
Citation: Hoak, D.; Barrett, J.; Crew,

G.; Pfeiffer, V. Progress on the

Haystack Observatory Postprocessing

System. Galaxies 2022, 10, 119.

https://doi.org/10.3390/

galaxies10060119

Academic Editors: Michael D.

Johnson, Shep Doeleman and Jose

L. Gómez

Received: 15 November 2022

Accepted: 10 December 2022

Published: 17 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

galaxies

Technical Note

Progress on the Haystack Observatory Postprocessing System
Daniel Hoak ∗,†, John Barrett †, Geoffrey Crew † and Violet Pfeiffer †

Massachusetts Institute of Technology, Haystack Observatory, 99 Millstone Rd, Westford, MA 01886, USA
* Correspondence: dhoak@mit.edu
† These authors contributed equally to this work.

Abstract: The Haystack Observatory Postprocessing System (HOPS) is a multipurpose tool for post-
correlation calibration and data analysis in Very-Long Baseline Interferometry experiments. The
requirements on stations, baselines, and bandwidth for the Next Generation Event Horizon Telescope
(ngEHT) have motivated a significant refactoring of the HOPS codebase. In this paper, we present the
requirements, specifications, and design of HOPS 4.0 and the current state of the refactoring, and we
discuss future work.

Keywords: VLBI; black holes; signal processing

1. Introduction

In Very-Long Baseline Interferometry (VLBI), the signal from widely separated radio
observatories is correlated between each pair of antennas, known as a baseline, to generate
complex time-averaged quantities, known as visibilities. A critical step between correlation
and further data analysis (e.g., imaging) is solving for corrections to the relative difference
in arrival times of the wavefront at the antennas, which can be caused by geometric path-
length differences, atmospheric effects, and instrumental effects that are not accounted for
in the timing model used for correlation. The procedure that solves for these residual delay
and delay-rate solutions that maximize the visibility amplitude on each baseline is known
as fringe fitting.

The Haystack Observatory Postprocessing System, or HOPS, is a multipurpose soft-
ware package designed to facilitate fringe fitting, phase calibration/correction, and data
analysis for VLBI experiments. HOPS has a multi-decade history as a VLBI tool, beginning
with work by Alan Rogers in FORTRAN in the 1970s, followed by a complete rewrite
into C by Colin Lonsdale and Roger Cappallo in the 1990s. There have been incremental
improvements since then by a large cast of contributors. The primary tool in HOPS is the
fringe-fitting program fourfit; separate tools provide data summary and visualization
methods (aedit, alist), and there are functions to segment, merge, average, export, and
incoherently search data (fringex, fourmer, average, CorAsc2, and search, respectively).

The Event Horizon Telescope (EHT) Collaboration has recently used VLBI techniques
to image the horizon scale structure of two supermassive black holes, M87* [1] and Sagit-
tarius A* [2]. The HOPS software was a critical component of the EHT data-processing
pipeline [3,4], along with CASA [5–7] and AIPS [8]. The next generation EHT (ngEHT)
is currently being designed and is expected to dramatically expand the EHT network [9].
The ngEHT is planned to include up to 30 stations recording four, 2-bit, dual-frequency,
dual-polarization channels at 8 GHz sampling frequency. These design goals amount to a
10x increase in the number of baselines and a 4x increase in the total bandwidth compared
to the EHT, which exceeds the capabilities of the current HOPS software1. Thus, as part of
the ngEHT design effort, the HOPS software is being significantly refactored to support the
expansion of the network.

Galaxies 2022, 10, 119. https://doi.org/10.3390/galaxies10060119 https://www.mdpi.com/journal/galaxies

https://doi.org/10.3390/galaxies10060119
https://doi.org/10.3390/galaxies10060119
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/galaxies
https://www.mdpi.com
https://orcid.org/0000-0002-2079-3189
https://doi.org/10.3390/galaxies10060119
https://www.mdpi.com/journal/galaxies
https://www.mdpi.com/article/10.3390/galaxies10060119?type=check_update&version=2

Galaxies 2022, 10, 119 2 of 6

2. Goals of the Refactoring

The current HOPS software (major version 3, or HOPS32) is written in C and dates from
the 1990s. While HOPS3 has had tremendous success as a tool for the VLBI community, the
design of the existing codebase has several limitations. We will address these by refactoring
the existing functions and methods into C/C++ for HOPS4.

