (z, wm,z) = (0, −0.6; 1, −0.47206; 10, −0.24355; 100,
−0.13215; 1000, −0.08841; 10,000, −0.06632).
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If we performed the same exercise for the εΛ,0eβ(t0−t) term in Equation (16), and label the equation
of state parameter as wΛ,z, we get:

wΛ,z = −1 +
2
3

ln
(2

5
+

3
5
(1 + z)−

3
2

)
/ ln(1 + z) = −1 + wm,z. (24)

In this case we get wΛ,0 = −1.6 at z = 0 and wΛ,0 = −1 at z = ∞. This means that the equation of
state parameter was identical for the two models at the beginning of the universe but has evolved to
a higher negative value for the new ΛCDM model while remaining constant at −1 for the standard
ΛCDM model This may be compared with Linder’s [24] w(a) = w0 +waz/(1 + z) where w0 and wa are
constants, and Farnes’ [3] w = −1 + γ(1− Γ/3H) where γ is a constant and Γ(t) is the rate of change of
the particle number in a physical volume V containing N particles. The evolutionary equation of state
parameter is analytical in Equations (23) and (24), whereas Lindel’s and Farnes’ need to be determined
by fitting the data, and thus would have a high degree of degeneracy with other model parameters.

What is the physics behind the varying equation of state parameter and what makes wΛ,0 = −1.6
at z = 0 and wΛ,0 = −1 at z = ∞? Our approach here may at best be thought of as phenomenological in
that it conjectures an association of the non-adiabatic parameter β to w in the current subsection and to
G/c2 in the next subsection. It may even be seen as the effect of modification of the standard continuity
equation

.
ε+ 3

.
a

a (ε+ P) = 0 with the addition of the term βε in Equation (3). Capozziello et al. [28]
have succinctly explained the physics that could cause variation of the constants, such as through
the coupling of G with some scalar field, and have established a way of determining the same from
observational data using model independent cosmography. It should be mentioned that the analytical
determination of deceleration parameter q0 = −0.4 in the last subsection is based on constant equation
of state parameters wi in Equation (13); we have not used varying wi in fitting the SNe Ia data.

2.4. Evolutionary Gravitational Constant and Speed of Light

If we associate eβ(t0−t) factor in Equation (8) with G
c2 (≡ K) and write it as:

G
c2 =

G0

c2
0

eβ(t0−t) , or K = K0eβ(t0−t), then

.
K
K

= −β. (25)

And, since β = −1.8H0, we get a dimensionless quantity
.
K

KH0
= 1.8. We may also write explicitly:

.
G
G
−

2
.
c

c
= 1.8H0. (26)

Accordingly, it is the combination of the gravitational constant and the speed of light that may be
evolving rather than one or the other. Taking H0 = 70 km s−1 Mpc−1 (2.14 × 10−18 s−1) we get

.
K
K = 3.85 × 10−18 s−1 = 1.21 × 10−10 per year. If so, they could be manifested in the cosmological
observations as the nonadiabaticity of the universe.

The findings from the lunar laser ranging (LLR) data analysis provides the limits on the variation
of

.
G/G that are currently considered to be about three orders of magnitude lower than that expressed

by Equation (26) [34]. However, the LLR data analysis is based on the assumption that the speed
of light is constant and non-evolutionary. If this constraint is dropped then the finding would be
very different.

As is well known [35], a time variation of G will show up as an anomalous evolution of the orbital
period P of astronomical bodies expressed by Kepler’s 3rd law:

P2 =
4π2r3

GM
, (27)
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where r is semi-major axis of the orbit, and M is the mass of the bodies involved in the orbital motion
considered. If we take time derivative of Equation (27), divide by P2 and rearrange, we get:

.
G
G

=
3

.
r

r
−

2
.
P

P
−

.
M
M

(28)

If we write r = ct then
.
r
r = 1

t +
.
c
c . We may therefore rewrite Equation (28) as:

.
G
G
−

3
.
c

c
=

3
t
−

2
.
P

P
−

.
M
M

. (29)

Since LLR measures the time of flight of the laser photons, it is the right hand side of Equation (29)
that is determined from LLR data analysis to be 7.1± 7.6 × 10−14 [34] and not the right hand side of
Equation (28). Then, taking the right hand side of Equation (29) as 0 in comparison with the right hand

side of Equation (26), one can solve the two equation and get
.

G
G = 5.4H0 and

.
c
c = 1.8H0. If we do not

substitute β = −1.8H0 above then we may write
.

