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Abstract: The luminosity function for quasars (QSOs) is usually fitted by a Schechter function.
The dependence of the number of quasars on the redshift, both in the low and high luminosity regions,
requires the inclusion of a lower and upper boundary in the Schechter function. The normalization of
the truncated Schechter function is forced to be the same as that for the Schechter function, and an
analytical form for the average value is derived. Three astrophysical applications for QSOs are
provided: deduction of the parameters at low redshifts, behavior of the average absolute magnitude
at high redshifts, and the location (in redshift) of the photometric maximum as a function of
the selected apparent magnitude. The truncated Schechter function with the double power law
and an improved Schechter function are compared as luminosity functions for QSOs. The chosen
cosmological framework is that of the flat cosmology, for which we provided the luminosity distance,
the inverse relation for the luminosity distance, and the distance modulus.
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1. Introduction

The Schechter function was first introduced in order to model the luminosity function (LF)
for galaxies (see [1]), and later was used to model the LF for quasars (QSOs) (see [2,3]). Over the
years, other LFs for galaxies have been suggested, such as a two-component Schechter-like LF (see [4]),
the hybrid Schechter+power-law LF to fit the faint end of the K-band (see [5]), and the double Schechter
LF, see Blanton et al. [6]. In order to improve the flexibility at the bright end, a new parameter η

was introduced in the Schechter LF, see [7]. The above discussion suggests the introduction of finite
boundaries for the Schechter LF rather than the usual zero and infinity. As a practical example, the
most luminous QSOs have absolute magnitude Mbj

≈ −28 or the luminosity is not ∞ and the less
luminous QSOs have have absolute magnitude Mbj

≈ −20 or the luminosity is not zero (see Figure 19
in [8]). A physical source of truncation at the low luminosity boundary (high absolute magnitude) is
the fact that with increasing redshift the less luminous QSOs progressively disappear. In other words,
the upper boundary in absolute magnitude for QSOs is a function of the redshift.

The suggestion to introduce two boundaries in a probability density function (PDF) is not new
and, as an example, Ref. [9] considered a doubly-truncated gamma PDF restricted by both a lower (l)
and upper (u) truncation. A way to deduce a new truncated LF for galaxies or QSOs is to start from a
truncated PDF and then derive the magnitude version. This approach has been used to deduce a left
truncated beta LF (see [10,11]), and a truncated gamma LF (see [12]).

The main difference between LFs for galaxies and for QSOs is that, in the first case, we have an
LF for a unit volume of 1 Mpc3 and, in the second case, we are speaking of an LF for unit volume
but with a redshift dependence. The dependence on the redshift complicates an analytical approach
because the number of observed QSOs at low luminosity decreases with the redshift, and the highest
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observed luminosity increases with the redshift. The first effect is connected with the Malmquist bias,
i.e., the average luminosity increases with the redshift, and the second one can be modeled by an
empirical law. The above redshift dependence in the case of QSOs can be modeled by the double
power law LF (see [13]), or by an improved Schechter function (see [14]). The present paper derives,
in Section 2, the luminosity distance and the distance modulus in a flat cosmology. Section 3 derives a
truncated version of the Schechter LF. Section 4 applies the truncated Schechter LF to QSOs, deriving
the parameters of the LF in the range of redshift [0.3, 0.5], modeling the average absolute magnitude as
a function of the redshift, and deriving the photometric maximum for a given apparent magnitude as
a function of the redshift.

2. The Flat Cosmology

The first definition of the luminosity distance, dL, in flat cosmology is

dL(z; c, H0, ΩM) =
c

H0
(1 + z)

∫ 1

1
1+z

da√
ΩMa + (1−ΩM)a4

, (1)

where H0 is the Hubble constant expressed in km s−1 Mpc−1, c is the speed of light expressed in
km s−1, z is the redshift, a is the scale-factor, and ΩM is

ΩM =
8π G ρ0

3 H2
0

, (2)

where G is the Newtonian gravitational constant and ρ0 is the mass density at the present time, see
Equation (2.1) in [15]. A second definition of the luminosity distance is

dL(z; c, H0, ΩM) =
c

H0
(1 + z)