The memory allocation of the pipeline is controlled by hard-coded parameters that
place a limit on the number of stations, channels/sub-bands/IFs3, accumulation periods
(APs), and other dimensions of the data. HOPS4 will use dynamic memory allocation and
will have no practical limit on the number of stations, baselines, channels, and APs in a
fringe search.

Currently, HOPS has the ability to perform phase corrections on a per-channel basis,
but it cannot perform fully complex corrections (amplitude and phase) at the sub-channel
level. HOPS4 will support amplitude, phase, and delay corrections at each frequency bin.

The existing code relies on legacy software packages that are no longer supported,
such as the plotting utility PGPLOT [10], which is deeply integrated into the HOPS code.
HOPS4 will decouple plotting and analysis routines and provide new plotting tools using
modern packages such as matplotlib [11]. HOPS4 will also provide hooks for user-defined
plotting packages.

HOPS requires a user-generated configuration file to set basic analysis parameters.
The syntax for this file is complex and does not support operations such as flagging
or vetoing data beyond a rudimentary manual selection in time or sub-band (channel).
Furthermore, the code base as a whole is monolithic and difficult to extend or use in a
modular way for either debugging or analysis. HOPS4 will use modern wrappers (e.g.,
Python) for initializing the configuration parameters and refactor the code into modular,
independent libraries.

Most importantly, HOPS4 will be capable of performing any operation that HOPS3 is
capable of and will continue to support current data formats.

The following sections describe particular design choices for HOPS4.

2.1. Data Format

HOPS processes VLBI data that have been correlated using the DiFX software cor-
relator [12,13]. DiFX output (which contains the complex visibilities) is in the so-called
“Swinburne” format. Currently, HOPS requires users to convert the DiFX output files into
the legacy “Mark4” format using the difx2mark4 utility. The Mark4 data format is based
on I/O methods from the tape-drive era, and the format of the in-memory data structures
in HOPS3 is tightly coupled to this disk storage format. As a result, modifications to the
in-memory structures require similar modifications to the disk storage format and vice
versa. HOPS4 has replaced the Mark4 disk storage format with a binary data format that
allows increased flexibility and improved file I/O performance. A new utility, difx2hops,
converts the visibilities and metadata from the Swinburne format into the HOPS4 format.

The binary file format is well-suited for large homogeneous data files such as visibil-
ities. These can be several gigabytes in size for a single (few minute) EHT scan. Hetero-
geneous data types, such as experiment metadata, are currently stored in memory as C
structures with hard-coded sizes. HOPS4 stores these data types as JSON key-value pairs.
The JSON format supports lists and is not restricted by compile-time size definitions.

Finally, the HOPS4 team has implemented support for the vex [14] and ovex metadata
formats, including the new Vex 2.0 [15] format. The metadata from these files are stored
as key-value pairs in a JSON object. HOPS4 will support output of fringe data to other
formats such as uvfits or hdf5.

Galaxies 2022, 10, 119 3 of 6

2.2. Data Structures

Currently, HOPS imports data from the Mark4 data format into C-type structures,
whose parameters are hard-coded and are difficult to modify. HOPS4 will utilize C++
template classes to construct multidimensional arrays of any trivially constructable data
type. This feature provides a method for augmenting the code with a wide variety of
possible data types that all share the same unified array-like access interface. The base class
has methods to handle memory allocation, resizing, data access via indices or iterators,
and data operators for streaming, and so new data types can be defined with minimal
effort to meet new use-cases without requiring extensive changes to the code base. While
the dimensionality and element types composing a data array in HOPS4 must be fixed
at compile time (for example, channelized visibility data with four dimensions: time,
frequency, channel, and polarization), the size of each dimension is not fixed or limited.
This allows HOPS4 to analyze datasets of arbitrary size. In addition, these template
classes support labeling each axis with intervals defined by key-value pairs to facilitate
data flagging.

