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Abstract: The Eddington-inspired-Born-Infeld (EiBI) model is reformulated within the mimetic
approach. In the presence of a mimetic field, the model contains non-trivial vacuum solutions.
We study a realistic primordial vacuum universe and we prove the existence of regular solutions.
Besides, the linear instabilities in the EiBI model are found to be avoidable for some bouncing
solutions. For a vacuum, static and spherically symmetric geometry, a new branch of solutions in
which the black hole singularity that is replaced with a lightlike singularity is found.
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1. Introduction

The inevitability of spacetime singularities in the context of General Relativity (GR) has inferred
the incompleteness of the theory and has jeopardized the validity of it close to these events [1]. The most
famous examples among the spacetime singularities would be the big bang singularity at the very
beginning of the universe as well as the spacelike singularity within a black hole. These singularities
are thought to be beyond the validity of GR and it is commonly believed that some sorts of quantum
effects or an appropriate construction of a quantum theory of gravity would solve this problem.
However, due to several troublesome technical difficulties, these tools have not reached a final answer.
In this work we will therefore follow a different but still cogent approach to address this issue based
on an extended theory of gravity [2].

From a phenomenological point of view, an extended theory of gravity should respect the success
of GR in the sense that the theory is required to recover GR in the proper limits. Furthermore,
the theory should, at least at the classical level, be able to address some of the difficulties that GR
cannot explain, such as the aforementioned singularity problems. An attractive candidate is the EiBI
theory [3]. This theory has been widely investigated both from the cosmological and astrophysical
points of view [4–18]. The EiBI theory is able to cure the big bang singularity at the cosmological
level [19]. Besides, some black hole singularities, once matter is included, are found to be altered [20–24].
However, the theory reduces exactly to GR in vacuum and the singularity predicted in a Schwarzschild
black hole is still unavoidable. On the other hand, the recently proposed mimetic formulation is found
to be able to generate non-trivial vacuum solutions [25]. When applied to Einstein-Hilbert action,
the theory can explain the mysterious dark matter at the cosmological scale [25–28]. The vacuum,
static, and spherically symmetric solutions of mimetic GR were also found in references [29–31].
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The theory would contain more interesting solutions when a certain potential of the mimetic scalar
field is considered [32,33]. See references [34,35] for a review of Born-Infeld theories of gravity and the
mimetic gravity, respectively.

In this work, we will combine the EiBI action with the mimetic formulation and call the resulting
theory the mimetic Born-Infeld gravity [36]. The non-trivial vacuum solutions are investigated by
considering an expanding universe [36] and a static, spherically symmetric spacetime [37]. The former
can be interpreted as a primordial stage of our universe before the reheating era. The latter is interesting
because the interior structure as well as the spacelike singularity inside a black hole are expected to be
amended in the mimetic Born-Infeld gravity.

The paper is organized as follows: In Section 2, we briefly introduce the mimetic Born-Infeld
gravity proposed in reference [36]. In Section 3, the vacuum solutions which can describe a primordial
stage of our universe are studied. In Section 4, we study the static and spherically symmetric solutions
in a vacuum spacetime, and find that the interior structure as well as the causal structure of the
singularity in a black hole are altered [37]. Finally, we conclude in Section 5.

2. The Mimetic Born-Infeld Gravity

The mimetic Born-Infeld gravity is based on the use of the mimetic formulation upon the EiBI
action (we have assumed 8πG = c = 1 throughout this work)

SEiBI =
2
κ

∫
d4x
[√
|gµν + κRµν(Γ)| − λ

√
−g
]
+ Sm(g, ψ), (1)

where Sm is the matter Lagrangian coupled only to the physical metric gµν. The mimetic formulation
is essentially a redefinition of the physical metric gµν such that [25]:

gµν = −(g̃αβ∂αφ∂βφ)g̃µν, (2)

where g̃µν and φ are the conformal auxiliary metric and the mimetic scalar field, respectively. Besides,
g̃µν corresponds to the inverse of g̃µν. The parametrization (2) respects the conformal invariance of
the theory in the sense that the theory is invariant under a conformal transformation of g̃µν. In the
action (1), the tensor Rµν(Γ) is chosen to be the symmetric part of the Ricci tensor constructed by the
affine connection Γ, and the connection is assumed to be independent of the metric gµν. According to
the mimetic formulation, the physical metric gµν in the action should be written as gµν(φ, g̃αβ) based
on the parametrization (2). The dimensionless constant λ quantifies the effective cosmological constant
at the low curvature limit. |gµν + κRµν(Γ)| stands for the absolute value of the determinant of the rank
two tensor gµν + κRµν(Γ). Finally, κ characterizes the theory and has inverse dimensions to that of the
cosmological constant.

