
Citation: Curé, M.; Araya, I.

Radiation-Driven Wind

Hydrodynamics of Massive Stars: A

Review. Galaxies 2023, 11, 68.

https://doi.org/10.3390/

galaxies11030068

Academic Editor: Artemio Herrero

Received: 14 March 2023

Revised: 5 May 2023

Accepted: 9 May 2023

Published: 12 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

galaxies

Review

Radiation-Driven Wind Hydrodynamics of Massive Stars:
A Review
Michel Curé 1,* and Ignacio Araya 2

1 Instituto de Física y Astronomía, Universidad de Valparaíso, Gran Bretaña 1111, Valparaíso 2340000, Chile
2 Vicerrectoría de Investigación, Universidad Mayor, Santiago 8580745, Chile; ignacio.araya@umayor.cl
* Correspondence: michel.cure@uv.cl

Abstract: Mass loss from massive stars plays a determining role in their evolution through the upper
Hertzsprung–Russell diagram. The hydrodynamic theory that describes their steady-state winds is
the line-driven wind theory (m-CAK). From this theory, the mass loss rate and the velocity profile of
the wind can be derived, and estimating these properly will have a profound impact on quantitative
spectroscopy analyses from the spectra of these objects. Currently, the so-called β law, which is an
approximation for the fast solution, is widely used instead of m-CAK hydrodynamics, and when the
derived value is β & 1.2, there is no hydrodynamic justification for these values. This review focuses
on (1) a detailed topological analysis of the equation of motion (EoM), (2) solving the EoM numerically
for all three different (fast and two slow) wind solutions, (3) deriving analytical approximations for
the velocity profile via the LambertW function and (4) presenting a discussion of the applicability of
the slow solutions.
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1. Introduction

At the beginning of the XX Century, Johnson [1,2] and Milne [3] argued that the force
exerted on ions in the atmosphere of a luminous star could be responsible for the ejection
of these ions from the star. They also argued that the ejected ions should carry with them
the corresponding number of electrons, and strictly there should be no charge current, but
they did not realize at that time that the collisional coupling between ions and protons
would drag the rest of the plasma (mostly fully ionized hydrogen) with them as well, at
least to supersonic velocities, and this theory was laid aside. It was Chandrasekhar [4,5]
who, in the context of globular cluster dynamics, developed the theory of collisions due
to an inverse square law, and Spitzer [6] applied Chandrasekhar’s theory for collisions
between charged particles.

Morton [7] was the first to report far-ultraviolet observations of three OB supergiants
from an Aerobee-sounding rocket. After this came Copernicus, the first satellite with a
telescope on board, and since then it has been possible to obtain stellar spectra in the
ultraviolet (UV) region. Morton [7] found that the resonance lines of C IV, N V and Si IV
showed the typical P-Cygni profiles (see Lamers and Cassinelli [8], Section 2.2). He found
that the displacements in the profiles of C IV λλ1549.5 and Si IV λλ1402.8 corresponded to
outflow velocities in the range of 1500–3000 km/s.

Snow and Morton [9] showed through a detailed survey that stars brighter than
Mbol ∼ −6 have strong P-Cygni profiles in their spectra and therefore lose mass. The
same conclusion was arrived at by Abbott [10], who compared the radiative force with the
gravitational force and concluded that radiative forces could initialize and maintain the
mass loss process for stars with an initial mass at the zero-age main sequence (ZAMS) of
about 15 M� or greater.

This mass loss process (known as stellar wind), together with supernovae explosions,
are the main contributors in supplying the interstellar medium (ISM) with nuclear-processed
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heavy elements and therefore influence not only chemical evolution (and therefore star
formation) but also the energy equilibrium of the ISM and the Galaxy (see [11–13] and the
references therein).

Parker [14] was the first to develop the notion of solar wind through a purely gas
dynamical theory, which was the only known stellar wind theory until the winds of massive
stars were discovered. When this theory was applied to the winds of a typical O-star, the
effective temperature necessary to reproduce the observed terminal velocities was of the
order of 107 K, a value that is completely excluded by the presence of lines such as Si IV,
C IV and N V ions, which would be destroyed by collisional ionization at temperatures
above 3× 105 K. It was, therefore, necessary to seek an alternative mechanism to drive the
wind. The natural driven mechanism is the force due to the interaction of the radiation
field on the wind plasma, and the simplest form is the force due to the continuum, i.e.,
the Thompson radiative acceleration. This force leads macroscopically to a decrease in the
star’s gravitational attraction by a constant factor (for O-stars this is between 0.3 and 0.6).
It is then clear that the continuum force alone cannot produce a force that exceeds gravity
and, therefore, cannot drive these kinds of winds.

Lucy and Solomon [15] resuscitated the proposal of Johnson and Milne and considered
the force due to the absorption of spectral lines, but unlike the earlier authors, they
considered the flow of the plasma as a whole rather than as the selective ejection of specific
ions. They calculated an upper limit on the force on the C IV line λλ1548, finding that
this exceeds the force of gravity by a factor of approximately a few hundred. Hydrostatic
equilibrium in the outermost layers is not possible, and an outflow of material must occur.
In their stellar wind model, Lucy and Solomon made a series of assumptions, for instance,
that the wind is driven only by resonance lines. They found mass loss rates for O-stars of
two orders of magnitudes less than the values obtained from observations.

A significant step in the theory was made by Castor, Abbot and Klein [16] (hereafter
CAK), who realized that the force due to line absorption in a rapidly expanding envelope
could be calculated using the Sobolev approximation [17,18]. Then, by developing a simple
parameterization of the line force using the point star approximation, they were able to
construct an analytical wind model. Despite the number of approximations made in that
work, e.g., they represented the line force by C III lines and calculated only one model
for a typical O5 f star (Teff = 49, 290 K, log g = 3.941 and R/R� = 13.8), they obtained a
mass loss rate of Ṁ = 6.61× 10−6 M�/year and a terminal velocity of v∞ = 1515 km/s.
The value of the mass loss rate was of the same order of magnitude as the values obtained
from observations, but the terminal velocity lay below the measured ones. They also gave
analytical scaling relations for the mass loss rates and terminal speeds as functions of
the stellar parameters. These were widely used to prove (or disprove) the validity of the
radiation-driven (or line-driven) wind theory by comparison with the observations.

Abbott [10] improved this theory by calculating the line force using a tabulation of
ca. 250,000 lines, which was complete for the elements H to Zn in the ionization states I to
VI. Currently, the non-local thermodynamic equilibrium code CMFGEN [20] uses around
900,000 lines and FASTWIND contains 4 million lines [21] (see also [22], which uses ca.
4 million lines). Despite this immense effort to give a more realistic representation of the
line force, evident discrepancies with the observations remained. Simultaneously and
independently, Friend and Abbott [23] and Pauldrach et al. [24] calculated the influence of
the finite cone angle correction on the dynamics of the wind (described in the Appendix
from [18]). They found a much better agreement between the improved or modified CAK
theory (hereafter m-CAK) and the observations of the mass loss rate and the terminal
velocity in a large domain in the Hertzsprung–Russell diagram.

The equation of motion of the m-CAK theory is a highly non-linear differential
equation that has singular points, eigenvalues and solution branches (see [16,23–27]).
Since it is challenging to solve this differential equation numerically,
Pauldrach et al. [24] found that the velocity field, v(r), from the m-CAK theory can be
described by a simple approximation, known as the β law approximation (see below). In
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addition, Kudritzki et al. [28] developed analytical approximations for the localization of
the critical point, mass loss rate and terminal velocity with an agreement within 5% for v∞
and 10% for Ṁ when compared to the correct numerical calculations.

Radiation-driven stellar winds are hydrodynamic phenomena involving the flow of
the outer layers of the atmospheres of massive stars. This review is focused on describing
the investigation of the m-CAK hydrodynamic theory, its topology and its three known
physical solutions.

Section 2 presents the theory to calculate the radiation (line) force via an analytical
description thanks to the Sobolev approximation. Section 3 introduces the m-CAK hydro-
dynamic theory, and its topological description is given in Section 4. Section 5 shows all
three known physical solutions, whilst Section 6 presents analytical approximate solutions
based on the LambertW function. Finally, in Section 7, we summarise the main topics of
this review and discuss the applicability of slow solutions.

2. The Radiation Force

The exact calculation of the radiation force requires a knowledge of the radiation field
(in all the lines and continua) and of the physical processes (scattering, absorption and
emission) that contribute to the exchange of energy and momentum throughout the wind.
The radiation field is represented by the monochromatic specific intensity Iν(µ), where µ is
the cosine of the angle between the incoming beam and the velocity vector of the interacting
particles. Thus, the radiation force per unit of volume at a distance r exerted on a point
particle per unit of time is equal to the momentum removed from the incident radiation
field (κρ I(µ) µ/c) integrated over all the scattering directions. This force is given by

Frad(r) =
4π

c
1
2

∫ ∞

0

∫ 1

−1
κν(r) ρ(r) Iν µ dµ dν, (1)

where the absorption coefficient κν is given in units of cm2 g−1. The net flux density
comes from the interaction processes integrated over the whole spectral range between the
radiation field emitted by the photosphere and the stellar wind of mass density ρ at the
distance r. Here, it is assumed that the emissivity (thermal emission and photon scattering)
in the expanding atmosphere is isotropic. Therefore, no net momentum change occurs from
this process (see [29], Chapter 20).