The data operations that act upon multidimensional data in HOPS4 follow a common
interface that only requires methods to set the data objects that are used in the operation,
initialize the internal state, and execute the operation. This allows users to chain operations
in an ordered list for execution, while allowing each operation to be self-contained and
unit-testable.

Furthermore, we are implementing bindings and plugins to expose the data structures
to external methods. We are using the pybind11 and SWIG libraries to construct bindings
to the channelized visibility containers, which allows users to manipulate the data with
Python code. We also verify that the operator interface works with OpenCL extensions,
which allows the most time-consuming data operations to be parallelized on GPUs.

2.3. Plotting and Data Summary

HOPS currently generates plots using the PGPLOT graphics library, which has been
unsupported for over a decade and has become difficult to install on contemporary oper-
ating systems. Unfortunately, the PGPLOT functions are deeply embedded in the HOPS
code. Significant refactoring is required to separate the data processing from plotting and
file output.

The HOPS4 analysis methods will be completely independent of plotting and visual-
ization tools. The analysis code will export results to standard file formats, and the plotting
functions will read the data from the disk. Our default plotting routines will be written in
matplotlib, but the modularity of the plotting functions will enable users to implement
their own plotting methods (and allow HOPS to be compiled and executed without linking
to any plotting libraries).

The basic plotting result from HOPS is the fringe plot (see Figure 1), which has been
widely recognized by VLBI users for many years. The fringe plot will be replicated in
HOPS4, but options will be available for different use-cases, for example replacing the
cross-power spectrum with an alternative plot, or simplifying the dense text and metadata
at the bottom of the figure.

The HOPS alist utility summarizes the results of a VLBI experiment in an “A-file”, a
text file that records the useful parameters for each scan, baseline, and polarization. The
utility aedit provides a number of command-line tools that manipulate A-list data, such
as plotting, filtering, editing and sorting. Currently, aedit includes both command-line
and GUI interfaces. The GUI capability currently requires PGPLOT, which will be replaced
in HOPS4. We have prototyped a PyQt-based GUI that replicates the graphical interface of
aedit and supports the command-line features.

Galaxies 2022, 10, 119 4 of 6

Mk4/DiFX fourfit 3.19 rev 2512 M87.0CO70P, 096-0052, AP
ALMA - PICOVEL, fgroup B, pol LL

5

56.1
359.979

0.568
9.1

0.0e+00

-0.000054
0.000003

-0.021963
 0.000

226162.7969
0.400

e17b06
3598

2017:096
005200.00
005800.00
005500.00

2018:303:200854
2018:304:013346
2018:303:151619

12h30m49.423382s
+12˚23’28.043661"

Fringe quality

SNR
Int time
Amp
Phase
PFD
Delays (us)
SBD
MBD
Fringe rate (Hz)

Ion TEC
Ref freq (MHz)

AP (sec)

Exp.
Exper #
Yr:day
Start
Stop
FRT
Corr/FF/build

RA & Dec (J2000)

Amp. and Phase vs. time for each freq., 6 segs, 150 APs / seg (60.00 sec / seg.), time ticks 60 sec