It should be stressed that for the original EiBI gravity as well as the mimetic Born-Infeld gravity,
in which only the symmetric part of the Ricci tensor is considered in the action, there is a projective
gauge symmetry and the torsion field in the affine connection can be removed by a gauge fixing
procedure. A symmetric affine connection can be chosen after the corresponding gauge fixing and an
initial torsionless assumption is in general not necessary [34]. Furthermore, the theory is expected to
be free of ghosts since the theory is formulated within the Palatini approach in which the equations of
motion contain derivatives (naturally) up to only second order. Even if there is an additional mimetic
scalar field in the theory, when we transform the action (1) into the Einstein frame, it can be shown
that the mimetic scalar field does not couple to the metric that defines the scalar curvature. The higher
derivative terms as well as the associated ghost problems seem to be avoidable. We would like to refer
to reference [38] in which the authors managed to construct some ghost-free theories of gravity in the
mimetic framework under the metric variational principal.
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In the mimetic Born-Infeld theory, it is the affine connection Γ, the auxiliary metric g̃µν, and the
mimetic scalar field φ that should be treated as independent variables. After varying the action with
respect to Γ, the resulting field equation leads to the existence of a second auxiliary metric

q̂ ≡ ĝ + κR̂, (3)

such that q̂ is compatible with the affine connection Γ. Note that a hat symbolizes a matrix quantity.
Hereafter, we define a new matrix and its inverse as follows for the sake of convenience [7]:

Ω̂ ≡ ĝ−1q̂ , Ω̂−1 ≡ q̂−1 ĝ , (4)

such that q̂ = ĝΩ̂. As a result, the field Equation (3) and the equation of motion of g̃µν can be written as

q̂−1R̂ =
1
κ
( Î − Ω̂−1), (5)√

|Ω̂|Ω̂−1 = λ Î − κT̂ −F K̂, (6)

respectively1. In the above equations, K̂ is defined by K̂ ≡ ∂µφ∂νφ, T̂ ≡ Tµαgαν represents the energy

momentum tensor, Î is the four-dimensional identity matrix, and F ≡
√
|Ω̂|Tr(Ω̂−1)− 4λ + κTr(T̂),

where Tr(Â) denotes the trace of a given matrix Â. It should be stressed that the mimetic scalar field is
confined to fulfill the constraint:

Tr(K̂) = −1, (7)

which can also be derived straightforwardly from the parametrization (2). Finally, the field equation of
the mimetic scalar field φ is [36]

∂κ(
√
−gF∂κφ) = 0. (8)

In absence of the mimetic field, i.e., F = 0, the theory reduces to the original EiBI theory. Once
the mimetic field is included, its additional contributions would result in solutions which are absent in
the EiBI theory.

3. The Primordial Cosmological Solutions

In this section, we will obtain the cosmological solutions of a vacuum universe (Tµν = 0)2 in the
mimetic Born-Infeld gravity. These solutions can describe an early stage of the universe prior to the
reheating epoch. We will investigate how the mimetic field, on top of the Born-Infeld nature of the
theory, leads to a different birth of the cosmos.

1 It can be seen that the theory possesses a Weyl symmetry in the sense that the physical metric is invariant under the Weyl
transformation of g̃µν. More explicitly, the action remains unchanged under the transformation δg̃µν = Ω(x)g̃µν:[ δS

δg̃µν

]
Ω(x)g̃µν = 0,

where Ω(x) is an arbitrary function of the spacetime coordinates. We therefore immediately have

δS
δg̃µν

gµν = 0,

because gµν is by definition a Weyl transformed metric of g̃µν. This completes the proof of the tracelessness of the field
equation of g̃µν. Consequently, Equation (6) should be traceless due to the Weyl symmetry of the theory. This then guarantees
the constraint Equation (7).

