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Abstract: We combine three-dimensional general-relativistic numerical models of hot, magnetized
Advection Dominated Accretion Flows around a supermassive black hole and the corresponding
outflows from them with a general relativistic polarized radiative transfer model to produce synthetic
radio images and spectra of jet outflows. We apply the model to the underluminous core of M87 galaxy.
The assumptions and results of the calculations are discussed in context of millimeter observations of
the M87 jet launching zone. Our ab initio polarized emission and rotation measure models allow us
to address the constrains on the mass accretion rate onto the M87 supermassive black hole.
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1. Introduction

AGN jets are believed to be powered by the accretion of material from their host galaxy onto
a supermassive black hole [1]. The long standing question is: What are the roles of the accretion disk,
magnetic fields and the black hole spin in the formation of these relativistic flows?

We investigate the physical conditions in the jet launching zone in global three-dimensional,
general relativistic magnetohydrodynamical (3-D GRMHD) simulations. The numerical models follow
the dynamics of fully ionized plasma and magnetic fields down to the black hole event horizon.
Similar simulations have been performed by several groups [2–9]. A recent breakthrough in GRMHD
models of black hole accretion and jets comes from modeling the radiation from plasma near the
black hole [10–12]. Until recently, the least understood part of these models was a proper treatment
of radiating electrons. Finally, however, this issue has been addressed [13–19]. With new and more
detailed observations, we are beginning to directly compare the numerical simulations of accretion
flows to real astronomical systems such as Galactic center Sgr A* and the core of M87 galaxy [20].

2. GRMHD Models of Jets

Here, we describe a fiducial 3-D GRMHD model of accretion disk with a jet. Example simulations
are carried out with the HARM-3D code [4,6] by [21]. The code solves ideal-MHD equations in a fixed
Kerr metric. These models do not include radiative losses; hence, they are applicable to sources
that are rather underluminous (L/LEdd < 10−7). Models with radiative looses taken into account
selfconsistently shall be explored in the future [22,23].

At t = 0, the plasma is confined to a geometrically-thick donut-shaped torus. The plasma
density distribution, internal energy and velocity are computed using an analytical torus model
presented in [24]. The inner edge of the torus is rin = 12GM/c2, and the position of the plasma pressure
maximum is rmax = 24GM/c2. The size of the computational domain extends to rout = 240GM/c2.
We follow standard procedures and seed the initial plasma with a sub-thermal magnetic field
(β = Pgas/Pmag = 10− 100), with its geometry aligned with the iso-density surfaces of the torus
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(the so-called single loop scenario). The free parameter is the black hole spin chosen to be
a∗ = cJ/GM2 = 0.9375.

Jets appear almost naturally in our simulations. The rotational energy of the black hole
and accretion disk is extracted through a combination of the well-known Blandford-Znajek and
Blandford-Payne mechanisms [25,26]. Typically, the models described here are called SANE in
the current jargon, which stand for Standard And Normal Evolution, having low-power jets.
Other solutions with stronger magnetic fields and more powerful jets are equally possible [27,28].

3. Electron Treatment and Modeling Polarized Emission from GRMHD Jets

The GRMHD simulations provide only the fluid pressure, which is dominated by the protons.
In a perfect fluid, the pressure in a grid zone gives a proton temperature. For underluminous accretion
flows (in Sgr A* and M87), protons and electrons are not necessarily well coupled. We have to
assume an electron temperature as they are not self-consistently computed in the considered GRMHD
simulations, but they are essential in calculating the synchrotron emission.

Inspired by early models for radio cores in quasars [1] and the Solar corona plasma
models [19,29,30], we have developed a simple parametric description for electron thermodynamics in
the simulation of accretion flows. In combination with radiative transfer model, this finally makes
our numerical simulations of accretion flows resemble observations of underluminous accreting black
holes [13,14,16,18,31].