The absorption coefficient κν consists of three main contributions:

κν = κTh + κcont
ν + κline

ν , (2)

where κTh represents the Thomson scattering, κcont
ν is the contribution of bound-free and

free-free transitions and κline
ν is the sum of all line absorption coefficients at frequency ν.

The radiation force can be calculated by state-of-the-art non-local thermodynamic
equilibrium (NLTE) radiative transfer codes such as FASTWIND [30,31], CMFGEN [20,32–34]
or POWR [35,36], but these calculations depend on the velocity and density profile used to
describe the wind.

2.1. Radiative Force Due to Electron Scattering

The interaction between photons and free electrons is described by a Compton process
(an excellent review of this process, including Monte Carlo calculations, can be found
in [37]). If photons with energy hν � mec2 are scattered by Maxwellian electrons2 with
kT � mec2, the frequency shift will be very small, but if the scattering process is repeated
many times, the small amounts of energy exchanged between the electrons and photons
can build up and give rise to substantial effects.
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In the non-relativistic limit without the influence of quantum effects (hν� mec2) and
neglecting the possible effects described above, the scattering cross-section is frequency
independent and called the Thomson cross-section, namely:

σTh =
8π

3
e4

m2
e c4 . (3)

The value of this cross-section is σTh = 6.65× 10−25 cm2 and the absorption coefficient
is therefore:

κThρ = ne σTh. (4)

Using this value (κTh) in Equation (2) and integrating Equation (1), we obtain the
contribution of Thomson scattering to the radiation force,

FTh = ne
σTh L
4πc r2 , (5)

where L is the luminosity of the star. The radiative acceleration on the electrons is then

gTh
e =

1
me

σTh L
4πcr2 . (6)

It is useful to define the ratio of the Thomson scattering force and the gravitational
force by:

Γe =
gTh

e
ggrav =

1
me

σTh L
4π c GM∗

, (7)

where G is the gravitational constant and M∗ is the star’s mass. In the standard one-
component description of stellar winds, the force over the density of the plasma is given by:

gTh =

(
ne

ρ

)
σTh L
4πc r2 (8)

where ρ = mpnp + ∑ions(mini) + neme is the mass density. The principal contribution of
the ions comes from helium, and neglecting the electrons, neme, the density is

ρ ' mpnp(1 + AHeYHe) . (9)

Here, AHe is the atomic mass of a helium atom, YHe is the relative abundance of
helium with respect to hydrogen (the latter being described by the subscript p) and mp is
the proton mass. Based on the conservation of charge, it is possible to express the electron
number density as ne = np(1 + qHeYHe), where qHe = 0, 1 or 2 depending on the helium
ionisation state.

Thus, the ratio ne/ρ is:

ne

ρ
=

1
mp

(
1 + qHeYHe

1 + AHeYHe

)
(10)

and the acceleration is:

gTh =
1

mp

(
1 + qHeYHe

1 + AHeYHe

)(
σThL

4πc r2

)
(11)

or

Γe =

(
1 + qHeYHe

1 + AHeYHe

)(
σTh L

4π c mp GM∗

)
. (12)

Quite often, the canonical value of κTh = 0.34 cm2 g−1 is adopted, which follows from
assuming a fully ionised plasma at solar abundance. In addition, since the continuum of OB
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stars is also optically thin in the lines near its maximum, the contribution of the continuum
to the total radiative force is neglected.

The next section provides a general description of the line force based on the Sobolev
approximation (see, e.g., Lamers and Cassinelli [8] or Hubeny and Mihalas [29]).

2.2. Radiative Force due to Lines

The contribution to the radiation force due to the spectral lines in the wind of massive
stars is provided by the momentum transfer of photons (via absorption and re-emission
processes in optically thick lines) mainly from the most dominant ions (i.e., C, O, N and the
Fe group). The proper calculation of the line force (per unit volume) is given by:

Fline(r) =
2π

c ∑
l

∫ ∞

0

∫ +1

−1
κl(r) ρ(r) φl(ν, µ, r) Iν(r, µ) µ dµ dν (13)

where φ is the Gaussian absorption profile. The summation is over all the line transitions
(l), assuming non-overlapping lines, for which the wind is optically thick. κl is the
opacity coefficient (in cm2 g−1) of lines formed between levels l (lower) and u (upper)
with energy h ν0,

κl ρ =
π e2

me c
fl nl

(
1− nu gl

nl gu

)
. (14)

The number densities nl and nu of ions in levels l and u are given in cm−3, gl and
gu are the corresponding statistical weights and fl is the oscillator strength of the line.
The CAK theory allows us to find an analytical expression for the line force in a moving
media with large velocity gradients in terms of the macroscopic variables using the Sobolev
approximation. However, this expression only applies to radiating flows in the non-
relativistic regime.

2.2.1. The Sobolev Approximation

In a moving plasma such as stellar wind, the interaction of radiation with matter
can be better understood as follows. Let us consider a single spectral line thermally
broadened with a rest wavelength λ1. A photon emitted from the stellar surface with
wavelength λ∗ < λ1 propagates without interacting with the matter until, due to the
Doppler shift, it is scattered at the blue edge of the line in question. Due to the expansion
of the wind, the particles viewed from any direction from a certain position always appear
to be receding. This means that independent of the scattered direction of the photon
(forward or backwards), the distance travelled always causes its comoving wavelength to
be red shifted.

After many scatterings, the photon’s wavelength has been shifted to the line’s red
edge, and the interaction of this photon with the line (λ1) ceases. The region in the wind
where an incoming photon can interact with the ions is called the interaction zone. It is also
well known that the winds of massive stars reach terminal velocities of several times the
sound speed, and the point at which the wind velocity is equal to the sound speed (the
sonic point) is very near to the photosphere. This means that almost all the region where
stellar winds are found is supersonic.

This description corresponds to the Sobolev approximation [17], where all the relevant
physical quantities, such as the opacity, source function, etc., are considered constant
in the interaction zone, i.e., the width of the interaction zone is small compared with a
characteristic flow length. Thus, for a generic Doppler-broadened line profile, the Sobolev
length, Ls, is defined as:

Ls = vth/(dvs./dr), (15)

where Teff is the star’s effective temperature, vth =
√

2 kB Teff/mp is the thermal speed of
the protons and kB is the Boltzmann constant.
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A characteristic length of the flow is

Lc ' vs./(dvs./dr) (16)

Typical values of thermal velocities in OB-type stars are about 7–20 km/s, while
terminal velocities are about 1000–3000 km/s (see, e.g., Lamers and Cassinelli [8], Puls et al.
[12]). More recent measurements of terminal velocities based on observations performed in
the frame of the ULLYSES collaboration [38] have been accomplished by Hawcroft et al. [39].

2.2.2. The Line Force due to a Single Line

Castor [18] analysed the Sobolev approximation in detail in the context of stellar winds
and showed that the force produced by the incoming radiation due to a single line can be
expressed as3:

f line =

(
Fν ∆νd

c

)(
kl
τl

)
(1− e−τl ), (17)

where ∆νd = vth ν/c corresponds to the Doppler shift, Fν is the flux of the radiation field at
frequency ν, kl is the monochromatic line absorption coefficient per unit mass and

τl =
∫

ρ φ(ν, r) kl dr (18)

is the optical depth. Evaluating the optical depth for a normalized Gaussian profile and
using the Sobolev approximation, we find:

τl = kl ρ vth/(dvs./dr). (19)

With this expression, we can interpret the RHS of (17) as:

(i) (Fν ∆νd/c) is the rate of momentum emitted by the star per unit area at frequency ν
with bandwidth ∆νd;

(ii) (τl/kl) = ρ vth/(dv/dr) represents the amount of mass that can absorb this momentum;
(iii) (1− e−τl ) is the probability that such an absorption occurs.

Then, we define
t = σe ρ vth/(dv/dr) , (20)

where σe = σThne/ρ corresponds to the Thomson scattering absorption coefficient per
density. In a moving medium, t represents the optical depth that a line will have if its
opacity is equal to its electron scattering opacity. Based on this definition, it is possible to
rewrite t as

τl = ηl t (21)

where ηl = kl/σe. The first factor in (21) is related only to line properties, and the second
only to dynamic variables of the wind.

2.2.3. The Line Force due to a Statistical Distribution of Line Strength

The total line force due to the addition of all the single lines of the ions for a point star
approximation and for non-overlapping single lines is given by:

f line = ∑
l

(
Fν∆νd

c

)
l

(
dv/dr
ρ vth

)
(1− e−ηl t). (22)

Expressing (22) in terms of ∆νd = ν vth/c and the relation F = L/4πr2, we obtain

f line =
L
c2

(
dv/dr
4πr2

)
∑

l

(
Lν ν

L

)
l
(1− e−ηl t) (23)
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Abbott [10] was the first to compile and publish a list of ca. 250,000 lines for atoms
from H to Zn in ionisation stages I to VI. Based on such a line list [22,40,41], it is possible
to derive a line strength distribution function [24,42]. This distribution can be described
as follows:

dN(kl) =
∫ N

0

(
Lν ν

L

)
n(kl , ν)dν (24)

and represents the number of lines in the line strength interval (kl , kl + ∆kl) obtained from
the total spectrum and weighted by the flux mean of line strength (Lν ν/L). Notice that
in Equation (24), the distribution in frequency space of the lines is independent from the
distribution in line strength. An alternative formulation of the line statistic is given by
Gayley [43] (see also [22]).