G
G = −3β and

.
c
c = −β. However, it is important to note

that the above findings make sense only when G and c are both considered to vary rather than only G.
It should be emphasized that there could be additional contributors to the nonadiabatic factor

eβ(t0−t) in Equation (8), such as the density evolution. Such contributors will affect the values of
.

G/G
and

.
c/c determined above. However, the ratio of the two will not be affected and will remain equal to

3. In addition, by substituting β = −
.
K/K the continuity equation (Equation (3)) assumes the form

.
ε+

3
.
a

a
ε(1 + w) −

.
K
K
ε = 0.

And since K ≡ G
c2 , the above equation becomes

.
ε+

3
.
a

a
ε(1 + w) −

 .
G
G
−

2
.
c
c

ε = 0.

As expected, under this approach, the standard continuity equation is modified to include the variation
of G and c.

3. Results

The data used in this work is the so-called Pantheon sample of 1048 supernovae 1a developed by
Scolnic and his associates [25] in the rage of 0.01 < z < 2.3. To test the predictive capability of each
model, we divided the data in six subsets: (a) z < 0.5; (b) z < 1.0; (c) z < 1.5; (d) z > 0.5; and (e) z > 1.0;
and (f) z > 1.5. Each of the three models—the standard ΛCDM model (S-ΛCDM), Equation (17); the
nonadiabatic ΛCDM model (N-ΛCDM), Equation (19); and the nonadiabatic Einstein de Sitter model
(EdeS-NA), Equation (15)—were then parameterized with subsets (a), (b) and (c). The parameterized
models were then fitted to the data in the subsets that contained data with z values higher than in the
parameterized subset. For example, if the models were parameterized with data subset (a) z < 0.5,
then the models were fitted with the data subsets (d) z > 0.5, (e) z > 1.0 and (f) z > 1.5.

The Matlab curve fitting tool was used to fit the data by minimizing χ2 and the latter was used
for determining the corresponding χ2 probability P [36]. Here χ2 is the weighted summed square of
residual of µ:

χ2 =
N∑

i=1

wi
[
µ(zi; R0, p1, p2 . . .) − µobs,i

]2
, (30)

where N is the number of data points, wi is the weight of the ith data point µobs,i determined from
the measurement error σµObs,i in the observed distance modulus µobs,i using the relation wi = 1/σ2

µObs,i
,
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and µ(zi; R0, p1, p2 . . .) is the model calculated distance modulus dependent on parameters R0 and all
other model dependent parameter p1, p2, etc. As an example, for the ΛCDM models considered here
p1 ≡ Ωm,0 and there is no other unknown parameter.

We then quantify the goodness-of-fit of a model by calculating the χ2 probability for a model
whose χ2 has been determined by fitting the observed data with known measurement error as above.
This probability P for a χ2 distribution with n degrees of freedom (DOF), the latter being the number of
data points less the number of fitted parameters, is given by:

P(χ2, n) =

 1

Γ
(

n
2

) 
∫
∞

χ2
2

e−uu
n
2−1du , (31)

where Γ is the well know gamma function that is generalization of the factorial function to complex
and non-integer numbers. Lower the value of χ2 better is the fit, but the real test of the goodness-of-fit
is the χ2 probability P; higher the value of P for a model, better is the model’s fit to the data. We used
an online calculator to determine P from the input of χ2 and DOF [37].

It should be mentioned that following Vishwakarma and Narlikar [38] we have preferred to use
Pearson’s χ2 weighted least square fit approach of data analysis through the χ2 probability comparison
of various models rather than the Bayesian approach.

Our primary findings are presented in Table 1. The unit of the Hubble distance R0 is Mpc and of
the Hubble constant H0 is km s−1 Mpc−1. The table is divided in three categories vertically and four
categories horizontally. Vertical division is based on the parameterizing data subset indicated in the second
row and discussed above. The parameters determined for each model are in the first horizontal category.
The remaining horizontal categories show the goodness-of-fit parameters for higher redshift subsets than
used for parameterizing the models. Thus, this table shows the relative predictive capability of the three
models. The blank space in the table corresponds to the data subsets that are included in the parameterizing
data subset. Model cells with the highest probability in each category are shown in bold and highlighted.
However, some numbers are too close to determine clearly a better model.