∫ z

0

1√
(1 + z)3 ΩM + 1−ΩM

dz, (3)

see Equation (2) in [16]. The change of variable z = −1 + 1/a in the second definition allows finding
the first definition. An analytical expression for the integral (1) is here reported as a Taylor series of
order 8 when ΩM = 0.3 and H0 = 70 km s−1 Mpc−1

dL(z) = 4282.74 (1 + z)(2.45214 + 0.01506 (1 + z)−8 − 0.06633 (1 + z)−7

−0.01619 (1 + z)−6 + 0.60913 (1 + z)−5 − 1.29912 (1 + z)−4 + 0.406124 (1 + z)−3

+2.47428 (1 + z)−2 − 4.57509 (1 + z)−1)Mpc, (4)

and the distance modulus as a function of z, F(z),

(m−M) = F(z) = 43.15861 + 2.17147 ln(7.77498 z2 + 2.45214 z8 + 15.0420 z7 + 39.1085 z6

+56.4947 z5 + 49.3673 z4 + 26.1512 z3 + 0.99999 z + 1.73 10−7)− 15.2003 ln(1 + z). (5)

As a consequence, the absolute magnitude, M, is

M = m− F(z). (6)

The angular diameter distance, DA, after [17], is

DA =
DL

(1 + z)2 . (7)
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We may approximate the luminosity distance as given by Equation (4) by the minimax rational
approximation, dL,2,1, with the degree of the numerator p = 2 and the degree of the denominator
q = 1:

dL,2,1(z) =
4.10871 + 1813.96 z + 2957.04 z2

0.44404 + 0.27797 z
, (8)

which allows deriving the inverse formula, the redshift, as a function of the luminosity distance:

z2,1(dL) = 0.000047 dL − 0.306718

+3.38175× 10−14
√

1.9318 1018 dL
2 + 1.06093× 1023 dL + 8.10464× 1025. (9)

Another useful distance is the transverse comoving distance, DM,

DM =
DL

1 + z
, (10)

with the connected total comoving volume Vc

Vc =
4
3

πD3
M, (11)

which can be minimax-approximated as

Vc,3,2 =
3.01484 1010z3 + 6.39699 1010 z2 − 1.26793 1010 z + 4.10104 108

0.45999− 0.01011 z + 0.093371 z2 Mpc3. (12)

3. The Adopted LFs

This section reviews the Schechter LF, the double power law LF, and the Pei LF for QSOs.
The truncated version of the Schechter LF is derived. The merit function χ2 is computed as

χ2 =
n

∑
j=1

(
LFtheo − LFastr

σLFastr

)2, (13)

where n is the number of bins for LF of QSOs and the two indices theo and astr stand for ‘theoretical’
and ‘astronomical’, respectively. The residual sum of squares (RSS) is

RSS =
n

∑
j=1

(y(i)theo − y(i)astr)
2, (14)

where y(i)theo is the theoretical value and y(i)astr is the astronomical value.
A reduced merit function χ2

red is evaluated by

χ2
red = χ2/NF, (15)

where NF = n − k is the number of degrees of freedom and k is the number of parameters.
The goodness of the fit can be expressed by the probability Q (see Equation 15.2.12 in [18], which
involves the degrees of freedom and the χ2). According to [18], the fit “may be acceptable” if Q > 0.001.
The Akaike information criterion (AIC) (see [19]), is defined by

AIC = 2k− 2ln(L), (16)
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where L is the likelihood function and k is the number of free parameters in the model. We assume a
Gaussian distribution for the errors and the likelihood function can be derived from the χ2 statistic
L ∝ exp(− χ2

2 ), where χ2 has been computed by Equation (13), see [20,21]. Now, the AIC becomes

AIC = 2k + χ2. (17)

3.1. The Schechter LF

Let L be a random variable taking values in the closed interval [0, ∞]. The Schechter LF of galaxies,
after [1], is

Φ(L; Φ∗, α, L∗)dL = (
Φ∗

L∗
)(

L
L∗

)α exp
(
− L

L∗
)
dL, (18)

where α sets the slope for low values of L, L∗ is the characteristic luminosity, and Φ∗ represents the
number of galaxies per Mpc3. The normalization is∫ ∞