The logarithm of the number of lines can be fitted by a linear function, namely:

dN(kl) = N0 (1− α) (kl/σe)
α−2 d(kl/σe) (25)

where N0 is the number of lines (strong and weak) that effectively contribute to the line
force. Typical values of the parameter α are 0.45 ≤ α ≤ 0.7 [8,42]. Notice that line force
parameters are not free but depend on the transfer problem in each individual star (see
[22,41,42,44–46], for a detailed description of the calculation of the line force parameters).

Extending the sum in Equation (23) to an integral, we obtain the line force expression:

f line =
L
c2

(dv/dr)
4πr2 N0 (1− α)

∫ ∞

σe
(1− e−ηl t)(kl/σe)

(α−2) d(kl/σe). (26)

Neglecting the lower limit of the integral, a valid approximation for stars of type OB,
and replacing it by zero and integrating, the line force becomes:

f line =
L
c2

1
4πr2 vth σe N0 (1− α) Γ(α)

(
dv/dr
σe ρ vth

)α

, (27)

where Γ is the Γ-function. Then, dividing by the total density, we obtain the standard form
of the line acceleration,

gline =
C
r2

(
r2 v

dv
dr

)α

, (28)

with

C = Γe GM∗ k
(

4π

σe vth Ṁ

)α

, (29)

where Γe is the radiative acceleration due to Thomson scattering in terms of the gravitational
acceleration and Ṁ is the mass loss rate. Here, the continuity equation has been used,
and the variables, such as N0 or Γ(α), have been collected into the constant k. Note that
this expression for the line force (Equation (28)) only takes interactions between ions and
radially emitted photons into account [16,18].

2.2.4. The Correction Factor

Castor et al. [16] (see their appendix) qualitatively discussed the effect on the line
force that the proper shape of the star (non-radial incoming photons) would have on the
wind kinematics. Later Pauldrach et al. [24] and Friend and Abbott [23] independently
investigated the influence of this effect, known as the finite disc correction factor, thereby
developing the m-CAK theory.

The expression of the line force for incoming photons from an arbitrary direction for a
radial flow velocity field comes from the definition of Equation (20); thus,

tσ =

(
1 + σ

1 + µ2σ

)
σe ρ vth
dv/dr

, (30)
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where
σ =

d ln vs.
d ln r

. (31)

Inserting tσ into Equation (26) instead of t and integrating, we obtain the following
expression for the line force:

gline =
C
r2 CF(r, v, v′)

(
r2 v v′

)α
(32)

where CF is the correction factor, defined as the ratio of the force due to the non-radial
contributions to that of a point star approximation, namely:

CF =
2

1− µ2
c

∫ 1

µc

[
(1− µ2) v/r + µ2v′

v′

]α

µ dµ (33)

with µc =
√
(1− R2∗/r2), where R∗ is the stellar radius and v′ = dv/dr. In Appendix A,

we summarised some properties of the correction factor.

2.3. The Ionization Balance

In their work, Abbott [10] assumed a local thermodynamic equilibrium (LTE) and
used the modified Saha formula (see Hubeny and Mihalas [29]) to take the dilution of the
radiation field and the possible difference between the electron kinetic temperature Te and
the radiation temperature Tr into account. Due to the changes in the ionisation throughout
the wind, Abbott fitted the line force not only in terms of (r2 vs. v′)α (see Equation (28)) but
also as a function of the ratio ne/W(r), where

W(r) =
1
2

(
1−

√
(1− R2∗/r2)

)
(34)

is the dilution factor. They found that the functional dependence of this quotient in the line
force is:

gline ∝
(

ne

W(r)

)δ

, (35)

where the electron number density, ne, is given in units of 1011cm−3. This proportionality
means that the greater the density, the lower the ionisation level. In view of the fact that the
lower ionisation levels have more line transitions, usually at the maximum of the radiation
field, the line force increases with increasing density. Values of this δ line force parameter
for the fast solution (see below) are in the range 0 < δ . 0.2 [8], but for a pure hydrogen
atmosphere, the value is δ = 1/3, as Puls et al. [42] demonstrated.

3. The m-CAK Hydrodynamic Model

The 1D m-CAK stationary model for line-driven stellar winds considers the following
assumptions: an isothermal fluid in spherical symmetry and no influence from viscosity
effects, heat conduction and magnetic fields.

The stationary continuity and momentum conservation equations are:

Ṁ = 4 π r2 ρ vs., (36)

v
dv
dr

= −1
ρ

dP
dr
− GM∗(1− Γe)

r2 +
v2

φ(r)

r
+ gline(ρ, dv/dr, ne), (37)

where P is the fluid pressure and vφ = vrotR∗/r, with vrot being the stellar rotational speed
at the equator. In addition, gline(ρ, dv/dr, ne) corresponds to the acceleration due to an
ensemble of lines.
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The standard or m-CAK parameterization of the line force [10,23,24] is the following:

gline =
C
r2 CF(r, v, dv/dr)

(
r2v

dv
dr

)α ( ne

W(r)

)δ

, (38)

where the coefficient C is given in Equation (29).
Substituting the density from the mass conservation equation (Equation (36)) into the

momentum equation (Equation (37)), we obtain the equation of motion (EoM).
Transforming to dimensionless variables, that is

u = −R∗
r

, (39)

w =
v
a

, (40)

w′ =
dw
du

, (41)

where a is the isothermal sound speed of an ideal gas, P = a2ρ.

Using these new variables, the EoM now reads:

F(u, w, w′) =
(

1− 1
w2

)
w

dw
du

+ A +
2
u
+ a2

rotu− C′ CF g(u)(w)−δ

(
w

dw
du

)α

= 0 , (42)

where the constants are the following:

A =
GM(1− Γe)

a2R∗
=

v2
esc

2a2 , (43)

arot =
vrot

a
, (44)

C′ = C
(

ṀD
2π

10−11

aR2∗

)δ

(a2R∗)(α−1), (45)

D =
(1 + ZHeYHe)

(1 + AHeYHe)

1
mp

, (46)

where ZHe is the number of free electrons provided by helium, vesc is the escape velocity
and the function g is defined as:

g(u) =
(

u2

1−
√

1− u2

)δ

(47)

In order to find a physical wind solution of the EoM (Equation (42)), i.e., starting from
the photosphere with a small velocity and reaching infinity with a supersonic velocity, we
first need to understand the topology of this equation.

4. Topological Analysis

As mentioned previously, the first wind model was developed by Parker [14] for
the sun. This model possesses a singular point at the sonic point and different solution
branches (see Figure 3.1 in [8]). The m-CAK model has a driving force (line force) that
depends not only on the radial coordinate r (or u) but also on the velocity and the velocity
gradient. These characteristics complicate the study of the EoM’s topology that gives rise
to the different solutions.

Mathematically, singular points are located where the singularity condition is satisfied,
i.e.,

∂

∂w′
F(u, w, w′) = 0 , (48)
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and these locations form the locus of singular points.
At these specific points, in order to have a smooth wind solution between solution

branches, a regularity condition must be imposed, namely:

d
du

F(u, w, w′) =
∂F
∂u

+
∂F
∂w

w′ = 0 (49)

Using the following coordinate transformation:

Y = w w′ (50)

Z = w/w′, (51)

we can now solve Equations (42), (48) and (49), only valid simultaneously at one singular
point, obtaining the following set of equations:

Y− 1
Z

+A + 2/u + a2
rotu −C′ f1(u, Z) g(u) Z−δ/2 Yα−δ/2 = 0 , (52)

Y− 1
Z

−C′ f2(u, Z) g(u) Z−δ/2 Yα−δ/2 = 0 , (53)

Y +
1
Z
−2Z/u2 + a2

rotZ −C′ f3(u, Z) g(u) Z−δ/2 Yα−δ/2 = 0 , (54)

derivation details and definitions of f1(u, Z), f2(u, Z) and f3(u, Z) are summarised in
Appendix B.

Solving for Y and C′ from the set of Equations (52)–(54), we obtain:

Y =
1
Z
+

(
f2(u, Z)

f1(u, Z)− f2(u, Z)

)
×
(

A +
2
u
+ a2

rotu
)

(55)

and

C′(Ṁ) =
1

g f2

(
1− 1

Y Z

)
Zδ/2 Y1−α+δ/2 (56)

These last two Equations are generalisations of the relations found by [28] (see their
Equations (21) and (34) for Y and Equations (21) and (44) for the eigenvalue), but now
including the rotational speed of the star.

The Critical Point Function R

The set of Equations (52)–(54) are only valid at the singular point for the unknowns Ys,
C′s, Zs and us

4. Due to the fact that there are only three equations and four unknowns, it
is not possible to solve them. Nevertheless, from this set of equations, we can derive the
function R(u, Z), defined by:

R(u, Z) = − 2
Z
+

2Z
u2 − a2

rotZ + f123(u, Z)
(

A +
2
u
+ a2

rotu
)

(57)

where f123(u, Z) has the following definition:

f123(u, Z) =
f2(u, Z)− f3(u, Z)
f2(u, Z)− f1(u, Z)

(58)

The locus of singular points, us, is given by the points which are solutions of the
following equation:

R(u, Z) = 0 . (59)

It should be noted that no approximation has been made in the derivation of the above
topological equations.
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To determine the location of the singular point in the locus of points that satisfies
R(u, Z) = 0, and therefore determine the values of Ys, C′s, Zs and us, we need to set a
boundary condition at the stellar surface.