Our parametric model for electrons assumes a thermal relativistic (Maxwell-Jüttner) distribution
function. The electron temperatures, Te, are computed assuming that the proton-to-electron coupling
depends on plasma magnetization [14,16,18]:

Tp

Te
= Rlow

1
1 + β2 + Rhigh

β2

1 + β2 , (1)

where β = Pgas/Pmag is ratio of the gas pressure to magnetic field pressure Pmag = B2/2 (where
B and hence Pmag and Pgas are in the HARM code units). Rlow and Rhigh are two free parameters.
In a strongly magnetized plasma, β� 1 and Tp/Te → Rlow. In a weakly magnetized plasma, β� 1
and so Tp/Te → Rhigh. We set Rlow = 1 and Rhigh = 100 so that the electrons are always cooler in the
disk but hotter towards the jet, making the jet more visible.

A ray-tracing approach is used to construct mock observations of GRMHD simulations.
The radiative transfer equations through changing plasma conditions for a single photon frequency
ν are integrated along null-geodesic paths. This approach is valid only if the plasma index of
refraction is one. The ray-tracing radiative transfer methods can be also used only if the photon
frequency is much larger than the plasma cyclotron frequency, and is larger than the plasma
frequency, νp (i.e., ν � νc = 2.8 × 106B, ν � νp = 8980 n1/2

e Hz). In our GRMHD models,
typically, ne = 102 – 107cm−3 and B = 0.1 – 100 Gauss, so our plasma νc = 2.8 × 10−4 – 0.28 GHz
and νp = 8.9× 10−5 – 0.028 GHz. Here we model emission at ν = 43− 230 GHz (λ=7 – 1mm), so the
approach is valid.

Several existing numerical codes can generate polarized images of radiative plasma near black
holes (e.g. [32,33]). In this proceeding we present results based on our new radiative transfer code
ipole [34]. The unique feature of our scheme is that it is fully covariant, and so it is suitable for
parallel transport of polarized light rays in arbitrary spacetimes and coordinates. We also use the
analytical solution to evolve Stokes vector that guarantees stability of the radiative transfer solutions
regardless of physical conditions in the plasma. Our model is therefore applicable to plasma with
high optical and Faraday depth, which are likely common in jets embedded in cooler accretion flows.
We have demonstrated that our integration scheme is stable and accurate; it reproduces known analytic
radiative transfer solutions in our method paper [34].
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4. Simulated Emission from M87 Core Jet

Figure 1 displays the apperance of the simulations scaled to M87 central supermassive black hole
with its mass MBH = 6.2× 109M�. We show the model in polarized light at three different wavelengths
(λ= 7.0, 3.5 and 1.3 mm) at which the source is often observed [35–37]. The 1.3 mm synthetic images
have been published in [16,18]. Here, we have extended our previous results to the other wavelengths.

Figure 1. From left to right, the panels show the appearance of the GRMHD model of a relativistic jet
in polarized light at three wavelengths at which the M87 core jet is typically observed. The viewing
angle is i = 20◦ off the black hole spin axis, and the polarized radiative transfer calculations are carried
out within r < 50 GM/c2 as beyond that regions the models are not relaxed. Notice that the rightmost
panels display the image of the model just near the black hole event horizon. Top panels: the intensity
of radiation (the same total intensity maps are published in [16]) overplotted with polarization ticks.
The length of each tick is proportional to the local

√
Q2 + U2. Middle panels: the corresponding maps

of the linear polarization degree. Bottom panels: maps of the circular polarization degree. The 1.3 mm
image in the topright panel has been published in [16,18].
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Synchrotron emission is intrinsically highly polarized. For ultra-relativistic thermal electrons,
the linear polarization fraction measured locally can reach nearly 100% [38]. In our images, the
brightest regions are typically linearly depolarized and polarization ticks are scrambled. Both effects
are due to strong Faraday effects. We found that the Faraday optical depth in our models is τF � 1.
This suggests that even though the Advection Dominated Aaccretion Flows (ADAF)-type accretion
flows are optically thin, they can still be Faraday thick (for details see [18]). Interestingly, in our models
we also observe non-zero circular polarization. The theoretical synchrotron maps should be convolved
with instrumental effects before direct comparison to the Very Long Baseline Interferometric images
on M87 core jet [37,39].