2 Note that the notion of vacuum in this work means a spacetime in which the energy momentum tensor constructed from the
standard matter Lagrangian is zero. Even though there is a background intrinsic mimetic scalar field without any potential,
we will regard the contributions from it as a geometrical effect.
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We start considering a vacuum, homogeneous and isotropic universe which can be described by
the Friedmann-Lemaître-Robertson-Walker (FLRW) line element:

ds2
g = −N(t)2dt2 + a(t)2δijdxidxj , ds2

q = −M(t)2dt2 + b(t)2δijdxidxj , (9)

where N(t) and a(t) are the lapse function and the scale factor of the physical metric, respectively. M(t)
and b(t) are the corresponding quantities of the auxiliary metric qµν. The symmetries of the spacetime
imply that all these quantities only depend on the cosmic time t. Furthermore, the background solution
of the mimetic field F̄ can be obtained via Equations (7) and (8):

F̄ = l
( am

a

)3
≡ lx−3 , l = ±1, (10)

where am is a positive integration constant corresponding to a characteristic scale factor of the mimetic
field. We define as well a dimensionless variable x ≡ a/am for the sake of later convenience. In addition,
as mentioned above, l = ±1 indicates that F̄ can be either positive or negative. Note again that the
quantity F̄ refers to the homogeneous and isotropic part of F and it should be distinguished from its
linearly perturbative counterpart, i.e., F = F̄ + δF .

Essentially, the map q̂ = ĝΩ̂, which relates the two metrics ĝ and q̂, can be obtained by using
Equation (6). Using this map and inserting it into Equation (5), one can obtain the modified Friedmann
equations of this model. Due to the presence of the affine structure and the two metrics g and q, we will
derive the modified Friedmann equations of these metrics by assuming the lapse function N(t) to be
unity. The results are

3κH2 =
8(1 + 2λ

√
Q− 3Q)

(1 + 3Q)2 , 6κH2
q =

1 + 2λ
√

Q− 3Q
λ
√

Q
, (11)

where H ≡ ȧ/a = ẋ/x and Hq = (1/b)(db/dt̃) where dt̃ ≡ M(t)dt. The dot denotes the cosmic time
derivative. Similar to what we did for the physical scale factor, we will define a new dimensionless
variable y ≡ b/am and we have then Hq = (1/y)(dy/dt̃). On the above Friedmann equations, we
have defined

Q ≡ λ

λ + F̄
=

λx3

λx3 + l
. (12)

Notice that Q ≥ 0 because the matrix Ω̂ is a nonnegative matrix. Note that the modified
Friedmann equations describing a universe with perfect fluids are explicitly given in reference [36].

3.1. Cosmological Solutions of a Vacuum Universe

In this subsection, we will show the results of the vacuum cosmological solutions in this
model. The solutions are obtained by analyzing the modified Friedmann Equation (11) for the
different configurations of the parameter space (κ, λ, l). Given that we live in an expanding universe,
we will restrict our analysis to solutions with a positive Hubble rate. As it is well known under a
straightforward time reversal, we would recover the contracting solutions easily. The results are
presented in Figures 1 and 2 and summarized in Table 1.

Firstly, it can be proven that there is no physical Lorentzian solution for a negative (positive) κ if
l = −1 and λ ≥ 1 (l = −1 and λ ≤ 1). We refer to those situations with the label “N” in Table 1.

Secondly, when x � 1 (this implies y� 1 as well), the modified Friedmann Equation (11) become

H2 =
λ− 1

3κ
+O−3(x) , x � 1 , and H2

q =
λ− 1
3κλ

+O−3(y) , y� 1 . (13)

Therefore, if (λ− 1)/κ > 0, the universe is approximately de Sitter in both metrics. See the dashed
and dotted curves in Figures 1 and 2. If (λ− 1)/κ < 0, the universe goes from an expanding phase
to a contracting phase through a smooth bounce for a finite value of x and y. At this bouncing point,
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the Hubble functions vanish. See the blue curves in Figures 1 and 2. Finally, if λ = 1, the universe
approaches a Minkowskian spacetime when x and y are large, i.e., Rαβµν(Γ)→ 0. See the black solid
curves in Figures 1 and 2.

Thirdly, if l = 1 and κ > 0, the physical metric is approximately de Sitter, while the auxiliary
metric has a big bang singularity at y = 0 at small scale factors:

H2 =
8

3κ
+O3/2(x) , x � 1 , and H2

q =
1

6κy6 +O0(y) , y� 1 . (14)

See the black and blue curves in Figure 1. On the other hand, if l = 1 and κ < 0, the universe has
a bounce in both metrics. See the red curves in Figure 2.