U
Validity

L

A P

226162.80 Freq (MHz)

6.1 Phase

0.4 Ampl.

234.2 Sbd box

900/0 APs usedU/L

0 PC freqsA

0 PC freqsP

0:0 PC phaseA:P

0:47 Manl PCA:P

PC ampA 1000

1000P

B00UL Chan ids
A

B00UL Chan ids
P

226221.39

5.3

0.6

233.3

900/0

0

0

0:0

0:124

1000

1000

B01UL

B01UL

226279.98

14.1

0.5

233.3

900/0

0

0

0:0

0:-152

1000

1000

B02UL

B02UL

226338.58

11.9

0.5

233.6

900/0

0

0

0:0

0:-59

1000

1000

B03UL

B03UL

226397.17

1.2

0.6

233.3

900/0

0

0

0:0

0:29

1000

1000

B04UL

B04UL

226455.77

6.0

0.5

232.6

900/0

0

0

0:0

0:130

1000

1000

B05UL

B05UL

226514.36

10.4

0.6

233.0

900/0

0

0

0:0

0:-127

1000

1000

B06UL

B06UL

226572.95

17.0

0.6

232.6

900/0

0

0

0:0

0:-16

1000

1000

B07UL

B07UL

226631.55

2.8

0.5

233.1

900/0

0

0

0:0

0:83

1000

1000

B08UL

B08UL

226690.14

12.0

0.5

232.7

900/0

0

0

0:0

0:-158

1000

1000

B09UL

B09UL

226748.73

9.2

0.5

233.3

900/0

0

0

0:0

0:-42

1000

1000

B10UL

B10UL

226807.33

3.3

0.6

232.8

900/0

0

0

0:0

0:75

1000

1000

B11UL

B11UL

226865.92

16.5

0.7

233.1

900/0

0

0

0:0

0:-172

1000

1000

B12UL

B12UL

226924.52

-2.1

0.6

233.0

900/0

0

0

0:0

0:-51

1000

1000

B13UL

B13UL

226983.11

9.2

0.6

232.8

900/0

0

0

0:0

0:75

1000

1000

B14UL

B14UL

227041.70

14.1

0.5

233.0

900/0

0

0

0:0

0:-163

1000

1000

B15UL

B15UL

227100.30

20.8

0.5

232.8

900/0

0

0

0:0

0:-48

1000

1000

B16UL

B16UL

227158.89

9.9

0.6

232.8

900/0

0

0

0:0

0:78

1000

1000

B17UL

B17UL

227217.48

19.3

0.6

233.1

900/0

0

0

0:0

0:-156

1000

1000

B18UL

B18UL

227276.08

11.2

0.5

232.9

900/0

0

0

0:0

0:-27

1000

1000

B19UL

B19UL

227334.67

9.7

0.7

233.1

900/0

0

0

0:0

0:91

1000

1000

B20UL

B20UL

227393.27

2.2

0.6

232.8

900/0

0

0

0:0

0:-140

1000

1000

B21UL

B21UL

227451.86

12.1

0.6

232.5

900/0

0

0

0:0

0:-15

1000

1000

B22UL

B22UL

227510.45

5.9

0.6

232.8

900/0

0

0

0:0

0:110

1000

1000

B23UL

B23UL

227569.05

11.3

0.6

233.0

900/0

0

0

0:0

0:-132

1000

1000

B24UL

B24UL

227627.64

4.9

0.6

233.3

900/0

0

0

0:0

0:-7

1000

1000

B25UL

B25UL

227686.23

3.6

0.6

232.6

900/0

0

0

0:0

0:120

1000

1000

B26UL

B26UL

227744.83

14.0

0.6

232.7

900/0

0

0

0:0

0:-109

1000

1000

B27UL

B27UL

227803.42

11.4

0.7

233.1

900/0

0

0

0:0

0:4

1000

1000

B28UL

B28UL

227862.02

-1.0

0.6

233.1

900/0

0

0

0:0

0:121

1000

1000

B29UL

B29UL

227920.61

3.7

0.6

233.1

900/0

0

0

0:0

0:-125

1000

1000

B30UL

Tracks

B30UL

Tracks

227979.20

18.1

0.6

233.2

900/0

0

0

0:0

0:-10

1000

1000

B31UL

B31UL

All

9.1

0.6

233.0

Group delay (usec)(sbd)
Sband delay (usec)
Phase delay (usec)
Delay rate (us/s)
Total phase (deg)

-9.51961631045E+03
-9.51961636725E+03
-9.51961631362E+03
1.38160436897E+00

-239.3

Apriori delay (usec)
Apriori clock (usec)
Apriori clockrate (us/s)
Apriori rate (us/s)
Apriori accel (us/s/s)

-9.51961631373E+03
-2.1072915E+03
-4.4900002E-07

1.38160446608E+00
1.55941925374E-05

Resid mbdelay (usec)
Resid sbdelay (usec)
Resid phdelay (usec)
Resid rate (us/s)
Resid phase (deg)

