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Gravitational waves (GW) are propagating perturbations of the space-time metric,
generated by time-varying mass distributions. Their existence was predicted more than
100 years ago, in 1916, as a consequence of the General Relativity theory of gravitation [1].
The most intense sources of gravitational waves are astrophysical objects such as neutron
stars and black holes. Despite the large amount of energy emitted in the form of gravita-
tional waves by the coalescence of compact binary systems, the radiation has to travel tens
or thousands of Mpc before reaching earth, where it can be detected. This, and the weak-
ness of the coupling to matter, are the reasons why the direct observation of gravitational
waves has been such a challenging scientific endeavor, and why the signal from the first
binary black hole coalescence, detected in 2015, produced a relative change in the local
earth space-time metric of only about 10−21 [2], see Figure 1. Many sources of noises had
to be understood and overcome [3], so that the two Advanced LIGO observatories [4,5]
were sensitive enough to detect this event with high signal-to-noise ratio, opening the era
of gravitational-wave astronomy and astrophysics. This event was the first demonstration
of the existence of binary black holes, and the first confirmation that General Relativity is
still valid in the intense-field regime involved in the collision of two compact objects such
as black holes.

The first detection, dubbed GW150914, was only the first step of the newly-born
gravitational-wave astronomy. The second major milestone was the detection of the first
binary neutron star merger, GW170817 [6], only two years after the first event, see Figure 2.
By then, the LIGO and Virgo [7,8] detectors had joined forces, and had already detected
several more binary black hole events. However, the importance of the detection of two
neutron stars colliding was on par with the first discovery. Not only we could detect
gravitational waves from the two objects, proving without a doubt that they had masses
compatible with neutron stars, but we also observed a short gamma-ray burst in coincidence
with the event, proving the connection between the two phenomena. The sky localization
provided by the gravitational wave observation by multiple detectors, LIGO and Virgo,
allowed optical telescopes to identify the aftermath of the collision, and subsequently follow
up in the entire electromagnetic spectrum. The promise of multi-messenger astronomy was
indeed fulfilled.

The network of instruments actively observing the gravitational-wave universe is
going to grow with the KAGRA detector [9,10]. As a first step, KAGRA operated in
conjunction with the GEO 600 observatory [11] after the LIGO and Virgo O3 run ended [12].
In the three main observing runs carried out so far, the LIGO and Virgo collaborations have
reported a total of 90 events with high probability of being of astrophysical origin [13], see
Figure 3, an average of one event every five days in the last run.

Signals from coalescing binary systems [14] are just the beginning of the discoveries
that gravitational-wave detectors will bring. Short-duration signals are expected to be
produced by other sources, the most important being core-collapse supernovae [15]: both
modeled and unmodeled searches are ongoing for such signals. Additionally, continuous-
wave signals are expected to be produced by rotating pulsars [16]. Although they have not
been detected yet, the upper limits obtained so far are already more stringent that the spin-
down limits for many systems. With improved sensitivities, ground-based gravitational-
wave observatories might be finally able to detect stochastic backgrounds [17] either from
the confusion noise of coalescing binary systems, of from a cosmological origin.
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Figure 1. Strain data for the gravitational-wave event GW150914, produced by the collision of two
black holes, and observed by the LIGO Hanford and LIGO Livingston detectors. The top row shows
the band-passed strain output of the two detectors. In the right panel the LIGO Hanford signal is
superimposed to the LIGO Livingston signal, with a time shift, to show the agreement between the
two waveforms. The second row shows the comparison between the numerical relativity model of
the event and the reconstructed signals. The residual difference between model and measurement
in the third row shows the good agreement between theory and experiment. Finally, the bottom
row shows time-frequency representations of the signals, where the characteristic chirp waveform is
evident. Graphics reproduced from [2] under Creative Commons License.

The increasingly large number of gravitational wave detections made it possible to
study the astrophysics of the sources [18] and the behavior of gravity in the intense field
regime [19]. To be able to infer precise information on those fundamental topics, it is crucial
to continuously increase the detector sensitivity, to improve the signal-to-noise ratio of
the events, but it is also of the utmost importance to calibrate the detector output with
high precision [20] and to remove any additional spurious disturbance that might mimic
astrophysical signals [21].

The instruments that allowed all those scientific discoveries are laser Michelson in-
terferometers [22]. The phase of two coherent laser beams propagating along orthogonal
directions is changed by the passage of gravitational waves, modifying the interference
condition at the beam recombination. The phase change is proportional to the differential
fluctuation in the length of the two arms, due to the strain induced by gravitational-wave
signals. Therefore, the detector sensitivity is directly proportional to the baseline length
of the Michelson interferometer: this is the main reason to build km-scale detectors. Even
with such large scale Michelson interferometers, the fundamental limitation due to laser
quantum noise would not have allowed the sensitivity needed to detect gravitational
waves. Over the years, the initial design of the detectors evolved to include more and
more complex techniques aimed at increasing the sensitivity. The Michelson interferometer
arms were replaced by resonant Fabry–Perot cavities to increase the phase accumulation by
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the laser beam in response to gravitational-wave signals. Power-recycling cavities were
added to increase the circulating laser power. Signal-recycling cavities were added to shape
the detector bandwidth. Quantum-measurement techniques such as squeezed vacuum
injections were implemented [23] to beat the laser shot-noise limit. Sophisticated seismic
isolation and suspension systems were developed to reduce noise from ground motion [24].
Cryogenic operation of the interferometer test masses was implemented [10] to reduce
thermal noise. The result of all those efforts are the currently operating Advanced Virgo [8],
Advanced LIGO [5] and KAGRA observatories [10].
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Figure 2. Time-frequency maps of the LIGO and Virgo detector outputs during the gravitational-wave
event GW170817, created by the collision of two neutron stars. The signal stayed in the detector
bandwidth for several tens of seconds, increasing in frequency following a characteristic chirp-like
pattern. Graphics reproduced from [6] under Creative Commons License.

At the time this special issue is being published, the major ground-based detectors
are undergoing an upgrade period. They are expected to be back in observation in 2023,
with improved sensitivity to all kind of gravitational-wave sources. Further improvements
are planned in the coming years for those detectors [25], and design studies are well
underway for the next generation observatories. The next decades will see the European
project Einstein Telescope [26] and the US project Cosmic Explorer [27] move from the
drawing board to construction and operation. The currently existing detector will undergo
upgrades, to move to silicon test masses operated at cryogenic temperatures [25], providing
not only a significant improvement in sensitivity, but also serving as a crucial research
and development platform for Einstein Telescope and Cosmic Explorer. Together with
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the planned space-borne gravitational-wave detectors LISA [28] and DECIGO [29], they
hold the promise of detecting signals from the coalescence of compact binary systems from
the entire observable universe, many of those events with very large signal-to-noise ratio,
opening the era of high precision gravitational-wave physics, astrophyisics and cosmology.

Figure 3. Collection of time-frequency maps of all the LIGO and Virgo detections in the first three
observation runs. Graphics reproduced from [30].
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