Fourthly, if l = −1 and κ > 0, the universe has a bounce in both metrics. See the red curves in
Figure 1. On the other hand, if l = −1 and κ < 0, the physical metric has a bounce when x goes to its
minimum value xm, while the auxiliary metric has a big bang singularity at y = 0. See the black and
blue curves in Figure 2.

It should be stressed that the de Sitter (the physical Hubble rate described by Equation (14)) and
the bouncing solutions shown above are non-trivial vacuum solutions in this model. Furthermore,
the solutions described by the blue and black curves in Figures 1 and 2 are accompanied by a divergence
of the auxiliary metric. This kind of pathology is present in the EiBI theory as well. Finally, the solutions
described by the red curves in Figures 1 and 2 are regular in both metrics and they are exclusive
fingerprints of this model. As we will show later, the linear metric perturbations, including scalar,
vector, and tensor modes, are stable near the bounce in what respect the physical metric. Note that
the regular solutions in the Eddington regimes of the EiBI theory are linearly unstable and these
instabilities may result from the corresponding divergence of the auxiliary metric [8].

0 1 2 3 4 5
x

5
10
15
20
25
6 ΚH2

0 1 2 3 4 5
y

2
4
6
8

10
6 ΚHq

2

Figure 1. The squared Hubble rate of the physical metric (left) and the auxiliary metric (right) are
shown as functions of the rescaled scale factors x and y, respectively. In these figures, we choose a
positive κ. The black and red curves correspond to l = 1 and l = −1, respectively. Within the black and
red curves, the solid, dashed, and dotted curves correspond to λ = 1, λ = 2, and λ = 3, respectively.
Besides, the blue curves exhibit the solutions in which the universe has a smooth bounce between an
expanding phase and a contracting phase (λ = 1/2, l = 1).
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Figure 2. The squared Hubble rate of the physical metric (left) and the auxiliary metric (right) are
shown as functions of the rescaled scale factors x and y, respectively. In these figures, we choose a
negative κ. The black and red curves correspond to l = −1 and l = 1, respectively. Within the black
and red curves, the solid, dashed, and dotted curves correspond to λ = 1, λ = 1/5, and λ = 2/5,
respectively. Besides, the blue curves exhibit the solutions in which the universe has a smooth bounce
between an expanding phase and a contracting phase (λ = 2, l = −1).
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Table 1. This table summarizes the cosmological behaviors of the universe described by the two
metrics, gµν and qµν, for small and large scale factors for all the possible combinations of the parameters
{κ, λ, l}. For example, {+,−, 1} corresponds to the parameter space κ > 0, λ < 1 and l = 1, and so
forth. The character “N” in the table means that there is no solution for such a choice of parameters.

Small Scale Factor Large Scale Factor

{κ, λ− 1, l} Physical: gµν Auxiliary: qµν Physical: gµν Auxiliary: qµν

{+,+, 1} de Sitter big bang de Sitter de Sitter
{+,+,−1} bounce bounce de Sitter de Sitter
{+,−, 1} de Sitter big bang bounce bounce
{+,−,−1} N N N N
{+, 0, 1} de Sitter big bang Minkowski Minkowski
{+, 0,−1} N N N N
{−,+, 1} N N N N
{−,+,−1} bounce big bang bounce bounce
{−,−, 1} bounce bounce de Sitter de Sitter
{−,−,−1} bounce big bang de Sitter de Sitter
{−, 0,−1} bounce big bang Minkowski Minkowski
{−, 0, 1} N N N N

3.2. Linear Stabilities Near the Bounce

In the EiBI model, the avoidance of the big bang singularity in the physical metric is accompanied
by the divergence of the auxiliary metric. In reference [8] it was shown that the divergence in the
auxiliary metric may lead to instabilities of the cosmological perturbations. Interestingly, in the mimetic
Born-Infeld model, we have found some bouncing solutions (the red curves in Figures 1 and 2) in
which the physical metric and the auxiliary metric are regular. It is then natural to ask whether these
bouncing solutions are linearly stable or not.