In order to assess clearly the goodness-of-fit in each category and make them comparable between
categories, we decided to use the normalization method introduced in a recent paper [36]. The method is
as follows:

(a) Assume that the error bars represented by the variance σ are incorrect in the same proportion for
all data points in a dataset, and thus the error in estimating χ2 using Equation (30) is affected in
the same proportion for all models.

(b) Assume further that the standard ΛCDM model gives P = 50%, and calculate the corresponding
χ2 for the degree of freedom for the dataset being analysed.

(c) Compare the above χ2 value with that actually determined. Find the ratio F of the two values and
use it as a multiplier to normalize values of χ2 of all the models for the dataset in the category.

(d) Use the normalized values ofχ2 to determine theχ2 probability P for each model. Consider models
giving higher P value than 50% better than the ΛCDM model for the data set used, and vice versa.

Table 2 presents the summary of the goodness-of-fit parameters corresponding to Table 1 with
normalized χ2 such that the χ2 probability for the ΛCDM model in each category is 50%. The highest
P% value in each category is shown in bold and the cell highlighted for ease of discussion.
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Table 1. Parameterizing and prediction table for 3 models. This table shows how well a model is able to fit the data that is not used to determine the model parameters.
The unit of R0 is Mpc and of H0 is km s−1 Mpc−1. P% is the χ2 probability in percent that is used to assess the best model for each category; higher the χ2 probability P
better is the model fit to the data. R2 is the square of the correlation between the response values and the predicted response values. RMSE is the root mean square
error. Highest P% value in each category is shown in bold and the cell highlighted.

Action/Item S-ΛCDM N-ΛCDM EdeS-NA S-ΛCDM N-ΛCDM EdeS-NA S-ΛCDM N-ΛCDM EdeS-NA

Parameterized Model dataset z < 0.5; 832 points Model dataset z < 1.0; 1025 points Model dataset z < 1.5; 1042 points

R0 4259 ± 34 4228 ± 35 4327 ± 18 4269 ± 27 4207 ± 29 4333 ± 16 4271 ± 26 4205 ± 28 4333 ± 16
Ωm,0 0.2601 ± 0.0457 0.4345 ± .035 1 (Fixed) 0.2793 ± 0.0261 0.4069 ± 0.0219 1 (Fixed) 0.2818 ± 0.0249 0.4042 ± 0.0210 1 (Fixed)

H0 70.39 ± 0.56 70.90 ± 0.58 69.29 ± 0.29 70.23 ± 0.44 71.26 ± 0.49 69.19 ± 0.25 70.19 ± 0.42 71.30 ± 0.47 69.19 ± 0.25
χ2 863.5 861.9 881.2 1018 1022 1038 1033 1036 1052

DOF 830 831 1023 1024 1040 1041
P% 20.39 21.49 11.05 53.82 50.29 37.34 55.53 52.91 39.95
R2 0.9961 0.9961 0.9961 0.9969 0.9969 0.9969 0.9970 0.9970 0.9969

RMSE 1.020 1.019 1.030 0.9977 0.9993 1.007 0.9965 0.9982 1.005
Model Fit Dataset z > 0.5; 216 points Dataset z > 0.5; 216 points Dataset z > 0.5; 216 points

χ2 176.9 185.7 175.1
NOT APPLICABLE SINCE THIS DATASET

INCLUDES THE DATASET USED TO
PARAMETERIZE THE MODEL

NOT APPLICABLE SINCE THIS DATASET
INCLUDES THE DATASET USED TO

PARAMETERIZE THE MODEL

DOF 216
P% 97.59 93.31 98.10
R2 0.9605 0.9585 0.9609

RMSE 0.905 0.9271 0.9003
Model Fit Dataset z > 1.0; 23 points Dataset z > 1.0; 23 points

χ2 19.54 18.81 17.83 17.59 16.55 17.95
NOT APPLICABLE SINCE THIS DATASET

INCLUDES THE DATASET USED TO
PARAMETERIZE THE MODEL

DOF 23
P% 66.94 71.21 76.66 77.93 83.07 76.01
R2 0.8741 0.8788 0.8851 0.8867 0.8934 0.8844

RMSE 0.9216 0.9044 0.8805 0.8746 0.8483 0.8834
Model Fit Dataset z > 1.5; 6 points

χ2 4.090 2.066 3.569 3.167 1.745 3.649 3.076 1.731 3.649
DOF 6
P% 66.44 91.35 73.49 78.76 94.15 72.40 79.92 94.27 72.40
R2 0.5993 0.7975 0.6504 0.6897 0.8291 0.6424 0.6986 0.8304 0.6424

RMSE 0.8256 0.5869 0.7712 0.7265 0.5392 0.7799 0.716 0.5371 0.7799
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Table 2. Summary of the goodness-of-fit parameters corresponding to Table 1 with normalized χ2. This table is based on the normalized χ2 such that the χ2 probability
P for the S-ΛCDM model in each category is 50%. Highest P% value in each category is shown in bold and the cell highlighted. The last but one row shows the
average P% in each column whereas the last row shows the average predictive P% in each column.