3.27622E-06
-5.35172E-05
1.11938E-07

-9.71131E-08
9.1

+/-
+/-
+/-
+/-
+/-

5.2E-06
1.7E-04
2.5E-08
1.2E-10

2.0

RMS Theor. Amplitude 0.568 +/- 0.010 Pcal mode: MANUAL, MANUAL PC period (AP’s) 5, 5
ph/seg (deg) 64.5 2.5 Search (2048X128) 0.557 Pcal rate: 0.000E+00, 0.000E+00 (us/s) sb window (us) -0.100 0.100
amp/seg (%) 55.0 4.4 Interp. 0.000 Bits/sample: 2x2 SampCntNorm: disabled mb window (us) -0.008 0.008
ph/frq (deg) 6.0 5.8 Inc. seg. avg. 0.719 Sample rate(MSamp/s): 116 dr window (ns/s) -0.001 0.001
amp/frq (%) 11.5 10.1 Inc. frq. avg. 0.568 Data rate(Mb/s): 7424 nlags: 232 t_cohere infinite ion window (TEC) 0.00 0.00
A: az 58.2 el 31.1 pa -126.8 P: az 214.6 el 61.3 pa 27.0 u,v (fr/asec) -21223.027 -21771.761 simultaneous interpolator
Control file: e17b06-7-lo.conf Input file: /data-sc14/difxoper/e17b06/v7ap1/3598/096-0052/AP..0CO70P Output file: /data-sc14/difxoper/e17b06/v7ap1/3598/096-0052/AP.B.3.0CO70P

Figure 1. An example fringe plot from the 2017 EHT observations of M87.

3. Testing

The HOPS4 team is following best practices with regards to test-driven development.
These include regression, unit, component, and integration tests. We plan to use HOPS3 as
a test oracle and currently support test-coverage reports. The suite of tests is intended to
provide developers with up-to-date verification of the required HOPS functionality across
the supported platforms and distributions. It also provides end users with build-time
checks to indicate that the installation was successful. We use coverage tools to demonstrate
that the test plan executes a satisfactory fraction of the code, and that all required functions
and cases are exercised by the tests. Additionally, we collect performance assessments and
benchmarks on a regular basis using captured datasets.

4. Future Work

HOPS currently fringe-fits VLBI data on a per-polarization, per-baseline basis; each
pair of polarizations and stations are treated independently. Closure quantities are not
considered during the fringe-finding stage, so non-closing errors can occasionally be intro-

Galaxies 2022, 10, 119 5 of 6

duced with this method unless care is taken to iteratively generate a global fringe solution
by repeated re-fringing. A number of global fringe-fitting algorithms exist (e.g., [16,17])
that minimize the residual phase, delay, and delay-rate solutions for arrays with three
or more stations and can aid in recovering fringes on baselines with low signal-to-noise.
One of the goals of the refactoring effort of HOPS is to modify the software so it may
accommodate a choice of alternative algorithms for fringe fitting in addition to the native
baseline-based algorithm.

Sources with weak continuum emission but bright spectral lines can be imaged using
spectral-line VLBI techniques. In principle, the current version of HOPS can perform
spectral-line VLBI, but the procedure is quite technical and requires a significant amount of
hand-tuning. Implementing a fringe-fitting algorithm that supports spectral-line VLBI by
searching for the fringe maximum over delay-rate and frequency space is a highly desirable
goal for HOPS4.

HOPS3 calculates per-baseline, per-scan fringe solutions in a one-shot execution of
fourfit from the command line; crude parallelization can be made by running multiple
fourfit jobs over multiple datasets, but this must be orchestrated by the user. While
this sort of simple parallelization is crucial for processing large swaths of independent
data needed for VLBI-imaging, it is not particularly useful for acceleration on data with
granularity below that of a single baseline/scan. The basic fringe-fitting algorithm in
HOPS3 computes the Fast-Fourier Transform (FFT) and searches for the fringe maximum
in the three-dimensional space defined by the single-band delay, the multi-band delay, and
the delay rate; the computationally intensive portion of this method can be parallelized
relatively easily either with multi-threading or via single-instruction–multiple-data (SIMD)
techniques. Given the raw computational power of modern GPUs, the SIMD avenue is par-
ticularly attractive as it is well-tailored for the repeated calculation of simple mathematical
functions (e.g., the delay/delay-rate phase rotation) as well as array manipulation, which
dominates the fringe-fitting computation. OpenCL extensions of simple data operations
(array scaling/multiplication) have been demonstrated and will be applied to additional
operations as computational bottlenecks in the existing and future algorithms are identified.