We consider small perturbations around a vacuum FLRW universe

ds2
g = (−1 + h00)dt2 + a2(δij + hij)dxidxj + 2h0idtdxi, (15)

ds2
q = M2(−1 + γ00)dt2 + b2(δij + γij)dxidxj + 2

b2

a2 γ0idtdxi, (16)

and perturb the field of the theory linearly:

φ = t + δφ(xi, t) , F = F̄ + δF . (17)

To proceed, we decompose the perturbed quantities of the physical metric as follows [39,40]

h00 = −E , h0i = ∂iF + Gi , hij = Aδij + ∂i∂jB + ∂jCi + ∂iCj + Dij, (18)

such that ∂iCi = ∂iGi = ∂iDij = Dii = 0. Therefore, in this setup, we have six scalar modes
δφ, E, F, A, B, δF , two transverse vector modes Ci, Gi and one transverse-traceless tensor mode Dij.
Physically, we can fix two scalar modes by choosing a gauge because only four of them are independent.
For vector modes, we can similarly fix one by choosing a gauge. In reference [36], we have obtained all
the equations governing the evolutions of these perturbations.

To study the linear stabilities close to the bounce in which the two metrics are regular (the red
curves in Figures 1 and 2), we should obtain the asymptotic behaviors of each mode near the bounce.
As in reference [8], we will choose the Newtonian gauge for scalar modes, that is, B = F = 0. Then,
we will fix Ci = 0 for vector modes. The results for tensor modes and vector modes are the following:

Dij ≈ c1eiωt + c2e−iωt , Gi ≈ c3 , (19)
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where

ω2 ≡ λxbk2

(λx3
b + l)a2

m
≥ 0, (20)

and c1, c2, and c3 are integration constants. Note that xb refers to the rescaled physical scale factor at
the bounce, k stands for Fourier modes, and we assume that the bounce happens at t = 0 for simplicity.
It can be seen that tensor modes and vector modes are linearly stable near the bounce.

For scalar modes, we choose B = F = 0, then the equation describing the evolution of the
perturbed mimetic scalar field δφ near the bounce can be written as δ̈φ + ω2

s δφ = 0, where

ω2
s =

( l
λx3

b + l

)( 2λx3
b

4λx3
b + l

)( k2

2x2
ba2

m
− 1

κ

)
. (21)

The solution then reads
δφ ≈ c4eiωst + c5e−iωst, (22)

where c4 and c5 are integration constants. Therefore, δφ is stable around the bounce in the sense that
the amplitude does not grow. Note that even though the dispersion relation (21) seems to hint an
imaginary frequency mode if some choices of the parameters are assumed, it does not imply a real
instability in the sense that this dispersion relation is valid only near the bounce (t → 0). However,
a general dispersion relation applicable away from the bounce still remains unknown and whether the
unwanted tachyonic instability would appear or not should be investigated further.

The behaviors of the other scalar modes near the bounce can be approximated in terms of δφ

as follows

A = −2
(λx3

b + l
λx3

b

)
˙δφ, E =

1
2

˙δφ,

˙δF = −
[ λx3

b + l
4λx3

b + l

( 4k2

x2
ba2

m

)
− 1

κ

( 6l
4λx3

b + l

)] l
x3

b
δφ. (23)

Given that δφ can be expressed as in Equation (22) near the bounce, these scalar modes are all
stable when t→ 0. Note that we have only focused on the physical perturbations described by gµν in
this work.

4. Spherically Symmetric Solutions in Vacuum

It is a well known fact that the EiBI theory is equivalent to GR in vacuum, hence the theory shares
the same vacuum solution of GR. However, as shown in the previous section, the mimetic Born-Infeld
theory contains non-trivial vacuum solutions which are absent in GR, i.e., the physical Hubble rate
described by Equation (14) and the bouncing solutions. Therefore, it would be interesting to investigate
the vacuum, static, and spherically symmetric solutions in the mimetic Born-Infeld model and to study
how the Schwarzschild solution could be altered, especially the spacelike center of a Schwarzschild
black hole. The results shown in this section are based on our recent paper [37].

We consider again a vacuum spacetime and assume a static and spherically symmetric ansatz:

ds2 = −ψ2(r) f (r)dt2 +
1

f (r)
dr2 + r2dΩ2 , ds2

q = −G2(x)H(x)dt2 +
1

H(x)
dx2 + x2dΩ2 , (24)

where dΩ2 = dϑ2 + sin2 ϑdϕ2 and x stands for a new radial coordinate which can be written as a
function of r. In this configuration, the mimetic scalar field φ and the mimetic field F should depend
only on r.