The most used boundary conditions are:

(i) Set the density at the stellar surface to a specific value,

ρ(R∗) = ρ∗ (60)

Usually this base density is in the range 10−8 g cm−3 to 10−13 g cm−3. For some examples,
see the works of de Araujo and de Freitas Pacheco [47], Friend and MacGregor [48],
Madura et al. [49], Curé [50] and Araya et al. [51].

(ii) Set the optical depth integral to a specific value, i.e.,

τ∗ =
∫ ∞

R∗
σE ρ(r)dr =

2
3

. (61)

Employing one of these boundary conditions at the stellar surface plus the regularity
condition at the singular point, we can solve from the EoM (Equation (42)) the velocity
profile, w = w(u), together with the value of the eigenvalue, C′, and therefore the mass
loss rate, Ṁ.

5. Types of Solutions

We developed a numerical code that discretizes by finite differences the EoM and,
using the Newton–Raphson method, iterates to a numerical solution. This code is called
HYDWIND and is described in more detail in Curé [50] (see also [52]).

After performing a topological analysis of the EoM, we were able, thanks to
HYDWIND, to find the numerical solutions of all three known m-CAK physical solutions:
fast, Ω-slow and δ-slow solutions.

5.1. Fast Solution

From the pioneering work of CAK and its improvements from Friend and Abbott [23]
and Pauldrach et al. [24], the code HYDWIND is able to obtain the standard solution of the
m-CAK theory, hereafter called the fast solution.

To perform our topological analysis, we use a typical O5 V star with the following
stellar parameters: Teff = 45, 000 K, log g = 4.0, R/R� = 12, and line force parameters
k = 0.124, α = 0.64, and δ = 0.07, with the boundary condition τ∗ = 2/3.

The function R(u, Z) is shown in Figure 1 for a non-rotating star (arot = 0). The plane
R(u, Z) = 0 is plotted in light grey (right panel) and the intersection of both functions,
which corresponds to the locus of singular points, is plotted with a black line. The locus of
singular points for the fast solution is the one that starts at Z ∼ 0 and u = −1. The other
locus of singular points will be discussed below.

Knowing the topology of the m-CAK model, specifically the locus of singular points,
we now solve the EoM for the velocity profile, v(r), or equivalently w = w(u), and the
eigenvalue C′, which is proportional to the mass loss rate, Ṁ. Then, the wind parameters
obtained for this model are a terminal velocity (v∞) of 3467 km/s and a mass loss rate (Ṁ)
of 2.456× 10−6 M�/yr. Figure 2 shows the velocity profile of this model as a function of
log(r/R∗ − 1) (left panel) and as a function of u (right panel). The location of the singular
point (rs) is shown with a red dot, and it is located near the stellar surface (rs = 1.029 R∗ or
us = −0.9719). At this point, the wind velocity is 181.4 km/s, a highly supersonic speed
(a = 24.17 km/s).
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Figure 1. Function R(u, Z) for a typical O5 V star without rotation. The (left panel) shows only the
function R(u, Z), while the (right panel) is similar to the (left panel), but the plane R(u, Z) = 0 is
also plotted in light grey. Furthermore, the intersection of both curves (black solid lines) shows two
loci of singular points.
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Figure 2. Velocity profile for a typical O5 V star without rotation. The velocity profile is plotted
as a function of log(r/R∗ − 1) (left panel) and as a function of u (right panel). The location of the
singular point is shown with a red dot, while the sonic point is in black.

This steep velocity gradient is due to the rapid increase in the line force just above the
stellar surface, as shown in Figure 3, where the sound speed is reached at r = 1.006 R∗ and
the maximum of gline is reached at r = 1.3 R∗.

1 3 5 7 9
0

104

2 ·104

3 ·104

r/R*

g
lin
e
[c
m
/s
2
]

Figure 3. The radiative acceleration, gline, for a typical O5 V star without rotation as function of r/R∗
for r < 10 R∗.

As previously mentioned, the wind parameters (v∞ and Ṁ) must be calculated within
the framework of the radiative transport problem. However, to understand the complex
non-linear dependence on the wind parameters from the line force parameters, in the
following figures, we show how the wind parameters depend on each one of the line force
parameters.

Figure 4 shows the dependence of the wind parameters, v∞ (left panel) and Ṁ (right
panel), as a function of the line force parameter α, using the same stellar parameters and
keeping the line force parameters k and δ fixed. There is an increase in the values of both
wind parameters as α increases.
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Figure 4. Dependence of the wind parameters as a function of the line force parameter α. Terminal
velocity (left panel) and mass loss rate (right panel). The values obtained for our typical O5 V star
without rotation are shown in red.

The dependence of the wind parameters as a function of the line force parameter k
is shown in Figure 5. In this case, the wind parameters also increase as k increases. It is
clearly seen in Figure 5 that the terminal velocity depends only slightly on the value of k
rather than the mass loss rate, which has a significant impact on the value of k [53].
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Figure 5. Dependence of the wind parameters as a function of the line force parameter k. Terminal
velocity (left panel) and mass loss rate (right panel). The values obtained for our typical O5 V star
without rotation are shown in red.

Finally, the dependence of the wind parameters as a function of the line force parameter
δ is shown in Figure 6. We observe that the terminal velocity has a decreasing behaviour
when the parameter δ increases, while the mass loss rate can have a decreasing or increasing
behaviour. This behaviour depends on the parameter k; for low values of k, the mass loss
rate decreases while δ increases, but for larger values, the behaviour is reversed.
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Figure 6. Cont.
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Figure 6. Dependence of the wind parameters as a function of the line force parameter δ. Upper
panels are for k = 0.124 and lower panels are for k = 0.0124. The values obtained for our typical O5
V star without rotation are shown in red.

In the next subsections, we will discuss each of the slow solutions. The combined
effects of the line force parameters and the three physical wind solutions are discussed in
detail in work by Venero et al. [53].

Overall, the fast solution from the m-CAK theory has been very successful in explaining
the terminal velocities and mass loss rates of massive stars (see [8,11–13]).

5.2. Ω-Slow Solution

The original CAK model considered the star point approximation, i.e., all the photons
are radially directed over the wind plasma. In that work, CAK only discussed the effect
of the finite disc of the star seen by an observer in the wind. Friend and Abbott [23] and
Pauldrach et al. [24] implemented the finite disc correction factor and solved the EoM. In
both works, they also studied the influence of rotation in the equatorial plane of a rotating
star, but they could not obtain solutions for rapidly rotating stars. The reason was found by
Curé [50] for values of Ω & 0.75, where Ω = vrot/vcrit. At this value of Ω, the fast solution
ceases to exist, and another type of solution is found. This solution, called Ω-slow solution,
is characterised by a slower and denser wind in comparison with the fast solution.

It is well known that Be stars are the fastest rotators among stars [54]. Thus, in this
section, we will study the topology and the wind solutions for a typical B2.5 V star with
the following stellar and line force parameters: Teff = 20, 000K, log g = 4.11, R/R� = 4.0,
k = 0.61, α = 0.5 and δ = 0.0. The lower (surface) boundary condition is fixed at
ρ∗ = 8.7× 10−13 g/cm3. In addition, the distortion of the shape of the star caused by its
high rotational speed and gravity darkening effects are not considered.

Figure 7 shows the surfaces R(u, Z) for different values of Ω, together with the
plane R(u, Z) = 0. The intersection of the surfaces R(u, Z) and R(u, Z) = 0 (black lines)
correspond to the locus of singular points. We clearly observe two different loci of singular
points. The fast solution locus can be observed for Ω = 0.3 (upper left panel), Ω = 0.5
(upper right panel) and Ω = 0.7 (lower left panel). For larger rotational rates (Ω & 0.75),
the fast solution locus lies completely under the plane R(u, Z) = 0, as shown in the lower
right panel for Ω = 0.9. Thus, the fast solution does not exist for large values of Ω.

Figure 8 shows the velocity profiles, v(u), as a function of u for different values of Ω.
All these solutions use the same lower boundary condition. This figure shows (left panel)
fast solutions in light grey and Ω-slow solutions in coloured lines. The right panel shows
only Ω-slow solutions; the location of the singular point is almost independent of Ω. This
is a consequence of the shape of the locus curve of singular points (see Figure 7). This locus
is located almost at a constant value of u.
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Figure 7. The function R(u, Z) (topology) of the m-CAK theory as function of Ω: Ω = 0.3
(upper left panel), Ω = 0.5 (upper right panel), Ω = 0.7 (lower left panel) and Ω = 0.9 (lower right
panel). The plane R(u, Z) = 0 is shown in light grey, and its intersection with the surface R(u, Z)
(locus of singular points) is plotted with a black line.
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Figure 8. Velocity profiles, v(u), as function of the rotational rate Ω. (Left panel): fast solutions
(Ω . 0.74) are plotted in grey lines, while the Ω-slow solutions are in coloured lines: Ω = 0.74 (red
line), Ω = 0.76 (blue line), Ω = 0.80 (cyan line), Ω = 0.82 (magenta line), Ω = 0.85 (green line),
Ω = 0.90 (black line) and Ω = 0.95 (orange line). (Right panel): The same Ω-slow solutions, but
zoomed and including the location of the singular points (red dots).