0
Φ(L; Φ∗, α, L∗)dL = Φ∗ Γ (α + 1) , (19)

where
Γ (z) =

∫ ∞

0
e−ttz−1dt, (20)

is the gamma function. The average luminosity, 〈L〉, is

〈L(Φ∗, α, L∗)〉 = L∗ Φ∗ Γ (α + 2) . (21)

An equivalent form in absolute magnitude of the Schechter LF is

Φ(M; Φ∗, α, M∗)dM = 0.921Φ∗100.4(α+1)(M∗−M) exp
(
−100.4(M∗−M)

)
dM , (22)

where M∗ is the characteristic magnitude. The scaling with h is M∗ − 5 log10 h and Φ∗h3 [Mpc−3].

3.2. The Truncated Schechter LF

We assume that the luminosity L takes values in the interval [Ll , Lu], where the indices l and u
mean ‘lower’ and ‘upper’; the truncated Schechter LF, ST , is

ST(L; Ψ∗, α, L∗, Ll , Lu) =
−
(

L
L∗

)α
e−

L
L∗ Ψ∗ Γ (α + 1)

L∗
(

Γ
(

α + 1, Lu
L∗

)
− Γ

(
α + 1, Ll

L∗

)) , (23)

where Γ(a, z) is the incomplete Gamma function defined as

Γ(a, z) =
∫ ∞

z
ta−1e−tdt, (24)

see [22]. The normalization is the same as for the Schechter LF, see Equation (19),∫ ∞

0
ST(L; Ψ∗, α, L∗, Ll , Lu)dL = Ψ∗ Γ (α + 1) . (25)

The average value is

〈L(Ψ∗, α, L∗, Ll , Lu)〉 =
N

L∗
(

Γ
(

α + 1, Lu
L∗

)
− Γ

(
α + 1, Ll

L∗

)) (26)
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with

N = Ψ∗
(

L∗2Γ
(
α + 1,

Lu

L∗
)
α− L∗2Γ

(
α + 1,

Ll
L∗
)
α + L∗2Γ

(
α + 1,

Lu

L∗
)

−L∗2Γ
(
α + 1,

Ll
L∗
)
− L∗−α+1e−

Ll
L∗ Ll

α+1 + L∗−α+1e−
Lu
L∗ Lu

α+1

)
Γ
(
α + 1

)
. (27)

The four luminosities L, Ll , L∗ and Lu are connected with the absolute magnitudes M, Ml , Mu and M∗

through the following relationship:

L
L�

= 100.4(M�−M) ,
Ll
L�

= 100.4(M�−Mu) ,
L∗

L�
= 100.4(M�−M∗) ,

Lu

L�
= 100.4(M�−Ml), (28)

where the indices u and l are inverted in the transformation from luminosity to absolute magnitude
and L� and M� are the luminosity and absolute magnitude of the sun in the considered band.
The equivalent form in absolute magnitude of the truncated Schechter LF is therefore

Ψ(M; Ψ∗, α, M∗, Ml , Mu)dM =

−0.4
(

100.4M∗−0.4M
)α

e−100.4M∗−0.4M
Ψ∗Γ (α + 1) 100.4M∗−0.4M (ln (2) + ln (5))

Γ
(

α + 1, 10−0.4Ml+0.4M∗
)
− Γ

(
α + 1, 100.4M∗−0.4Mu

) . (29)

The averaged absolute magnitude is

〈M(Ψ∗, α, L∗, Ll , Lu)〉 =
∫ Mu

Ml
M(M; Ψ∗, α, L∗, Ll , Lu)MdM∫ Mu

Ml
M(M; Ψ∗, α, L∗, Ll , Lu)dM

. (30)

3.3. The Double Power Law

The double power law LF for QSOs is

Φ(L; φ∗, α, β, L∗) =
φ∗

(L/L∗)α + (L/L∗)β
, (31)

where L∗ is the characteristic luminosity, α models the low boundary, and β models the high boundary,
see [8,13,23–26]. The magnitude version is

Φ(M; φ∗, α, β, M∗) =
φ∗

100.4(α+1)[M−M∗ ] + 100.4(β+1)[M−M∗ ]
, (32)

where the characteristic absolute magnitude, M∗, and φ∗ are functions of the redshift.