5. Conclusions

The refactoring of the HOPS VLBI analysis software for the ngEHT is well underway.
Approximately 23k lines of code have been written and define new data structures and
I/O routines, import/export to legacy data formats, and perform data analysis on the
new structures. The goal of the refactoring is to maintain the current functionality and
performance of HOPS while supporting the increased number of stations, baselines, and
frequency bands for the ngEHT. HOPS4 will rely on standard software packages (C/C++,
Python, and minimal associated tools) that are readily available on common Linux-based
operating systems such as Ubuntu, Debian, and CentOS. HOPS4 will have improved
modularity and extensibility compared to HOPS3, allowing users to export data to common
formats, inject code to test new methods, and ease debugging.

The HOPS development team4 welcomes user feedback, questions, and feature re-
quests. The team looks forward to releasing a beta version of fourfit in early 2023 and a
beta version of the full HOPS4 software package in 2024.

Author Contributions: Authors D.H., J.B., G.C. and V.P. contributed equally to this work. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Science Foundation through grant numbers
AST-1935980 and AST-2034306.

Data Availability Statement: Not applicable.

Acknowledgments: The authors gratefully acknowledge useful discussions from their MIT Haystack,
EHT, and ngEHT colleagues.

Conflicts of Interest: The authors declare no conflict of interest.

Galaxies 2022, 10, 119 6 of 6

Notes
1 HOPS3 has hard-coded limits on the number of stations (16), baselines (120), channels/sub-bands (64), and accumulation periods

(8192) that are challenging to modify in the current architecture.
2 The latest release as of this article is version 3.24: ftp://gemini.haystack.mit.edu/pub/hops (accessed on 15 December 2022)
3 In VLBI, each spectral band measured at the antenna is typically divided into several smaller bands for averaging and analysis.

In HOPS, these sub-bands are called channels, while in other fringe-fitting packages (e.g., AIPS) they are called intermediate-
frequency bands or “IFs”. For example, the EHT collects data in 2 GHz bands, which in HOPS are divided into 32 channels, each
58 MHz wide; see Figure 3 in [4]. One or more individual frequency bins (“channels” in AIPS) are referred to as a “sub-channel”
in HOPS.

4 hops-dev@mit.edu

References
1. The Event Horizon Telescope Collaboration. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive

Black Hole. Astrophys. J. Lett. 2019, 875, L1. [CrossRef]
2. The Event Horizon Telescope Collaboration. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the

Supermassive Black Hole in the Center of the Milky Way. Astrophys. J. Lett. 2022, 930, L12. [CrossRef]
3. The Event Horizon Telescope Collaboration. First M87 Event Horizon Telescope Results. III. Data Processing and Calibration.

Astrophys. J. Lett. 2019, 875, L3. [CrossRef]
4. Blackburn, L.; Chan, C.; Crew, G.B.; Fish, V.L.; Issaoun, S.; Johnson, M.D.; Wielgus, M.; Akiyama, K.; Barrett, J.; Bouman, K.L.;

et al. EHT-HOPS Pipeline for Millimeter VLBI Data Reduction. Astrophys. J. 2019, 882, 23. [CrossRef]
5. The CASA Team; Bean, B.; Bhatnagar, S.; Castro, S.; Donovan Meyer, J.; Emonts, B.; Garcia, E.; Garwood, R.; Golap, K.; Gonzalez

Villalba, J.; et al. CASA, the Common Astronomy Software Applications for Radio Astronomy. arXiv 2022, arXiv:2210.02276.
6. van Bemmel, I.M.; Kettenis, M.; Small, D.; Janssen, M.; Moellenbrock, G.A.; Petry, D.; Goddi, C.; Linford, J.D.; Rygl, K.L.J.; Liuzzo,