The Ω-slow solutions are only valid in the equatorial plane in this 1D m-CAK model.
Notice that this model does not take into account the oblateness and gravity-darkening
effects. See Araya et al. [55] for the implementation in the 1D model (equatorial plane) and
Cranmer and Owocki [56] for the implementation in the 2D model.

In the equatorial plane, the higher the Ω, the greater the centrifugal force and,
consequently, the lower the effective gravity. Therefore, the higher Ω is, the higher the rate
of mass loss and, through the continuity equation, the higher the wind density, as shown in
Figure 9.
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Figure 9. Wind density profiles, ρ(u) (in gr/cm3) versus u, for fast and Ω-slow solutions. The colour
scheme is the same as the one used in Figure 8.

5.3. δ-Slow Solution

The δ-slow solution was found numerically by Curé et al. [27]. This solution, based
on the m-CAK theory, describes the wind velocity profile when the ionization-related
line force parameter δ takes larger values, δ & 0.28. These values are larger than the ones
provided by the standard m-CAK solution (see [8] and the references therein). Nevertheless,
Puls et al. [42] calculated the value of δ for a pure hydrogen atmosphere, finding a value of
δ ∼ 1/3. These high values of δ are also found in atmospheres and winds with extremely
low metallicities (see [57]).

The δ-slow solution, as well as the Ω-slow solution, are characterized by low velocities.
This solution could explain the velocities obtained for late-B and A-type supergiant stars
and seems to fit well with the observed anomalous correlation between the terminal and
escape velocities found in A supergiant stars [27]. Furthermore, in work by
Venero et al. [53] (see their Table 2), a gap of solutions between the fast and the δ-slow
solutions for different values of the rotational speed was found in the plane δ-Ω.

To present a topological analysis of this type of solution, we adopt the model T19 from
Venero et al. [53]. The stellar and line force parameters are Teff = 19, 000 K, log g = 2.5,
R/R� = 40, k = 0.32 and α = 0.5. We use τ∗ = 2/3 as a boundary condition at the
stellar surface.

In Figure 10, the R(u, Z) function and the plane R(u, Z) = 0 are shown for different
values of δ. The upper left panel shows the surface R(u, Z) for δ = 0.1. We clearly see
that, for this case, the locus of singular points for fast solutions is different from the case
of the fast solution shown in Figure 1. Here, this locus is located when Z . 0.5, ∀ u. The
upper right panel shows R(u, Z) for δ = 0.12, where the locus of singular points for fast
solutions returns to the behaviour shown in Figure 1. The fast solution is present until
δ = 0.24, see the lower left panel. We cannot find fast solutions for slightly larger values of
δ until δ ∼ 0.30 (lower right panel). For this value of δ, the locus of singular points for fast
solutions shifts to slightly larger values of Z for u . −1, and the numerical wind solutions
no longer have a singular point in this locus, switching to the other locus of singular points
(δ-slow solutions) located at u . −0.1 (or r & 10R∗).

Figure 10. Cont.
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Figure 10. The topological function R(u, Z) of the m-CAK theory as function of δ. (Upper left panel):
δ = 0.1. (Upper right panel): δ = 0.12. (Lower left panel): δ = 0.24. (Lower right panel): δ = 0.3.
The plane R(u, Z) = 0 is shown in light grey, and its intersection with the surface R(u, Z) (locus of
singular points) is plotted with black lines.

Figure 11 shows the velocity profiles, v(u), as a function of u for different values of
δ and the same lower boundary condition. This figure shows (left panel) fast solutions
in light grey and δ-slow solutions in coloured lines. The right panel shows only δ-slow
solutions. The locus curve of singular points (see Figure 10) is located almost at a constant
value of u. Then, the location of the singular point is almost independent of δ, similar to
the behaviour of Ω-slow solutions.
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Figure 11. Velocity profiles, v(u), for different values of the line force parameter δ. (Left panel): fast
solutions are plotted in grey lines for δ = 0.0, 0.1, 0.2, 0.24, while δ-slow solutions are in coloured
lines. The red line corresponds to δ = 0.3, the blue line to δ = 0.31, the cyan line to δ = 0.32 and
the magenta line to δ = 0.33. The (right panel) shows only δ-slow solutions, and the location of the
singular points for each solution is shown with a red dot.

5.4. The β-Law Approximation

In the work of Pauldrach et al. [24], after obtaining the numerical solution of the EoM,
they assumed a power law approximation to describe the velocity profile only as a function
of the radial coordinate r. This approximation is known as the β-law approximation and
has the following expression:

v(r) = v∞ (1− R∗/r)β , (62)

= v∞ (1 + u)β , (63)

where v∞ is the terminal velocity and the value of β determines the shape of the velocity
profile. In the context of stellar wind diagnostics, these parameters are considered fit
parameters that must be determined through spectral line fitting. Usually, the range used
for the β parameter is 0.7 . β . 4 [11].
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Figure 12 shows the velocity profile of the fast solution for the stellar and line force
parameters given at the beginning of Section 5.1, together with six different values of β for
a β-law velocity profile. From this figure, we can conclude that the fast solution cannot be
described properly by a β-law with β > 1.2.
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Figure 12. Fast solution velocity profile (solid blue), v(u) vs. u. Six different β-law velocity profiles
are also plotted. It is clearly seen that the β-law approximation is a good one for 0.7 . β . 1.2. See
text for details.

On the other hand, Figure 13 shows the velocity profile for the δ-slow solution for
the stellar and line force parameters given at the beginning of Section 5.3, where δ = 0.32.
Furthermore, the same β-law profiles of Figure 12 are used, with the proper values of v∞
for this solution. The same is plotted in Figure 14 for the Ω-slow solution with Ω = 0.8. In
the case of the δ-slow solution, the β-law profile cannot fit the m-CAK hydrodynamical
solution for any β > 0.7, while for values around β = 0.7, the profiles can be considered
similar. Finally, from Figure 14, we can definitely conclude that Ω-slow solutions cannot be
described properly by any β-law profile.
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Figure 13. δ-slow solution velocity profile (solid blue), v(u) vs. u. Six different β-law velocity profiles
are also plotted. For values around β = 0.7, the profiles can be considered similar, but it can be clearly
concluded that for β > 0.7, the β-law profile cannot fit the m-CAK hydrodynamical δ-slow solution.
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Figure 14. Ω-slow solution velocity profile (solid blue), v(u) vs. u. Six different β-law velocity profiles
are also plotted. It can be clearly concluded that no β-law profile can fit the m-CAK hydrodynamical
Ω-slow solution.

6. Analytical Wind Solutions

Using an analytical expression to represent the radiation force and solve the equation
of motion analytically offers numerous advantages over the numerical integration of the
EoM. These formulae can be used in all cases where good first estimates are needed; for
example, it gives the advantage of solving the radiative transfer problem for moving media
in an easier way.

Kudritzki et al. [28] were some of the first to develop analytical solutions for radiation-
driven winds considering the finite disc correction factor in the line force. Based on these
solutions, they provided approximated analytical expressions for the terminal velocity
and the mass loss rate in terms of the stellar parameters (L, M∗ and R∗), the line force
parameters (k, α and δ) and the free parameter β from the β-law (they adopted β = 1.0 for
their results).

Other authors have tried to simplify the complicated numerical treatment from the
theory. Villata [58], with the purpose of simplifying the integration of the EoM, derived
an approximated expression for the line acceleration term, which depends only on the
radial coordinate. Müller and Vink [59] presented an analytical expression for the velocity
field using a parameterized description for the line acceleration that (as in Villata [58]) also
depends on the radial coordinate. These line acceleration expressions do not depend on the
velocity or the velocity gradient, as the standard m-CAK description does. Araya et al. [60]
proposed to achieve a complete analytical description of the 1D hydrodynamical solution
for radiation-driven winds in the fast regime by gathering the advantages of both previous
approximations (the use of known parameters and the LambertW function). In addition,
Araya et al. [61] developed an analytical solution for the δ-slow regime. To date, no
approximation using the LambertW function has been performed for the Ω-slow regime,
we expect to do this in the future.

In the following sections, we describe the results and methodology used to analytically
solve the equation of motion for fast and δ-slow regimes.

6.1. Solution of the Dimensionless Equation of Motion

In this section, we recapitulated the methodology described by Müller and Vink [59]
to obtain the dimensionless equation of motion.

In a dimensionless form, the momentum equation can be expressed as follows,

v̂
dv̂
dr̂

= −
v̂2

crit
r̂2 + ĝline − 1

ρ

dρ

dr̂
, (64)

where r̂ is a dimensionless radial coordinate r̂ = r/R∗ and the dimensionless velocities (in
units of the isothermal sound speed a) are:
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v̂ =
v
a

and v̂crit =
vesc

a
√

2
, (65)

where vcrit is the rotational break-up velocity in the case of a rotating star. It is usually
determined by dividing the effective escape velocity, vesc, by a factor of

√
2. Similarly, a

dimensionless line acceleration can be written as follows:

ĝline =
R∗
a2 gline. (66)

Using the continuity equation and the equation of state of an ideal gas, the dimensionless
equation of motion reads as follows:(

v̂− 1
v̂

)
dv̂
dr̂

= −
v̂2

crit
r̂2 +

2
r̂
+ ĝline(r̂). (67)

Lastly, a 1D velocity profile is derived analytically in terms of the LambertW
function [62–64]. See Müller and Vink [59] for a detailed description of the methodology
used to arrive at this solution. This analytical solution is expressed as follows:

v̂(r̂) =
√
−Wj(x(r̂)), (68)

where

x(r̂) = −
(

r̂c

r̂

)4
exp

[
−2 v̂2

crit

(
1
r̂
− 1

r̂c

)
− 2

∫ r̂

r̂c
ĝline(r̂)dr̂− 1

]
. (69)

In the last equation appears the parameter r̂c, which represents the position of the
sonic (or critical) point.