3.4. The Pei Function

The exponential L1/4 LF, or Pei LF, after [14], is

Φ(L; φ∗, β, L∗) =
Œ∗

(
L

L∗

)−β
e−

4
√

L
L∗

L∗
, (33)

and the magnitude version is

Φ(M; φ∗, β, M∗) =
0.4 Œ∗

(
10−0.4 M

10−0.4 M∗

)−β
e
− 4
√

10−0.4 M

10−0.4 M∗ 10−0.4 M ln (10)

10−0.4 M∗ . (34)



Galaxies 2017, 5, 25 6 of 15

4. The Astrophysical Applications

This section explains the K-correction for QSOs, introduces the sample of QSOs on which the
various tests are performed, finds the parameters of the new LF in the range of redshift [0.3, 0.5], and
finds the number of QSOs as a function of the redshift.

4.1. K-Correction

The K-correction for QSOs as a function of the redshift can be parametrized as

K(z) = −2.5 (1 + αν) log(1 + z), (35)

with −0.7 < αν < −0.3 (see [27]). Following [28], we have adopted αν = −0.3. The corrected absolute
magnitude, MK, is

MK = M + K(z). (36)

In the following, both the observed and the theoretical absolute magnitude will always be K-corrected.

4.2. The Sample of QSO

We selected the catalog of the 2dF QSO Redshift Survey (2QZ), which contains 22,431 redshifts of
QSOs with 18.25 < bJ < 20.85, a total survey area of 721.6 deg2, and an effective area of 673.4 deg2,
see [8] 1 . Section 3 in [8] discusses four separate types of completeness that characterize the 2QZ and
6QZ surveys: (i) morphological completeness, fm(bJ, z), (ii) photometric completeness, fp(bJ, z), (iii)
coverage completeness fc(θ) and (iv) spectroscopic completeness, fs(bJ, z, θ). The first test can be done
on the upper limit of the maximum absolute magnitude, Mu(z), which can be observed in a catalog
of QSOs characterized by a given limiting magnitude, in our case bj = 20.85, where F(z) has been
defined by Equation (5):

Mu(z) = 20.85− F(z) (37)

(see Figure 1).
A careful examination of Figure 1 allows concluding that all of the QSOs are in the region over

the border line, the number of observed QSOs decreases with increasing z, and the average absolute
magnitude decreases with increasing z. The previous comments can be connected with the Malmquist
bias, see [29,30], which was originally applied to the stars and later on to the galaxies by [31].

Figure 1. The absolute magnitude MBbj computed with the nonlinear Equation (36) for 22,413
QSOs versus the redshift (green points). The lower theoretical curve (upper absolute magnitude)
as represented by the nonlinear Equation (37) is the red thick line. The redshifts cover the range [0, 3].

1 Data at http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=VII/241.

http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=VII/241
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4.3. The Luminosity Function for QSOs

A binned luminosity function for quasars can be built in one of the two methods suggested by [32]:
the 1

Va
method (see [33–35]), and a binned approximation. Notably, Ref. [36] argued that both the 1

Va
and the binned approximation can produce bias at the faint end of the LF due to the arbitrary choosing
of redshift and luminosity intervals.

We implemented the binned approximation of [32], φest, as

φ ≈ φest =
Nq∫ Mmax

Mmin

∫ zmax(M)
zmin

dV
dz dzdM

, (38)

where Nq is the number of quasars observed in the Mi − z bin. The error is evaluated as

δφest =

√
Nq∫ Mmax

Mmin

∫ zmax(M)
zmin

dV
dz dzdM

. (39)

The comoving volume in the flat cosmology is evaluated according to Equation (11),

V =
4
3

π(D3
M,upp − D3

M,low), (40)

where DM,upp and DM,low are, respectively, the upper and lower comoving distance. A correction for
the effective volume of the catalog, Vq, gives

Vq = V
Ae deg2

41252.9 deg2 , (41)

where Ae is the effective area of the catalog in deg2.
A typical example of the observed LF for QSOs when 0.3 < z < 0.5 is reported in Figure 2 and

Figure 3 reports the LF for QSOs in four ranges of redshifts.
The variable lower bound in absolute magnitude, Ml , can be connected with evolutionary effects,

and the upper bound, Mu, is fixed by the physics (see the nonlinear Equation (37) and see Section 4.4).