E.; et al. CASA on the fringe—Development of VLBI processing capabilities for CASA. arXiv 2022, arXiv:2210.02275.
7. Janssen, M.; Goddi, C.; van Bemmel, I.M.; Kettenis, M.; Small, D.; Liuzzo, E.; Rygl, K.; Martí-Vidal, I.; Blackburn, L.; Wielgus, M.;

et al. rPICARD: A CASA-based calibration pipeline for VLBI data—Calibration and imaging of 7 mm VLBA observations of the
AGN jet in M 87. Astron. Astrophys. 2019, 626, A75. [CrossRef]

8. Greisen, E.W. AIPS, the VLA, and the VLBA. In Information Handling in Astronomy—Historical Vistas; Heck, A., Ed.; Astrophysics
and Space Science Library; Springer: Dordrecht, The Netherlands, 2003; Volume 285, p. 109. ._7. [CrossRef]

9. Blackburn, L.; Doeleman, S.; Dexter, J.; Gómez, J.L.; Johnson, M.D.; Palumbo, D.C.; Weintroub, J.; Bouman, K.L.; Chael, A.A.;
Farah, J.R.; et al. Studying Black Holes on Horizon Scales with VLBI Ground Arrays. arXiv 2019, arXiv:1909.01411.

10. Pearson, T. PGPLOT: Device-independent Graphics Package for Simple Scientific Graphs. Astrophysics Source Code Library:
2011; p. 03002. Available online: https://ui.adsabs.harvard.edu/abs/2011ascl.soft03002P/abstract (accessed on 9 December
2022).

11. Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [CrossRef]
12. Deller, A.T.; Tingay, S.J.; Bailes, M.; West, C. DiFX: A Software Correlator for Very Long Baseline Interferometry Using

Multiprocessor Computing Environments. Publ. Astron. Soc. Pac. 2007, 119, 318–336. [CrossRef]
13. Deller, A.T.; Brisken, W.F.; Phillips, C.J.; Morgan, J.; Alef, W.; Cappallo, R.; Middelberg, E.; Romney, J.; Rottmann, H.; Tingay, S.J.;

et al. DiFX-2: A More Flexible, Efficient, Robust, and Powerful Software Correlator. Publ. Astron. Soc. Pac. 2011, 123, 275–287.
[CrossRef]

14. VEX 1.5 File Definition. 2002. Available online: https://vlbi.org/wp-content/uploads/2019/03/vex-definition-15b1.pdf
(accessed on 9 December 2022).

15. VEX 2.0 File Definition. 2021. Available online: https://safe.nrao.edu/wiki/bin/view/VLBA/Vex2doc (accessed on 9 December
2022).

16. Schwab, F.R.; Cotton, W.D. Global fringe search techniques for VLBI. Astron. J. 1983, 88, 688–694. [CrossRef]
17. Alef, W.; Porcas, R. VLBI fringe-fitting with antenna-based residuals. Astron. Astrophys. 1986, 168, 365–368.

ftp://gemini.haystack.mit.edu/pub/hops
http://doi.org/10.3847/2041-8213/ab0ec7
http://dx.doi.org/10.3847/2041-8213/ac6674
http://dx.doi.org/10.3847/2041-8213/ab0c57
http://dx.doi.org/10.3847/1538-4357/ab328d
http://dx.doi.org/10.1051/0004-6361/201935181
http://dx.doi.org/10.1007/0-306-48080-8_7
https://ui.adsabs.harvard.edu/abs/2011ascl.soft03002P/abstract
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1086/513572
http://dx.doi.org/10.1086/658907
https://vlbi.org/wp-content/uploads/2019/03/vex-definition-15b1.pdf
https://safe.nrao.edu/wiki/bin/view/VLBA/Vex2doc
http://dx.doi.org/10.1086/113360

	Introduction
	Goals of the Refactoring
	Data Format
	Data Structures
	Plotting and Data Summary

	Testing
	Future Work
	Conclusions
	References