Action/Item S-ΛCDM N-ΛCDM EdeS-NA S-ΛCDM N-ΛCDM EdeS-NA S-ΛCDM N-ΛCDM EdeS-NA
Parameterized Model dataset z < 0.5; 832 points Model dataset z < 1.0; 1025 points Model dataset z < 1.5; 1042 points
Normalized χ2 829.3 827.8 846.3 1018 1022 1038 1033 1036 1052

DOF 830 831 1023 1024 1040 1041
Normalized P% 50.00 51.50 34.85 50.00 46.77 34.08 50.00 47.66 35.00

Model Fit Dataset z > 0.5; 216 points Dataset z > 0.5; 216 points Dataset z > 0.5; 216 points
Normalized χ2 215.3 226 213.1 NOT APPLICABLE SINCE THIS DATASET

INCLUDES THE DATASET USED TO
PARAMETERIZE THE MODEL

NOT APPLICABLE SINCE THIS DATASET
INCLUDES THE DATASET USED TO

PARAMETERIZE THE MODEL
DOF 216

Normalized P% 50.00 30.64 54.30
Model Fit Dataset z > 1.0; 23 points Dataset z > 1.0; 23 points

Normalized χ2 22.34 21.50 20.38 22.34 21.02 22.79 NOT APPLICABLE SINCE THIS DATASET
INCLUDES THE DATASET USED TO

PARAMETERIZE THE MODEL
DOF 23

Normalized P% 50.00 55.05 61.88 50.00 57.98 47.30
Model Fit Dataset z > 1.5; 6 points

Normalized χ2 5.348 2.702 4.667 5.348 2.947 6.162 5.348 3.019 6.344
DOF 6

Normalized P% 50.00 84.52 58.71 50.00 81.54 40.52 50.00 80.64 38.57
Average P% 50.00 55.43 52.44 50.00 62.10 40.63 50.00 64.15 36.79

Av. Pred. P% 50.00 56.74 58.30 50.00 69.76 43.91 50.00 80.64 38.57
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The results are graphically depicted in Figures 1–3 for easy visualization. Figure 1 corresponds
to the data fit prediction based on model parameterization using data for z < 0.5 and Figures 2
and 3 corresponds to the prediction based on model parameterization using data for z < 1 and data
z < 1.5, respectively.
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We present in Figure 4 the evolution of the density parameter ΩΛ,z corresponding the cosmological
constant against the redshift z evaluated using Equation (18). It increases from 0.16ΩΛ,0 at z = ∞

to ΩΛ,0 = 1 at z = 0. The figure shows the evolution over 0 ≤ z ≤ 2.5. In Figure 5 is shown the
evolution of the equation of state parameter wΛ,z against z using Equation (24) over the limited range
of 0 ≤ z ≤ 20.
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4. Discussion

Referring to Table 2, let us first consider the columns corresponding to the dataset z < 0.5.
A marginally better parameterization for this data subset is achieved by N-ΛCDM model as compared to
the S-ΛCDM model whereas EdeS-NA is significantly worse than the other two. However, the predictive
data fit for the EdeS-NA model is significantly better than the other two models for data subsets z > 0.5
and z > 1.0, and significantly better than the S-ΛCDM for the data subset z > 1.5. In terms of the
average probability, including the parameterization category, N-ΛCDM model shines, whereas for the
average of the predictive capability EdeS-NA model is marginally better than the N-ΛCDM model and
significantly better than the S-ΛCDM model.

If we look at the next three columns in Table 2, corresponding to the model parameterization
using the dataset z < 1.0, our findings are as follows. The S-ΛCDM model beats the other two in
parameterization game, but predictive capability of the N-ΛCDM model is unsurpassed by a good
margin over the other two all through, including the average P% and the average predictive P%.
The N-ΛCDM performs even better when the model parameterization is done using dataset z < 1.5
that is shown in the last three columns of Table 2.