Figure 2. The observed LF for QSOs is reported with the error bar evaluated as the square root of the
LF (Poissonian distribution) when z [0.3, 0.5].
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Figure 3. The observed LF for QSOs when z [0.3, 0.5] and M [−24.45,−21.50] (empty stars), [0.7, 0.9]
and M [−26.49,−23.50] (full triangles), [1.1, 1.3] and M [−27.59,−24.60] (empty crosses) and [1.5, 1.7]
and M [−28.43,−25.50] (stars of David).

The five parameters of the the best fit to the observed LF by the truncated Schechter LF can be
found with the Levenberg–Marquardt method and are reported in Table 1. The resulting fitted curve is
displayed in Figure 4.

Figure 4. The observed LF for QSOs, empty stars with error bar, and the fit by the truncated Schechter
LF when z [0.3, 0.5] and M [−24.93,−22].

Table 1. Parameters of the truncated Schechter LF in the range of redshifts [0.3, 0.5] when n = 10 and k = 5.

Ml M∗ Mu Ψ∗ α χ2 χ2
red Q AIC

–24.93 –23.28 –22.29 3.38 × 10−8 –0.97 12.89 2.57 0.024 22.89

For the sake of comparison, Table 2 reports the three parameters of the Schechter LF.

Table 2. Parameters of the Schechter LF in the range [0.3, 0.5] when k = 3 and n = 10.

M∗ Ψ∗ α χ2 χ2
redB Q AIC

–23.75 8.85 × 10−7 –1.37 10.49 1.49 0.162 16.49

As a first reference, the fit with the double power LF (see Equation (32)), is displayed in Figure 5
with parameters as in Table 3.
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Figure 5. The observed LF for QSOs, empty stars with error bars, and the fit by the double power LF
when the redshifts cover the range [0.3, 0.5]

Table 3. Parameters of the double power LF in the range of redshifts [0.3, 0.5] when n = 10 and k = 4.

M∗ φ∗ α β χ2 χ2
red Q AIC

–23.82 5.44 × 10−7 –3.57 –1.48 9.44 1.57 0.15 17.44

As a second reference, the fit with the Pei LF (see Equation (34)), is displayed in Figure 6 with
parameters as in Table 3.

Figure 6. The observed LF for QSOs, empty stars with error bar, and the fit by the Pei LF when the
redshifts cover the range [0.3, 0.5].

4.4. Evolutionary Effects

In order to model the evolutionary effects, an empirical variable lower bound in absolute
magnitude, Ml , has been introduced:

Ml(z) = −24.5− 10× log10(1 + z) + K(z). (42)

The above empirical formula is classified as a top line in Figure 5 of [28] and connected with the limits
in magnitude. Conversely, the upper bound, Mu, was already fixed by the nonlinear Equation (37).
A second evolutionary correction is

M∗ = Mu(z)− 0.5, (43)

where Mu(z) has been defined in Equation (37). Figure 7 reports a comparison between the theoretical
and the observed average absolute magnitudes; the value of M∗ reported in Equation (43) minimizes
the difference between the two curves.
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Figure 7. Average observed absolute magnitude versus redshift for QSOs (red points), average
theoretical absolute magnitude for truncated Schechter LF as given by Equation (30) (dot-dash-dot
green line), theoretical curve for the empirical lowest absolute magnitude at a given redshift, see
Equation (42) (full black line) and the theoretical curve for the highest absolute magnitude at a given
redshift (dashed black line), see Equation (37), RSS = 1.212.

As a first reference, Figure 8 reports a comparison between the theoretical and the observed
average absolute magnitudes in the case of the double power LF—the value of M∗, which minimizes
the difference between the two curves

M∗ = Mu(z)− 0.4, (44)

and other parameters as in Table 3.