Furthermore, the LambertW function (Wj) has only two real branches, indicated by
the sub-index j, where j = 0 or −1. These two branches coincide at the sonic point, r̂c, i.e.,

j =
{

0 for 1 ≤ r̂ ≤ r̂c
−1 for r̂ > r̂c

(70)

A regularity condition must be imposed, as in the m-CAK case, since the LHS of the
equation of motion (Equation (67)) vanishes at v̂ = 1 (singularity condition in the CAK
formalism). This is equivalent to ensuring that the RHS of Equation (67) vanishes at r̂ = r̂c.
Therefore,

−
v̂2

crit
r̂2

c
+

2
r̂c

+ ĝline(r̂c) = 0, (71)

and r̂c is obtained by solving this last equation. Finally, the velocity profile is derived using
the function x(r̂), Equation (69), in Equation (68).

6.2. The Fast Regime

Kudritzki et al. [28] analytical study of radiation-driven stellar winds allowed Villata [58]
to derive an approximate expression for the line acceleration term. In this case, the line
acceleration is only dependent on the radial coordinate, and it reads as follows:

gline
V92(r̂) =

G M∗ (1− Γe)

R2∗ r̂2 A(α, β, δ)

(
1− 1

r̂

)α(2.2 β−1)
, (72)

with

A(α, β, δ) = (1.76 β)α

1−α

[
10−δ(1 + α)

]1/(1−α)
[

1 +
(

2
α

{
1−

[
10−δ(1 + α)

]1/(α−1)
})1/2

]α

. (73)
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According to Kudritzki et al. [65], the exponent β can be calculated based on the force
multiplier parameters and the escape velocity, vesc:

β = 0.95 α +
0.008

δ
+

0.032 vesc

500
, (74)

with vesc in km/s.
Then, using Equation (72) in its dimensionless form (Equation (66)) and inserting it

into the dimensionless equation of motion (Equation (67)) yields:(
v̂− 1

v̂

)
dv̂
dr̂

= −
v̂2

crit
r̂2 +

2
r̂
+

1
a2

GM∗(1− Γe)

R∗ r̂2 A(α, β, δ)

(
1− 1

r̂

)γv

, (75)

with γv = α (2.2 β− 1).
Based on Villata [58] approximation of the line acceleration, this differential equation

can be viewed as a solar-like differential equation of motion. Hence, the singular point is
the sonic point. Additionally, Villata [58] equation of motion does not have eigenvalues,
which means it does not depend explicitly on the star’s mass loss rate.

Using a standard numerical integration method, Villata [58] solved the equation of
motion and obtained terminal velocities that were within 3–4 % of those computed by
Pauldrach et al. [24] and Kudritzki et al. [65].

A parametrized description of the line acceleration was presented years later by Müller
and Vink [59] that is dependent on the radial coordinate (similar to Villata [58]). The line
acceleration in Müller and Vink [59] was determined using Monte Carlo multi-line radiative
transfer calculations [66,67] and a β law. Following this, the line acceleration was fitted
using the following formula:

ĝline
MV08(r̂) =

ĝ0

r̂1+δ1

(
1− r̂0

r̂δ1

)γ

, (76)

where ĝ0, δ1, r̂0 and γ are the acceleration line parameters.
Then, the solution of the equation of motion, based on their methodology and line

acceleration, is:
v̂(r̂) =

√
−Wj(x(r̂)) , (77)

with

x(r̂) =−
(

r̂c

r̂

)4
exp

[
−2 v̂2

crit

(
1
r̂
− 1

r̂c

)

− 2
r̂0

ĝ0

δ1 (1 + γ)

(1− r̂0

r̂δ1

)1+γ

−
(

1− r̂0

r̂δ1
c

)1+γ
− 1

. (78)

As a result of the approximations described above, the velocity profile can be
represented analytically, greatly simplifying the solution of the equation of motion.

Furthermore, it is relevant to note that each of the mentioned approximations has its
own advantages and disadvantages. Even though Villata’s approximation of the radiation
force is general and can directly be applied to describe any massive star’s wind, the
momentum equation still needs to be solved numerically. With Müller and Vink [59]
approximation, the equation of motion can be analytically solved based on the ĝ0, δ1, r̂0f
and γ parameters of the star. Nevertheless, it is still necessary to perform Monte Carlo
multi-line radiative transfer calculations in order to determine these parameters.

This methodology to solve the equation of motion was revisited by Araya et al. [60]
in order to derive a fully analytical expression combining Villata [58] expression of the
equation of motion with the methodology developed by Müller and Vink [59].
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This analytical solution is,

v̂(r̂) =
√
−Wj(x(r̂)), (79)

with

x(r̂) = −
(

r̂c

r̂

)4
exp

[
−2 v̂2

crit

(
1
r̂
− 1

r̂c

)
− 2
(

Iĝline
V92

(r̂)− Iĝline
V92

(r̂c)
)
− 1
]

, (80)

where

Iĝline
V92

(r̂) =
(

10−δ (1 + α)
) 1

1−α

1 +
√

2

√
−
(
10−δ (1 + α)− 1

) 1
α−1

α


α

× (1.76 β)α G M∗

(
r̂− 1

r̂

)1+γv Γ− 1
(a2[α− 1](1 + γv) R∗)

. (81)

As was mentioned in the previous section, r̂c can be obtained numerically, making the
RHS of Equation (75) equal to zero. In order to obtain the terminal velocity in a simpler
way, we can use the average value of r̂c (r̂c = 1.0026) obtained by Araya et al. [60]. Note
that this value can be used only in the supersonic region.

Equation (79) has the advantage that it is based not only on the LambertW function,
but also on stellar parameters and the line force parameters. For a wide range of spectral
types, stellar and force multiplier parameters are given (see, e.g., [8,10,22,24,41,44]).

By comparing the analytical solution to the 1D hydrodynamic code HYDWIND, the
accuracy of the analytical solution can be tested. Figure 15 compares the results obtained
with our analytical approximation to those obtained with the hydrodynamics for four stars
taken from Araya et al. [60]. Both solutions have similar behaviour. However, as shown by
Araya et al. [60], the analytical approximation close to the stellar surface (subsonic region)
is not good enough. In the same way, Figure 16 compares the numerical and analytical
velocity profiles near to the stellar surface for ε Ori.
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Figure 15. Velocity profiles as a function of the inverse radial coordinate u = −R∗/r = −1/r̂ for four
models. The hydrodynamic results from HYDWIND are shown in solid blue lines and the analytical
solutions are shown by dashed lines. The stellar and line force parameters for the models are given in
Araya et al. [60].

There is a limitation to this analytical expression when the line force parameter δ
exceeds about 0.3. This is due to the complexity of a term in the proposed line acceleration
expression. To obtain an expression with real values, high values of δ would require high
values of α. However, such kind of α values would be totally unphysical (α > 1). As an
illustration of the dependence of this expression on the parameters α and δ, Figure 17 shows
the domain of the complex and real regions when this expression is evaluated to the given
line acceleration term.



Galaxies 2023, 11, 68 23 of 33

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

0

200

400

600

800

1000

log(r/R*-1)

v
[k
m
/s
]

Figure 16. Velocity profiles of ε Ori as a function of log(r/R∗ − 1) in a region near to the stellar
surface. The solid blue line shows the numerical hydrodynamic result and the analytical solution is
shown by a dashed line. The dot symbol indicates the position of the sonic (or critical) point. The
difference between both curves is around one thermal speed.

Figure 17. Real and complex regions where the line acceleration expression given by Villata [58] can
be found. These regions are delimited by the values of the line force parameters α and δ.

6.3. The δ-Slow Regime

Considering the results obtained when using an approximate description of the wind
velocity for the δ-slow case, Araya et al. [61] modified the function of the line acceleration
given by Müller and Vink [59] to better describe of δ-slow wind.

As a result, the proposed line acceleration is:

ĝline(r̂) =
ĝ0

r̂1+δ1

(
1− 1

r̂δ2

)γ

, (82)

where ĝ0, δ1, δ2 and γ are the new set of line acceleration parameters.
It is notable that the δ2 parameter, which has been incorporated into this new expression,

provides a much better agreement with the numerical line acceleration obtained from the
m-CAK model in the δ-slow regime compared with the one from Müller and Vink [59].

Based on this new definition of the radiation force, the new dimensionless equation of
motion reads: (

v̂− 1
v̂

)
dv̂
dr̂

= −
v̂2

crit
r̂2 +

2
r̂
+

ĝ0

r̂1+δ1

(
1− 1

r̂δ2

)γ

. (83)

The LambertW function is used to solve the equation of motion, Equation (83),
following the same methodology developed by Müller and Vink [59],

v̂(r̂) =
√
−Wj(x(r̂)) , (84)
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with

x(r̂) = −
(

r̂c

r̂

)4
exp

[
−2 v̂2

crit

(
1
r̂
− 1

r̂c

)
− 2
(

Iĝline(r̂)− Iĝline(r̂c)
)
− 1
]

,

where

Iĝline =
∫

ĝline(r̂)dr̂ = −
g0 r̂−δ1 2F1

[
−γ, δ1

δ2
, 1 + δ1

δ2
, r̂−δ2

]
δ1

, (85)

and 2F1 is the Gauss Hypergeometric function. The critical (or sonic) point, r̂c is obtained
numerically, making the RHS of Equation (83) equal to zero.