A direct application of our polarized images is to model an observed rotation measure (RM)
and provide a model dependent constrain on the mass accretion/outflow rate of the M87 black hole.
There are a few observations of RM near supermassive black holes [40–44], including the core of
M87 with |RM| < 7.5× 105 rad m−2 [36]. All these RM are measured at millimeter wavelengths with
non-VLBI observations thus the sources are not resolved. The observed RM was then used to constrain
the mass accretion rate onto the central object. The usual procedure to interpret the observed RM is
to integrate

RM = 104 e3

2πm2
ec4

∫
frelneB||dl [rad m−2] (2)

in the radial direction with a power-law profiles for ne and B (usually from equipartition condition)
from a semi-analytical ADAF model (e.g., [45]). In Equation (2), all physical constants are in c.g.s. units
while 104 factor converts RM from c.g.s. to SI units. Notice also that Equation (2) assumes that the
polarized source behind is an ’external’ Faraday screen. The accretion rate onto the black hole is then
provided by the ADAF model [46]. In Sgr A*, the rotation measure of−5.6± 0.7× 105 rad m−2 was used
to estimate Ṁ = 5× 10−9− 2× 10−7 M�yr−1 where the lower and upper limits correspond to different
slopes of the electron density radial profiles, which depend on the presence and properties of an outflow
assumed to be produced by accretion process [40,41,46]. Following the same procedure, the upper
limit for RM in the M87 core led to an accretion rate constraint of Ṁ < 9× 10−4 M�yr−1 [36,47].

Our radiative transfer model allow us to directly calculate the change of polarization angle
χ ≡ arg(Q + iU)/2 as a function of wavelength and compute the model RM = (χλ1 − χλ2)/(λ

2
1 − λ2

2)

without using approximate formulas, such as Equation (2). Contrary to many previous RM modelings,
in the current RM model all relativistic effects will be included; the observer viewing angle effects
and the magnetic field geometry are naturally taken into account; the mass accretion rate onto the
black hole is self-consistently calculated within the GRMHD simulation. Based on radiative transfer
calculations at 220–230 GHz our model predict observed RM=6× 105radm−2 which is consisitent with
observations. Interestingly, our model accretion rate is Ṁ = 9× 10−3M�yr−1, which is an order of
magnitude larger than previous estimates for this source.

5. Discussion

The polarized emission models demonstrate that observed changes in total polarization angle
should be interpreted more carefully as they could be model dependent. The previous constraints of
accretion rate onto underluminous black holes assumed that the polarized emission is produced near
the black hole, and is Faraday rotated in the extended accretion flow. In Sgr A*, the compact emission
region [48], observed scaling of χ ∼ λ2, and ' 10 per cent RM variability [41] support this scenario
and motivate the use of Equation (2). In the M87 jet models the accretion flow is simultaneously the
source of synchrotron radiation and the Faraday screen. Consequently, the polarization plane position
angle χ does not have to be constant with λ2 (as if it were the polarized source behind an ’external’
Faraday screen) and Equation (2) may not be directly applicable. This is because the accretion flow has
complex structure where the self-absorption and depolarization of radiation take place. Additionally,
especially in M87, the emission near the black hole may not be produced by an accretion flow such as
ADAF, but, e.g., by a jet; hence, the existing measurements would be probing the plasma flowing out
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from the central region (also because of our viewing angle of the jet). In our models, the polarized flux
is produced and Faraday rotated in the forward jet. As a consequence the accretion rate onto the black
hole is allowed to be higher.
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14. Mościbrodzka, M.; Falcke, H.; Shiokawa, H.; Gammie, C.F. Observational appearance of inefficient accretion
flows and jets in 3D GRMHD simulations: Application to Sagittarius A*. Astron. Astrophys. 2014, 570,
A7–A16.

15. Chan, C.K.; Psaltis, D.; Özel, F.; Narayan, R.; Saḑowski, A. The Power of Imaging: Constraining the
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