Figure 8. Average observed absolute magnitude versus redshift for QSOs (red points), average
theoretical absolute magnitude for the double power LF as evaluated numerically (dot-dash-dot green
line), theoretical curve for the empirical lowest absolute magnitude at a given redshift, see Equation (42)
(full black line) and the theoretical curve for the highest absolute magnitude at a given redshift (dashed
black line), see Equation (37), RSS = 1.138.

As a second reference, Figure 9 reports a comparison between the theoretical and the observed
average absolute magnitude in the case of the Pei LF with parameters as in Table 4.
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Table 4. Parameters of the Pei LF in the range of redshifts [0.3, 0.5] with k = 3 and n = 10.

M∗ φ∗ β χ2 χ2
red Q AIC

–16.47 3.68 × 10−5 0.924 14.4 2.05 0.044 20.40

Figure 9. Average observed absolute magnitude versus redshift for QSOs (red points), average
theoretical absolute magnitude for the Pei LF as evaluated numerically (dot-dash-dot green line),
theoretical curve for the empirical lowest absolute magnitude at a given redshift, see Equation (42) (full
black line) and the theoretical curve for the highest absolute magnitude at a given redshift (dashed
black line), see Equation (37), RSS = 5.41.

In the above fit, the evolutionary correction for M∗ is absent.

4.5. The Photometric Maximum

The definition of the flux, f , is

f =
L

4πr2 , (45)

where r is the luminosity distance. The redshift is approximated as

z = z2,1, (46)

where z2,1 has been introduced into Equation (9). The relation between dr and dz is

dr =
(
2626.1 z + 821.99 z2 + 804.33

)
(0.44404 + 0.27797 z)2 dz, (47)

where r has been defined as dL,2,1 by the minimax rational approximation, see Equation (8). The joint
distribution in z and f for the number of galaxies is

dN
dΩdzd f

=
1

4π

∫ ∞

0
4πr2drST(L; Ψ∗, α, L∗, Ll , Lu)δ

(
z− (z2,1)

)
δ
(

f − L
4πr2

)
, (48)
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where δ is the Dirac delta function and ST(L; Ψ∗, α, L∗, Ll , Lu) has been defined in Equation (23).
The above formula has the following explicit version

dN
dΩdzd f

=
NL
DL

, (49)

where

NL = −1.71174× 1021 (z + 0.61116)4 (z + 0.00227)4

×
(

1.422 109 f (z + 0.61116)2 (z + 0.00227)2

(z + 1.59739)2 L∗

)α

e
−1.422 109 f (z+0.61116)2(z+0.00227)2

(z+1.59739)2L∗

×Ψ∗Γ (α + 1) (z + 2.85165) (z + 0.343138) , (50)

where

DL = (z + 1.59739)6 L∗
(

Γ
(

α + 1,
Lu

L∗

)
− Γ

(
α + 1,

Ll
L∗

))
. (51)

The magnitude version is

dN
dΩdzdm

=
NM
DM

, (52)

with

NM = −1.25459× 1030 (z + 0.61116)4 (z + 0.00227)4

×
(

1.13159× 1018 e0.92103 M�−0.92103 m (z + 0.61116)2 (z + 0.00227)2

(z + 1.59739)2 100.4 M�−0.4 M∗

)α

×e
−1.13159×1018 e0.92103 M�−0.92103 m(z+0.61116)2(z+0.00227)2

(z+1.59739)2100.4 M�−0.4 M∗

×Ψ∗ Γ (α + 1.0) (z + 2.85165) (z + 0.34313) e0.92103 M�−0.92103 m (53)

and

DM = (z + 1.59739)6 100.4 M�−0.4 M∗ ×(
Γ

(
α + 1,

100.4 M�−0.4 Ml

100.4 M�−0.4 M∗

)
− Γ

(
α + 1,

100.4 M�−0.4 Mu

100.4 M�−0.4 M∗

))
, (54)

where m is the apparent magnitude of the catalog, and the absolute magnitudes Ml , Mu,M∗ and M�
have been defined in Section 3.2. The conversion from flux, f , to apparent magnitude, m, in the above
formula is obtained from the usual formula

f = 7.95774× 108 e0.92103 M�−0.92103 m, (55)

and
d f = −7.32935× 108 e0.92103 M�−0.92103 mdm. (56)