By calculating the constraint (7) and considering the field Equation (6), one can obtain the
expression of the map q̂ = ĝΩ̂ relating the two metrics, hence obtain the following identities
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G2(x)H(x) = λψ2(r) f (r)X(r) ,
(dx

dr

)2
=

λH(x)
X(r) f (r)

, x2 = λr2X(r) , (25)

where the function X(r) is defined as

X(r) ≡
√

1 +
F (r)

λ
. (26)

Furthermore, the metric functions of the auxiliary metric qµν can be obtained by calculating
Equations (5) and (8). Afterwards, the metric functions of the physical metric gµν can be derived by
inserting the identities (25). In absence of the mimetic field, we have F (r) = 0 and X(r) = 1 for all r.
In this case, the Schwarzschild-de Sitter solution is recovered. The non-trivial solutions only appear in
the presence of the mimetic field.

Given that the equations describing vacuum, static and spherically symmetric spacetimes in the
presence of the mimetic field are complicated, we will resort to numerical methods. We firstly assume
λ = 1, i.e., a vanishing cosmological constant, for the sake of simplicity. The solutions derived will
then be compared with the standard Schwarzschild solution. On a certain radius (x = xi) inside the
event horizon, we assume that there is a small amount of the mimetic field, i.e., X(xi) = 1 + δ, and the
solutions deviate from the Schwarzschild geometry within this radius, that is, X 6= 1 when x ≤ xi.
This particular radius xi is the point where the initial conditions are imposed. The major goal of this
work is to study how a small deviation δ in the mimetic field would alleviate the spacelike singularity
in the interior of a Schwarzschild black hole. In the rest of this work, we will assume a positive κ

because of the instability problems ubiquitous to a negative κ [9].
After normalizing the radius by assuming x → x/

√
κ and r → r/

√
κ, the numerical results of

the metric functions of the physical metric are shown in Figure 3. The dashed curves are derived
by assuming an initial condition δ = 0.01 at xi = 10, and the dotted curves correspond to an initial
condition δ = −0.01 at xi = 10. Note that the qualitative behaviors of the solutions do not depend
on the quantitative values of these conditions once the sign of δ is fixed. The solution in absence
of the mimetic field, i.e., the Schwarzschild solution, is also shown by the solid curves. In the
presence of the mimetic field, the solutions deviate significantly from the Schwarzschild solution when
r → 0. If δ > 0 (dashed), the metric functions and the curvature invariants can be approximated as
ψ2(r) f (r) ≈ a1r4/5/ ln r, f (r) ≈ a2r2 ln r, gµνRµν[g] ≈ 2/r2, and Rabcd[g]Rabcd[g] ≈ 4/r4 when r → 0.
On the other hand, if δ < 0 (dotted), we have ψ2(r) f (r) ≈ b1r−4, f (r) ≈ b2r−6, gµνRµν[g] ∝ r−8,
and Rabcd[g]Rabcd[g] ∝ r−16 when r → 0. Therefore, there is a curvature singularity at r = 0 for the two
choices of initial conditions.

2 4 6 8 10
r�rBI

-300
-250
-200
-150
-100
-50

0
Ψ2HrLf HrL

2 4 6 8 10
r�rBI

-400

-300

-200

-100

0
f HrL

Figure 3. The numerical results of the metric functions ψ2(r) f (r) (left) and f (r) (right) are shown as
functions of r/rBI, where rBI ≡

√
κ. The dashed, dotted and the solid curves correspond to δ = 0.01,

δ = −0.01 and δ = 0 (GR) at xi = 10, respectively.

4.1. The Radially Infalling Proper Time

After exhibiting the difference between the Schwarzschild black hole and the solutions in the
presence of the mimetic field, it would be interesting to study the infalling proper time of a timelike
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observer elapsed to reach the singularity for each solution. For a static and spherically symmetric
metric given in Equation (24), the geodesic equations of a timelike observer are

ψ2(r) f (r)
dt
dτ

= ε , r2 dϕ

dτ
= L , − ε2

ψ2(r) f (r)
+

1
f (r)

( dr
dτ

)2
+

L2

r2 = −1 . (27)

On the above equations, ε and L can be regarded as the conserved energy and the angular
momentum of the system. Note that we have considered the motion on the plane ϑ = π/2. For a
radial motion, we have L = 0.