Ultimately, this expression for the velocity profile is in quite satisfactory agreement
with the numerical solution from HYDWIND.

As described in Araya et al. [60], a relationship was established between the Müller
and Vink [59] line force parameters (ĝ0, δ1, r̂0 and γ) and the stellar and m-CAK line force
parameters. In addition to being easy to use, this relationship provides a straightforward
and versatile method of calculating velocity profiles analytically for a wide range of spectral
types, since both stellar and m-CAK line force parameters are available (see [8,10,22,24,41,44]).

A similar relationship can be derived for the δ-slow regime using m-CAK hydrodynamic
models, that is, creating a grid of HYDWIND models for δ-slow solutions. These models are
then analysed using a multivariate multiple regression analysis (MMR [68,69]).

To develop this hydrodynamic grid, the stellar radius is calculated from Mbol for each
pair of stellar parameters (Teff and log g) by using the flux weighted gravity–luminosity
relationship [70,71]. Additionally, a total of 20 stellar radius values were added (ranging
from 5 R� to 100 R� in steps of 5 R�). The surface gravities are in the range of log g = 2.7
down to about 90% of Eddington’s limit in steps of 0.15 dex. The effective temperatures
are between 9 000 K and 19, 500 K in steps of 500 K. The range of this grid has been chosen
to cover the region of the Teff-log g diagram that contains B- and A-type supergiants. In
Table 1, the m-CAK line force parameters for each set of (Teff, log g) values are listed. For
the purpose of obtaining δ-slow solutions, only high values of δ are considered. For the
Teff-log g plane (see Figure 18), we show in blue dots all converged models.

Table 1. m-CAK line force parameter ranges for the grid of models.

Parameter Range

α 0.45–0.69 (step size of 0.02)
k 0.05–1.00 (step size of 0.05)
δ 0.26–0.35 (step size of 0.01)
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Figure 18. Hydrodynamic models in the Teff-log g plane. Blue dots represent the converged solutions.
Grey solid lines are the evolutionary tracks for stars of 7M� to 60M� without rotation [72], and black
lines represent the zero-age main sequence (ZAMS) and the terminal age main sequence (TAMS).
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In order to obtain the new line acceleration parameters (ĝ0, δ1, δ2 and γ) for each
model, the m-CAK line acceleration was fitted, using Least Squares, with the proposed line
acceleration expression (Equation (82)). Then, an MMR is applied to the grid of models in
order to derive the relationship between the new line acceleration parameters (ĝ0, δ1, δ2
and γ) and stellar (Teff, log g and R∗/R�) and m-CAK line force parameters (k, α and δ).
The estimated parameters are:

ĝ0.27
0 = −4.548− 1.890× 10−4 Teff + (86)

4.393 log g + 3.026× 10−2R∗/R� −
4.802× 10−3 k + 3.781 α− 3.212 δ,

(δ1 + 1)5.3 = −4.623− 3.743× 10−4 Teff + (87)

1.489× 101 log g + 1.148× 10−1R∗/R� +

2.415 k + 9.553× 101 α− 1.320× 102 δ,

δ0.45
2 = 5.359 + 8.262× 10−5 Teff − (88)

1.327 log g− 8.327× 10−3R∗/R� +

2.181× 10−1 k + 9.618× 10−1 α− 2.296 δ

and

(γ + 1)−3.56 = −1.031 + 7.254× 10−6 Teff + (89)

2.994× 10−1 log g + 3.097× 10−3R∗/R� +

1.836× 10−1 k− 4.828× 10−1 α + 1.254 δ,

After the estimated values for each dependent variable (ĝ0.27
0 , (δ1 + 1)5.3 and δ0.45

2 ,
(γ + 1)−3.56) are obtained they are transformed into ĝ0, δ1, δ2 and γ through their respective
inverse functions. Finally, we can use these parameters in Equation (84) to calculate the
velocity profile.

The velocity profiles obtained via HYDWIND code and the analytical solution are
shown in Figure 19 for one model with a δ-slow solution. The model is taken
from Curé et al. [27].
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Figure 19. Velocity profiles as a function of the inverse radial coordinate u = −R∗/r = −1/r̂ for the
model R24 from Curé et al. [27]. The hydrodynamic result from HYDWIND is shown in the solid blue
line and the analytical solution is a dashed black line.

Remember, however, that this relationship holds only for δ-slow solutions, especially
for values of δ between 0.29 and 0.35. In addition, considering the number of converged
models in the grid, the authors recommend using this expression for values of α between
0.45 and 0.55.
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Finally, it is important to remark that both analytical solutions for the velocity profile,
fast and δ-slow, do depend only on the stellar (Teff, log g and R∗/R�) and m-CAK line force
parameters (k, α and δ). Regarding the mass loss rate, Villata [58] proposed an expression
to obtain it (in terms of the stellar and m-CAK parameters) following the approximations
given by Kudritzki et al. [28]. Furthermore, Araya et al. [61], in the appendix, proposed a
method to obtain the mass loss based on Curé [50].

7. Summary and Discussion

Observations in recent decades have shown that the basic wind parameters behave
as predicted by theory. This fundamental agreement between observations and theory
provides strong evidence that the winds from massive stars are driven by radiation pressure.
This has given m-CAK theory a well-established status in the massive star community.
However, several issues are contentious and still unclear, such as the calibration of the
wind momentum–luminosity relationship (WLR) [73], discs of Be stars, wind parameter
determination and the applicability of the so-called slow wind solutions, among others. All
these issues are the focus of massive stars research.

This review is focused on the theoretical and numerical research of wind
hydrodynamics of massive stars based on the m-CAK theory, with particular emphasis on
its topology and hydrodynamic solutions.

We presented a topological analysis of the one-dimensional m-CAK hydrodynamic
model and its three known hydrodynamic solutions, the fast, Ω-slow and δ-slow solutions.
From a topological point of view, slow solutions are obtained from a new branch of solutions
with a locus of singular points far from the stellar surface, unlike fast solutions with a
family of singular points near the stellar surface.

We continued analyzing the dependence of the line force parameters (k, α and δ) with
the wind parameters (mass loss rate and terminal velocity) in order to understand the
complex non-linear dependence between these parameters. In the case of α, there is an
increase in both wind parameters as this parameter increases. This behaviour is similar to
the k parameter, but the dependence is very slight for terminal velocity, while the mass loss
rate has a significant impact. For the δ parameter, the terminal velocity has a decreasing
behaviour when this parameter increases, while the mass loss rate can have a decreasing or
increasing behaviour, which depends on the parameter k. When k is low, mass loss rates
decrease while δ increases, whereas when k is large, the opposite occurs.

In addition, we compared the β-law with the hydrodynamic solutions. We concluded
that the fast solution could not be adequately described by a β-law with β > 1.2, while the
δ-slow solution cannot be described by any β-law.

Furthermore, we presented two analytical expressions for the solution of line-driven
winds in terms of the stellar and line force parameters. The expressions are addressed to
obtain the fast and δ-slow velocity regimes in a simple way. Both solutions are based on
the LambertW function and an approximative expression for the wind line acceleration
as a function of the radial distance. The importance of an analytical solution lies in its
simplicity in studying the properties of the wind instead of solving complex hydrodynamic
equations. In addition, these analytical expressions can be used in radiative transfer or
stellar evolution codes (see, e.g., [74]).

Concerning the applicability of the slows solutions, in the case of the Ω-slow solution,
their behaviour suggests that it can play a paramount role in the ejection of material to
the equatorial circumstellar environment of Be and B[e] stars. Be stars are a unique set
of massive stars whose main distinguishing characteristics are a rapid rotation and the
presence of a dense, gaseous circumstellar disc orbiting in a quasi-Keplerian fashion. There
is a long-standing problem in understanding the formation of discs in Be stars; this is one
of the major areas of ongoing research in Be stars. The gaseous discs are not remnants
of the objects’ protostellar environments, nor are they formed through the accretion of
material [54,75]. On the contrary, the equatorial gas consists of a decretion disc formed
from a material originating from the central star.
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As was stated above, attempts to solve this problem have been made without much
success, for example, the link between the line-driven winds and these discs, called the
wind-compressed discs [76], but the work of Owocki et al. [77] was the first to show
this is not a viable mechanism for rapidly rotating stars due to the non-radial line force
components. The most accepted model to successfully reproduce many Be star observations
is the viscous decretion disc (VDD) model, developed by Lee et al. [78] and examined by
Okazaki [79], Bjorkman and Carciofi [25], Krtička et al. [80] and Curé et al. [81]. Currently,
how that material is ejected into the equatorial plane and how sufficient angular momentum
is transferred to the disc to maintain quasi-Keplerian rotation are among the primary
unresolved questions currently driving classical Be star research.