The number of galaxies in z and m, as given by formula (52), has a maximum at z = zpos−max,
but there is no analytical solution for such a position and a numerical analysis should be performed.
Figure 10 reports the observed and the theoretical number of QSOs as functions of the redshift at a
given apparent magnitude when Ml(z) is given by Equation (42) and Mu(z) is given by Equation (37).
Here, we adopted the law of rare events, i.e., the Poisson distribution, in which the variance is equal to
the mean, i.e., the error bar is given by the square root of the frequency.
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Figure 10. The QSOs with 20.16 ≤ m ≤ 20.85 are organized in frequencies versus spectroscopic
redshift, points with error bars. The redshifts cover the range [0, 3] and the histogram’s interval is 0.14.
The maximum frequency of observed QSOs is at z = 1.478 and the number of bins is 20. The full line is
the theoretical curve generated by dN

dΩdzdm (z) as given by the application of the truncated Schechter LF,
which is Equation (52) with parameters as in Table 1 but M∗ = −22.5. The theoretical maximum is at
z = 1.491.

In the above fit, the observed position of the maximum, z = 1.478, and the theoretical prediction,
z = 1.491, have approximately the same value. In the two regions surrounding the maximum,
the degree of prediction is not as accurate, due to the fact that the three absolute magnitudes Ml , Mu

and M∗ are functions of z.

5. Conclusions

Absolute Magnitude

The evaluation of the absolute magnitude of a QSO is connected with the distance modulus,
which, in the case of the flat cosmology, (ΩM = 0.3, H0 = 70 km s−1 Mpc−1) is reported in Equation (5)
as a Taylor series of order 8 with range in z, [0− 4]. As an application of the above series, we derived an
inverse formula for the redshift as a function of the luminosity distance and an approximate formula
for the total comoving volume.

Truncated Schechter LF

The Schechter LF is characterized by three parameters: Φ∗, α and M∗. The truncated Schechter
LF is characterized by five parameters: Ψ∗, α, M∗, Ml and Mu. The reference LF for QSOs, the double
power law LF, is characterized by four parameters: φ∗, α, β and M∗. An application of the above
LFs in the range of z [0.3, 0.5] gives the following reduced chi-square χ2

red = 2.57 for the truncated
Schechter LF, χ2

red = 1.49 for the Schechter LF, χ2
red = 1.57 for the double power LF, and χ2

red = 2.05 for
the Pei LF. The other statistical such as the AIC are reported in Tables 1, 2, 3, and 4. We can therefore
speak of minimum differences between the four LFs here analyzed in the nearby universe defined by
redshifts [0.3, 0.5].

Evolutionary effects

The evolution of the LF for QSOs as a function of the redshift is here modeled by an upper and
lower truncated Schechter function. This choice allows modeling the lower bound in luminosity
(the higher bound in absolute magnitude) according to the evolution of the absolute magnitude
(see Equation (37)). The evaluation of the upper bound in luminosity (the lower bound in absolute
magnitude) is empirical and is reported in Equation (42). A variable value of M∗ with z in the case of
the truncated Schechter LF (see Equation (43)), allows matching the evolution of the observed average
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value of absolute magnitude with the theoretical average value of absolute magnitude (see Figure 7).
A comparison is done with the theoretical average value in absolute magnitude for the case of a double
power law and the Pei function (see Figures 8 and 9).

Maximum in magnitude

The joint distribution in redshift and energy flux density is here modeled in the case of a flat
universe, see formula 48. The position in redshift of the maximum in the number of galaxies for a given
flux or apparent magnitude does not have an analytical expression and is therefore found numerically
(see Figure 10). A comparison can be done with the number of galaxies as a function of the redshift in
[0− 0.3] for the 2dF Galaxy Redshift Survey in the South and North galactic poles (see Figure 6 in [37]),
where the theoretical model is obtained by the generation of random catalogs.

Conflicts of Interest: The author declares no conflict of interest.
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