Then, we consider two different cases to analyze the infalling proper time: (i) ε = 1 and (ii)
ε = 0. The first case, ε = 1, corresponds to a situation in which an observer is at rest at infinity and
falls freely into the black hole. In the second case, ε = 0, the observer is initially at rest on the event
horizon. The proper time for the second case is called the maximal infalling proper time [41]. We use
the numerical results of the metric functions in the previous subsection and derive the infalling proper
time τ(r) numerically for these two cases. The results are shown in Figure 4. We assume that the
observer starts to count his/her time when crossing xi, that is, τ(xi) = 0. One can see that for ε = 1,
the infalling proper time to reach the singularity is finite for both choices of initial conditions. On the
other hand, if δ > 0, the maximal infalling proper time (ε = 0) to reach the singularity is found to be
infinite. However, the maximal infalling proper time for the solution described by the dotted curve
(δ < 0) is even smaller than its GR counterpart.
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Figure 4. The infalling proper time τ(r) for ε = 1 (left) and ε = 0 (right) is shown as a function of
r/rBI. The dashed, dotted and the solid curves correspond to δ = 0.01, δ = −0.01 and δ = 0 (GR) at
xi = 10, respectively.

4.2. The Causal Structure of the Singularity

Another important property of the curvature singularity is its causal structure and we will
investigate this issue in this subsection. We firstly focus on the tr plane and define a new set of timelike
and spacelike coordinate as follows: T̄ = (ū− v̄)/2 and X̄ = (ū + v̄)/2, where

ū = eĀ(t+r̄) , v̄ = −e−Ā(t−r̄) , (28)

Ā is a positive constant, and r̄ satisfies dr̄ = dr/(ψ(r) f (r)). The line element becomes

ds2 = −ψ2(r) f (r)e−2Ār̄ Ā−2(−dT̄2 + dX̄2), (29)

and we have
T̄2 − X̄2 = e2Ār̄. (30)

For the solutions with initial conditions δ > 0 (dashed curves), we find that

T̄2 − X̄2 = 0, (31)
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when r = 0. This means that the curvature singularity is a lightlike singularity. If we connect the two
portions of spacetime: the interior structure described above (x ≤ xi) and the Schwarzschild spacetime
(x > xi), the causal structure of the lightlike singularity and its corresponding Penrose diagram are
depicted in Figure 5. On the other hand, for the solutions with initial condition δ < 0 (dotted curves),
we have

T̄2 − X̄2 = 1, (32)

when r = 0. Therefore, the singularity in this case is a spacelike singularity, similar to the
Schwarzschild singularity.

e

𝑟 = 0

𝑟 = 0

Figure 5. The Penrose diagram of the lightlike singularity in the black hole for δ > 0. The curly lines
indicate the lightlike singularities. The shadowed regions refer to the spacetime patches around xi,
if we match a Schwarzschild spacetime and the interior spacetime with the non-vanishing mimetic
field.

5. Conclusions and Further Discussions

The vacuum cosmological solutions, which describe the primordial universe prior to the reheating
epoch, and the vacuum, static, and spherically symmetric solutions of the mimetic Born-Infeld gravity
are studied. The theory contains non-trivial vacuum solutions in the presence of the mimetic field,
and these solutions could be interesting regarding the singularity issues due to the Born-Infeld nature
of the theory.

At the cosmological level, we have found some primordial de Sitter solutions and some bouncing
solutions in a vacuum universe. Although some of these solutions are accompanied by some
divergences in the auxiliary metric qµν (see the blue and black curves in Figures 1 and 2), there exist
some interesting solutions which are bouncing solutions in the two metrics (see the red curves in
Figures 1 and 2). We have studied the linear perturbations of these particular bouncing solutions and
have found that the solutions are linearly stable near the bounce.

For the scrutiny of the vacuum, static, and spherically symmetric solutions, we have found
that the curvature singularity within a black hole is unavoidable. However, the behaviors of the
metric functions as well as the causal structure near the singularity could be rather different from
the Schwarzschild counterpart. For instance, we have found some solutions (δ > 0) in which the
curvature singularity at the origin is a lightlike singularity. Furthermore, the maximal infalling
proper time of a timelike observer to reach the singularity is infinite for this branch of solutions.
We would like to stress that the black hole solutions obtained in the mimetic Born-Infeld gravity here
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are still quite different from those obtained in the original EiBI gravity with matter. For example,
in references [23,24] it was shown that by considering the standard Maxwell electromagnetic field or a
static, spherically symmetric scalar field in the matter Lagrangian, the black hole singularity could be
replaced with a wormhole, a nonsingular naked compact object, or a soliton-like solution, depending
on the parameters involved.
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