The above is not surprising since N-ΛCDM has z dependent dark energy density. However, unlike
the Chevallier-Polarski-Linder model, this redshift dependence does not require any additional fitting
parameters; it is totally analytical and depends only on the assumption that the thermodynamic energy
loss or gain of any volume of the universe is proportional to the energy in that volume.

Considering the fact that EdeS-NA model has no adjustable parameter other than the Hubble
constant, the predictive fits offered by this model are surprising better than the S-ΛCDM model when
the models are parameterized with the most limited dataset.

Let us now focus on the trend in the model parameterizing categories in Table 1, i.e., the first row
of categories. We notice that as we go from lower to higher z datasets, the R0 and Ωm,0 values are
increasing for the S-ΛCDM model while these values are decreasing for N-ΛCDM model. For EdeS-NA
model R0 is increasing too, but very little. Thus, the predictive P% has changed only very slightly for
the Edes-NA model while the same has changed quite significantly for the other two models.

One could therefore infer that the N-ΛCDM model is superior to the S-ΛCDM in all respects
studied in here. Even though EdeS-NA model is not the best for parameterizing the data, its predictive
capabilities cannot be ignored, especially when models have only relatively low redshift data for
parameterizing the models. Considering that EdeS-NA model is a single parameter model, whereas
the other two models are two parameter models, Occam’s razor criterion would give EdeS-NA a very
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high rating. The application of these models to other cosmological phenomena without any bias would
then determine critically the better model.

Having established from the analysis of the SNe Ia data that the superiority of N-ΛCDM,
and viability of EdeS-NA model, against the S-ΛCDM model, we can have confidence in other finding
of the model as well:

(a) The nonadiabaticity of the universe when considered as dark energy density has redshift

dependence proportional to
(

2
5 + 3

5 (1 + z)−
3
2

)2
, Equation (18).

(b) Similarly, the equation state parameter for matter can be considered to evolve as
2
3 ln

(
2
5 + 3

5 (1 + z)−
3
2

)
/ ln(1 + z) Equation (23). Alternatively, the equation of state parameter

for dark energy may be taken to be wΛ,z = −1 + 2
3 ln

(
2
5 + 3

5 (1 + z)−
3
2

)
/ ln(1 + z), Equation (24).

(c) All or a portion of the nonadiabadicity of the universe may be due to the variation of the

gravitational constant G and the speed of light c through the relation
.

G
G −

2
.
c

c = 1.8H0 = −β,

Equation (26). This, when combined with the LLR data analysis Equation (29), yields
.

G
G =

5.4H0 = −3β and
.
c
c = 1.8H0 = −β when we assume all the nonadiabadicity is vested in

.
G
G and

.
c
c .

If we focus on the last finding (c), the challenge is to develop a method to measure the time
dependence of G and/or c without assuming either of them to be constant. LLR method measures the
round trip travel times of short laser pulses between observatories on the Earth and retroreflectors on
the Moon. So, the distance measurement depends on the constancy of the speed of light. However, since
G and c both enter the Friedmann equation, we cannot treat one to be dynamic without giving the
same status to the other. We should therefore use their time dependent forms G = G0e3β(t0−t) and
c = c0eβ(t0−t) when time dependency of G and c could impact the measurements outcome. The value
of the nonadiabaticity parameter β may be taken as −1.8H0 until a better value is determined.

The concern about the use of a dimensionful constant in this paper may be dispelled by knowing

that one could arrange to rewrite, for example
.
c
c = 1.8H0,

.
G
G = 5.4H0, c = c0eβ(t0−t) and G = G0e3β(t0−t),

in their dimensionless forms as
.
c

cH0
= 1.8,

.
G

GH0
= 5.4, c/c0 = eβ(t0−t) and G/G0 = e3β(t0−t), respectively.

But this does not alter the findings presented in here. Thus, one could show the variability of the
constants expressed in terms of their present value denoted by adding subscript 0 to it.

5. Conclusions

The nonadiabatic foundation of the universe, that takes into account in its thermodynamics the
loss or gain of the energy of the universe in any volume to be proportional to the energy in the volume,
has been shown to be the basis of a new ΛCDM cosmological model that not only fits the best SNe Ia
data well, but has the predictive capability that is superior to the standard ΛCDM model. The new
nonadiabatic foundation also provides parameter free analytical expressions for the redshift (i.e., time)
dependence of dark energy and equation state parameters, and the possible time evolution of the
gravitational constant and the speed of light.
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