Araya et al. [55] studied the Ω-slow wind solution and its relation with the discs
of Be stars. Overall, this work is an extension to the study performed by Silaj et al. [82],
where they precisely investigated if the density distribution provided by the Ω-slow wind
solution could adequately describe the physical conditions to form a dense disc in Keplerian
rotation via angular momentum transfer. They considered a two-component wind model,
i.e., a fast, thin wind in the polar latitudes and a Ω-slow, dense wind in the equatorial
regions. Based on the equatorial density distributions, Hα line profiles were generated and
compared with an ad hoc emission profile, which agreed with the observations. In addition,
their calculations assumed three different scenarios related to the shape (oblate correction
factor) and the star’s brightness (gravity darkening). Finally, they found that under certain
conditions (related to the line force parameter of the wind), a significant Hα line profile
could be produced, and it may be that the line-driven winds through the Ω-slow solution
have an essential role in the disc formation of Be stars.

In addition, Araya et al. [51] studied the zone where the classical m-CAK fast solution
ceases to exist, and the Ω-slow solution emerges at rapid rotational speeds. This study used
two hydrodynamic codes with time-dependent and stationary approaches. They found
that both solutions can co-exist in this transition region, which depends exclusively on the
initial conditions. In addition, they performed base density wind perturbations to test the
stability of the solution within the co-existence region. A switch of the solution was found
under certain perturbation conditions. The results are explained by a possible role in the
ejection of extra material into the equatorial plane of pulsation modes, where the Ω-slow
solution can play an important role.

A current weakness of this m-CAK model is that it does not consider the role of
viscosity and its influence on angular momentum transport. This mechanism might explain
the formation of a Keplerian disc.

On the other hand, the δ-slow solution is promising to explain the discrepancies of
the wind parameters between observations and theory in late B- and A-type supergiant
stars. According to the findings of Venero et al. [53], these suggest that the terminal velocity
of early and mid-B supergiants agrees with the results seen from fast outflowing winds.
In contrast, the results obtained for late B supergiants and, mainly, those obtained for
early A supergiants, agree with the results achieved for δ-slow stationary outflowing wind
regimes. Then, the δ-slow solution enables us to describe the global features of the wind
quite well, such as mass loss rates and terminal velocities of moderately and slowly rotating
B supergiants.

Conversely, Venero et al. [53] stated that the δ-slow solution seems not to be present in
stars with Teff > 21, 000 K. This restricts the possibility of a switch between fast and slow
regimes at such temperatures. Consequently, this would be a physical explanation for why
an empirical bi-stability jump can be observed around 21, 000 K in B supergiants [83]. From
a theoretical perspective, a velocity jump has also been found using Monte Carlo modelling
and the co-moving frame method (see, e.g., [13,84,85]).

In addition, it is generally accepted that most O and early B-type stars can be adequately
modelled with a β velocity law with 0.7 . β . 1.2. However, supergiants A and B exhibit
β values that tend towards higher values, often β ≥ 2 (see, e.g., [86–90]). Venero et al.
2023 (in preparation) propose that δ-slow solutions might explain these winds. They show
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that the δ-slow regime could adequately fit the Hα line profile of B supergiants with the
same accuracy as that obtained using a β-law with β ≥ 2, but now with a hydrodynamic
explanation of the velocity profile used.

The investigations carried out in the latest works inspired us to go deeper into the
possible role of slow wind solutions with respect to the unresolved questions related to
massive stars. In view of our results, we are encouraged to develop this line of research
further. In the case of the Ω-slow solution and its link to Be stars, or possibly to B[e]
stars, it would require 2D/3D models for a better understanding to take into account non-
radial forces, the effects of stellar distortion and gravity darkening. These considerations
could change, in turn, the nature of the Ω-slow solution or the behaviour regarding the
co-existence of solutions and a switch between them.

The δ-slow solution could play an essential role in understanding the winds of B-
and A-type supergiants. Moreover, this solution is expected to solve the disagreement
between the observations and theory for these stars and, in this way, calibrate the wind
momentum–luminosity relationship.

As we mentioned previously, in the standard procedure for finding stellar and wind
parameters, the β-law (β and v∞) and the mass loss rate (Ṁ) are three ’free’ input parameters
in radiative transfer codes, comparing synthetic spectra with the observed spectra of a
star. The β law comes from an approximation of the fast wind solutions, and the values
of β should be in a restricted interval. To improve the hydrodynamic approximation used
in this standard procedure, we have developed two hydrodynamic procedures to derive
stellar and wind parameters:

• The self-consistent CAK procedure [44], based on the m-CAK model. Here, we
iteratively calculate the line force parameters using the atomic line database from
CMFGEN, coupled with the m-CAK hydrodynamic until convergence. We obtain the
line force parameters and, therefore, the velocity profile and the mass loss rate. Thus,
none of the input parameters are ’free’, but self-consistently calculated.

• The LambertW procedure [45]. In this procedure, we start using a β-law and a value
for Ṁ in CMFGEN. After convergence, we calculate the line acceleration as a function
of r, and, using the LambertW function, we obtain a new velocity profile. This is
inserted in CMFGEN and the cycle is repeated until convergence. In this LambertW
procedure, the only input parameter is the mass loss rate.

We expect that these two alternatives, which reduce the number of input parameters,
will in the future have a significant impact on the standard procedures for obtaining stellar
and wind parameters of massive stars.
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Appendix A

In their original work, CAK discussed the stellar point approximation of their model
and properly estimated the influence of the disc correction factor (CF) on the wind
dynamics, i.e., reducing the line force by about 40% at the stellar surface.

The definition of the CF is:

CF =
2

1− µ2∗

∫ 1

µ∗

(
(1− µ2)v/r + µ2v

′

v′

)α

µdµ (A1)

where v′ = dv/dr and µ2
∗ = 1− (R∗/r)2.

Integrating (A1) and changing the variables from r −→ u = −R∗/r and v −→ w = v/a,
where a is the thermal speed, the finite disc correction factor transforms to:

CF(u, w/w′) =
1

1− α

1
u2

1
(1 + 1

u
w
w′
)

[
1−

(
1− u2 − u

w
w′
)(1+α)

]
, (A2)

where w
′
= dw/dr. Due to the fact that CF depends on u and the ratio Z = w/w′, we can

define λ as:
λ = (u + Z) u. (A3)

Therefore, CF(u, Z) is re-written as:

CF(λ) =
1

(1− α)

1
λ

[
1− (1− λ)(1+α)

]
. (A4)

The partial derivatives of CF with respect to u, w, w
′

are then related to ∂CF/∂λ via
the chain rule, namely:

∂CF
∂u

=
∂CF
∂λ
× ∂λ

∂u
. (A5)

∂CF
∂w

=
∂CF
∂λ
× ∂λ

∂w
. (A6)

∂CF
∂w′

=
∂CF
∂λ
× ∂λ

∂w′
. (A7)

The function e(λ) = ∂CF/∂λ is therefore:

e(λ) =
(1− λ)α − CF(λ)

λ
. (A8)

Then, (A5)–(A7) are related to (A8) by:

e(λ) =
1

2u + Z
× ∂CF

∂u
=

w′

u
× ∂CF

∂w
= − w

′

uZ
× ∂CF

∂w′
. (A9)
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Approximating Z by a β-field (Z = (1 + u)/β), we obtain CF and e only as functions
of u.

Appendix B

Here, the basic steps toward Equations (52)–(54) are outlined. The reader should keep
in mind the original derivation by CAK.

The partial derivatives of F(u, w, w′) (Equation (52)), with respect to u, w and w′ are:

∂F
∂u

= − 2
u2 + a2

rot − C
′
(

∂CF
∂u

g + CF
∂g
∂u

)
w−δ (w w′)α (A10)

∂F
∂w

=

(
1 +

1
w2

)
w
′ − C

′
(

∂CF
∂w

+ α
CF
w
− δ

CF
w

)
g w−δ (w w′)α (A11)

∂F
∂w′

=

(
1− 1

w2

)
w− C

′
(

∂CF
∂w′

+ α
CF
w′

)
g w−δ (w w′)α (A12)

After using the new coordinates Y = w w
′

and Z = w/w
′
, some derivative relation of

the correction factor (see Appendix A) and defining:

dg(u)
du

= g(u)× h(u) (A13)

where

h(u) = δ

 2
u
− u
√

1− u2
(

1−
√

1− u2
)
 (A14)

the singularity condition (w′ ∂F/∂w′ = 0) now reads:(
1− 1

YZ

)
Y − C′ f2(u, Z) g Z−δ/2 Yα−δ/2 = 0 (A15)

where f1(u, Z) = CF(u, Z),

f2(u, Z) = α f1(u, Z)− u Z× e(u, Z) (A16)

and e(u, Z) = e(λ) is defined in Appendix A.
The regularity condition (Z dF/du = 0) now transforms to:(

1 +
1

YZ

)
Y− C′ f3(u, Z) g(u) Z−δ/2 Yα−δ/2 = +

2Z
u2 − a2

rotZ (A17)

where
f3(u, Z) = (3u + Z) Z× e(u, Z) + f1(u, Z)× (h(u) Z + α− δ) (A18)

Notes
1 The surface gravity g is given in CGS units, i.e., cm/s2. The quantity log g is dimensionless, see Matta et al. [19].
2 Electrons with a velocity distribution function given by the Maxwellian distribution.
3 This equation is for the direct radiation force as no scattering contributions are included within the Sobolev approximation.
4 The subscript s means at the singular point.
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